JPS61215993A - Thermal shielding device for fast breeder reactor - Google Patents

Thermal shielding device for fast breeder reactor

Info

Publication number
JPS61215993A
JPS61215993A JP60057724A JP5772485A JPS61215993A JP S61215993 A JPS61215993 A JP S61215993A JP 60057724 A JP60057724 A JP 60057724A JP 5772485 A JP5772485 A JP 5772485A JP S61215993 A JPS61215993 A JP S61215993A
Authority
JP
Japan
Prior art keywords
reactor vessel
coolant
reactor
sodium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60057724A
Other languages
Japanese (ja)
Other versions
JPH023158B2 (en
Inventor
木元 誠
岸 昭正
林 義次
副島 優治
一夫 谷本
林 喬雄
三郎 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Kyushu Electric Power Co Inc, Japan Atomic Power Co Ltd, Chugoku Electric Power Co Inc, Chubu Electric Power Co Inc, Hokuriku Electric Power Co, Shikoku Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP60057724A priority Critical patent/JPS61215993A/en
Publication of JPS61215993A publication Critical patent/JPS61215993A/en
Publication of JPH023158B2 publication Critical patent/JPH023158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高速増殖炉の熱遮蔽装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a heat shielding device for a fast breeder reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、高速増殖炉(以下、原子炉と記す)は7便体ナ
トリウム等の液体金属を冷却材とじて空間に不活性ガス
からなるカバーガスを充填して形成されている。
Generally, a fast breeder reactor (hereinafter referred to as a nuclear reactor) is formed by using a liquid metal such as heptadium sodium as a coolant and filling a space with a cover gas made of an inert gas.

一方、この液体金属からなる冷却材は熱伝達能力が極め
て大きいため、この冷却材に接している原子炉容器の壁
部の温度は冷却材の温度賀化に対して極めて速く追従す
る。しかしながら、原子炉容器のうち冷却材の液面よシ
上方の部分の壁部の温度は、冷却材の温度変化には追従
しない。
On the other hand, since the coolant made of liquid metal has an extremely high heat transfer ability, the temperature of the wall of the reactor vessel that is in contact with the coolant follows the temperature change of the coolant extremely quickly. However, the temperature of the wall portion of the reactor vessel above the liquid level of the coolant does not follow the temperature change of the coolant.

このため、原子炉の運転開始、停止の場合のように冷却
材の温度が変化すると、原子炉容器のうち冷却材の液面
下の部分と液面上の部分との間に大きな@駁差が生じて
しまう。これに伴って、冷却材の液面近傍に位置する原
子炉容器壁には大きな温度勾配が生じ、過大な熱応力が
発生し、原子炉容器の健全性を損なう可能性があった。
For this reason, when the temperature of the coolant changes, such as when starting or stopping a nuclear reactor, there is a large difference between the part of the reactor vessel below the coolant liquid level and the part above the liquid level. will occur. As a result, a large temperature gradient occurs on the reactor vessel wall located near the coolant liquid level, generating excessive thermal stress, which may impair the integrity of the reactor vessel.

そこで、従来は原子炉容器の内側に断熱壁を添設し、こ
の断熱壁と原子炉容器内面との間に低温の冷却材をIt
通させ、炉心の上面から流出した高温の冷却材が原子炉
容器に直接接触しな慴 いようにして、原子炉容器の健全性の確保を行なってい
る。すなわち、原子炉容器内に設けられた循環ポンプか
ら炉心部に向けて送出される低温の冷却材の一部を、前
記断熱壁と原子炉容器内面との間を流通せしめる冷却材
流路を設けるようにしている。
Therefore, in the past, an insulating wall was attached to the inside of the reactor vessel, and a low-temperature coolant was inserted between this insulating wall and the inner surface of the reactor vessel.
The integrity of the reactor vessel is ensured by ensuring that the high temperature coolant flowing out from the top of the reactor core does not come into direct contact with the reactor vessel. That is, a coolant flow path is provided that allows a part of the low-temperature coolant sent toward the reactor core from a circulation pump provided in the reactor vessel to flow between the heat insulating wall and the inner surface of the reactor vessel. That's what I do.

しかし、この方法では循環ポンプがトリップした時に断
熱機能が得られない等の問題がめった。
However, this method often has problems such as not being able to provide insulation when the circulation pump trips.

そのほかに、原子炉容器内壁の液面近傍位置に、全周に
亘りてがス空間でめる上鄭開口型の環状空間(ガスダム
)を形成する環状壁を設け、これによって高温の冷却材
と原子炉容器内面との直接接触を防止して、載面近傍の
冷却材の温度変化が直接原子炉容器に伝わるのを防止す
ることが行なわれている。
In addition, an annular wall is installed near the liquid level on the inner wall of the reactor vessel to form an annular space (gas dam) with an upper opening that is surrounded by a gas space around the entire circumference. Direct contact with the inner surface of the reactor vessel is prevented to prevent temperature changes in the coolant near the loading surface from being directly transmitted to the reactor vessel.

しかし、この方式ではカバーガスに接している原子炉容
器内面部で凝縮した冷却材が環状空間内に流れ落ちたシ
、何らかの原因で冷却材が環状空間内に流入して溜った
シすると、断熱(熱遮蔽)効果が著しく低下する問題や
、性能回復の為の稼動装置等が盛装であるなどの問題が
おった。
However, with this method, if coolant condensed on the inner surface of the reactor vessel that is in contact with the cover gas flows down into the annular space, or if coolant flows into the annular space for some reason and accumulates, the insulation There were problems such as a significant decrease in the heat shielding effect and the need for equipment to restore performance.

つt D、上記環状空間(ガスダム)内に溜った冷却材
の熱伝導率は極めて高いので環状壁内の冷却材の保有す
る熱が原子炉容器に伝達され、環状空間を設けたことに
よる断熱効果が損なわれる問題がある。さらに、環状空
間内には、環状壁面から原子炉容器への放射熱を抑制す
る熱遮蔽板が設けられているが、液面から蒸発した冷却
材蒸気がガス空間で冷却され熱遮蔽板に付着し、放射熱
抑制の効果も損なわれる問題もあった。なお、環状空間
(ガスダム)内に溜った冷却材をポンプによシ汲出すこ
とも提案されてはいるが原子炉容器内は常に500℃以
上の冷却材で扱われてお)、しかも原子炉の寿命は数十
年と長いので、この期間中宮に確実に作製するポンプを
製作することは困難である。
D. Since the thermal conductivity of the coolant accumulated in the annular space (gas dam) is extremely high, the heat held by the coolant in the annular wall is transferred to the reactor vessel, resulting in insulation due to the annular space. There is a problem that the effectiveness is lost. Furthermore, a heat shield plate is installed in the annular space to suppress radiant heat from the annular wall surface to the reactor vessel, but coolant vapor evaporated from the liquid surface is cooled in the gas space and adheres to the heat shield plate. However, there was also the problem that the effect of suppressing radiant heat was also impaired. Although it has been proposed to use a pump to pump out the coolant accumulated in the annular space (gas dam), the inside of the reactor vessel is always treated with coolant at a temperature of 500°C or higher). Since the lifespan of pumps is long, several decades, it is difficult to manufacture pumps that can be manufactured reliably during this period.

このように、従来の熱遮蔽装置では、熱遮蔽効果が十分
ではなく、原子炉容器の健全性を損なう不具合や、原子
炉容器の構造が複雑となる問題点がめった。
As described above, conventional heat shielding devices do not have a sufficient heat shielding effect, resulting in problems that impair the integrity of the reactor vessel and complicate the structure of the reactor vessel.

〔発明の目的〕[Purpose of the invention]

本発明は、これらの点に鑑みてなされたものでiり、原
子炉容器内周面に沿って設けられるガスダム内へ冷却材
およびその蒸気が侵入する減少させ、原子炉容器の健全
性を確保できるとともに構造が簡単でかつ長期にわたり
性能の低下がない高速増殖炉の熱遮蔽装置を提供するこ
とを目的とする。
The present invention has been made in view of these points, and aims to reduce the intrusion of coolant and its vapor into the gas dam provided along the inner peripheral surface of the reactor vessel, thereby ensuring the integrity of the reactor vessel. It is an object of the present invention to provide a heat shielding device for a fast breeder reactor that has a simple structure and does not deteriorate in performance over a long period of time.

〔発明の概要〕[Summary of the invention]

内部に冷却材を収納した炉容器の内周面に沿って上記冷
却材の自由液面上部から自由液面下部までの部分と 上
記炉容器の内面との間に上記冷却材から上記内面を区画
する環状空間(ガスダム部)を形成する環状壁を設ける
とともに上記環状空間の上部開口部を薄肉の柔性体カバ
ーで閉塞してなることを特徴としている。
The inner surface is partitioned from the coolant between the portion from the upper free liquid level of the coolant to the lower free liquid level and the inner surface of the reactor vessel along the inner circumferential surface of the reactor vessel in which the coolant is stored. The gas dam is characterized in that an annular wall is provided to form an annular space (gas dam part), and the upper opening of the annular space is closed with a thin flexible cover.

したがって、ガスダム内に冷却材およびその蒸気が侵入
、滞溜するのを防止でき、これによって原子炉容器を冷
却材から隔離できるので、原子炉容器の熱応力、熱変形
を常に確実に軽減でき、しかも長期にわたシ性能の低下
しない高速増殖炉の熱遮蔽装置を得ることができる。
Therefore, it is possible to prevent the coolant and its vapor from entering and accumulating in the gas dam, and as a result, the reactor vessel can be isolated from the coolant, so thermal stress and thermal deformation of the reactor vessel can be reliably reduced at all times. Moreover, it is possible to obtain a heat shielding device for a fast breeder reactor whose performance does not deteriorate over a long period of time.

〔発明の実施例〕[Embodiments of the invention]

本発明は冷却材が自由a而をもって充填されている如何
なる原子炉容器にも適用されるものであり、特に冷却材
温度が500℃以上で運転されることの多いルーf温や
タンク型の高速増殖炉の原子炉容器に適している。
The present invention is applicable to any reactor vessel in which coolant is freely filled, and is particularly applicable to reactor vessels that are often operated at coolant temperatures of 500°C or higher and high-speed tank-type reactors. Suitable for reactor vessels of breeder reactors.

第1図および第2図を参照しながら不発明の一実施例を
説明する。
An embodiment of the invention will be described with reference to FIGS. 1 and 2.

まず、タンク型の尚速増殖炉を第1図によシ説明する。First, a tank type fast breeder reactor will be explained with reference to FIG.

上部開口(図示せず)を有する炉容器1内には、冷却材
である液体金属ナトリウム3が充填されてお9、多数本
の燃料集合体(図示せず)の整列配置された炉心5が前
記炉容器1の中央部に位置するようにナトリウム3内に
浸漬配はされている。前記炉容器1内は炉心5の外周に
接続された仕切壁6によシ上下方向に仕切られておシ、
この仕切壁6に設けられたポンf7(D駆動により、ナ
トリウム3が炉心5の下方から上方へ流れるように炉容
器1内を循環するようになっている。
A reactor vessel 1 having an upper opening (not shown) is filled with liquid metal sodium 3 as a coolant 9, and a reactor core 5 in which a large number of fuel assemblies (not shown) are arranged in an array. It is placed immersed in the sodium 3 so as to be located in the center of the furnace vessel 1. The inside of the reactor vessel 1 is vertically partitioned by a partition wall 6 connected to the outer periphery of the reactor core 5.
By driving the pump f7 (D) provided on the partition wall 6, the sodium 3 is circulated within the reactor vessel 1 so as to flow from the bottom to the top of the reactor core 5.

前記炉容器1の上部開口はルーフスラブ8によシ閉塞さ
れており、このルーフスラブ8の中心部には前記炉心5
の直上位置に臨む炉上部機構9が垂設されている。また
、ルーフスラブ8には二次すl−IJウム供給5A構1
0が取付けられけられている。
The upper opening of the reactor vessel 1 is closed by a roof slab 8, and the core 5 is located in the center of the roof slab 8.
A furnace upper mechanism 9 is vertically installed and faces directly above the furnace. In addition, the roof slab 8 has a secondary sl-IJ um supply 5A structure 1.
0 is attached and cut off.

このような構成の高速増殖炉では、炉心5で約500〜
600℃に加熱されたナトリウム3が、仕切壁6の上側
の高温ナトリウムプール12から中間熱交換器11に導
入されて、ここで二次ナトリウム供給機構10からの二
次ナトリウムと熱変換して冷却され約300〜400℃
となる。その後このす) IJウム3は仕切壁6の下側
の低温ナトリウムプール13へ流下し、ポ/ポアで加圧
された上で炉心5に再循環される。
In a fast breeder reactor with such a configuration, the reactor core 5 has approximately 500 to
Sodium 3 heated to 600°C is introduced from the high temperature sodium pool 12 above the partition wall 6 to the intermediate heat exchanger 11, where it is heat-converted to secondary sodium from the secondary sodium supply mechanism 10 and cooled. approx. 300-400℃
becomes. Thereafter, the IJ aluminum 3 flows down to the low-temperature sodium pool 13 below the partition wall 6, is pressurized by the pores, and is then recirculated to the core 5.

次に、第1図及び第2図を参照しながら本発明の熱遮蔽
装置について説明する。
Next, the heat shielding device of the present invention will be explained with reference to FIGS. 1 and 2.

原子炉容器1の内方で、かつナトリウム3の自由液面り
の上方からその下方までの間の位置に、炉容器1の内面
をナトリウム3から区画する断面り字形の環状壁21が
固着されている。
An annular wall 21 having an angular cross section that partitions the inner surface of the reactor vessel 1 from the sodium 3 is fixed inside the reactor vessel 1 and at a position between above and below the free liquid level of the sodium 3. ing.

セして環状壁2h方には、この環状壁21と炉容器1と
の間に形成された環状空間22の上部開口を気誓に閉塞
し、上記環状空間22を密閉空間とする薄肉の柔性体力
/(−,23が設けられている。上記来性体カバー23
は炉容器1の内面から環状壁21の頂部にかけて下向き
の傾斜を有するよう設けられている。なお、第1図次に
本実施例による熱遮蔽作用を説明する。
Then, on the annular wall 2h side, there is a thin-walled flexible material that tightly closes the upper opening of the annular space 22 formed between the annular wall 21 and the furnace vessel 1, and makes the annular space 22 a closed space. Physical strength/(-, 23 is provided.The above-mentioned physical strength cover 23
is provided with a downward slope from the inner surface of the furnace vessel 1 to the top of the annular wall 21. In addition, referring to FIG. 1, the heat shielding effect according to this embodiment will be explained next.

高温ナトリウムプール12内のナトリウム3は炉心5を
通過する間に約500℃に加熱され、一部がその自由液
面りからカバーガス空間14内へ蒸発する。一方、ルー
フスラブ8はその上面は常温に近い低温でめり、そのた
めカバーガス空間14に面する下面の@匿もナトリウム
3′の@度より低い。このため、カバーガス空間14内
へ蒸発したナトリウム3の蒸気がルーフれて冷却される
。この原子炉容器1のカバーガス空間14内にある内面
部分の温度はナトリウム3の液温よシも低く、そのため
このビ1面部分にもナトリウム3の蒸気が凝縮する。こ
のナトリウム3の凝縮は、原子炉運転中またはす)IJ
ウム3が原子炉容器1の内壁@度よりも高温に保たれて
いる間は常に進行する。
The sodium 3 in the high-temperature sodium pool 12 is heated to about 500° C. while passing through the reactor core 5, and a portion of the sodium 3 evaporates from its free liquid level into the cover gas space 14. On the other hand, the upper surface of the roof slab 8 bends at a low temperature close to room temperature, so that the lower surface facing the cover gas space 14 also has a lower temperature than that of the sodium 3'. Therefore, the vapor of the sodium 3 evaporated into the cover gas space 14 is cooled. The temperature of the inner surface of the reactor vessel 1 in the cover gas space 14 is lower than the liquid temperature of the sodium 3, so that the vapor of the sodium 3 also condenses on the surface of the reactor vessel 1. This sodium 3 condensation occurs during reactor operation or during IJ
As long as the temperature of the reactor vessel 1 is maintained at a higher temperature than the inner wall of the reactor vessel 1, the process continues.

従って、原子炉容器1の壁温度が、冷却材であるナトリ
ウム3の凝固@度(約98℃)以上に保たれていると、
原子炉容器1の内面に凝縮したすl−IJウムが常に液
体状態に保たれる為に、液滴として流下する。
Therefore, if the wall temperature of the reactor vessel 1 is maintained above the solidification temperature of the coolant sodium 3 (approximately 98 degrees Celsius),
Since the soot-IJium condensed on the inner surface of the reactor vessel 1 is always kept in a liquid state, it flows down as droplets.

従来の上部開口型の場合には、液滴が環状空間(ガスダ
ム)22の底部に溜る。このように環状空間22内に溜
ったナトリウムの熱伝導率は極めて高いので、環状壁2
1内のナトリウムの保有する熱が原子炉容器1に伝達さ
れてしまう。
In the case of the conventional top-opening type, the droplets accumulate at the bottom of the annular space (gas dam) 22. Since the thermal conductivity of the sodium accumulated in the annular space 22 is extremely high, the annular wall 2
The heat held by the sodium in the reactor vessel 1 is transferred to the reactor vessel 1.

る熱遮蔽板24を設けておくと、ナトリウム3の液面し
より蒸発したす) IJウム蒸気がガス空間で冷却され
、熱遮蔽板24に付着し、放射熱抑制の効果が損なわれ
てしまう。
If a heat shield plate 24 is provided, the IJ vapor that evaporates from the liquid surface of sodium 3 will be cooled in the gas space and adhere to the heat shield plate 24, impairing the effect of suppressing radiant heat. .

しかし、本実施例では環状空間22の上部開口を気密に
閉基するように薄肉の来性体カバー23を設け、密閉さ
れた環状空間22を形成するようにしている。
However, in this embodiment, a thin flexible body cover 23 is provided to airtightly close the upper opening of the annular space 22, thereby forming a sealed annular space 22.

そして、柔性体カバー23としては、設置される雰囲気
条件つまシ、耐熱性、耐ナトリウム性(腐食等)、耐熱
応力性を十分溝たす性状のの例えばベローズ等としたも
のが用いられており、しかも炉容器1から環状壁21に
対し下向きの傾斜を有するように設けられている。
The flexible cover 23 is made of a material such as a bellows, which has properties that sufficiently satisfy the conditions of the installed atmosphere, heat resistance, sodium resistance (corrosion, etc.), and heat stress resistance. , and is provided with a downward slope from the furnace vessel 1 to the annular wall 21 .

したがって、ナトリウム3の液面りから蒸発し原子炉容
器1の上方内面近傍から下方に凝縮流下するナトリウム
は柔性体カバー23の存在によシ環状空間22へは流入
せず、下向き傾斜をもつ柔性体カバー23の上部をへて
、液面りに流下することになる。さらに、薄肉厚の柔性
体カバー13を用いているので環状壁21や溶接部に生
ずる熱応力、カバーに生ずる座屈等に対して、十分強度
上満足し、耐えることができる。
Therefore, the sodium that evaporates from the liquid level of the sodium 3 and condenses downward from the vicinity of the upper inner surface of the reactor vessel 1 does not flow into the annular space 22 due to the existence of the flexible cover 23. It passes through the upper part of the body cover 23 and flows down to the liquid level. Furthermore, since the thin flexible cover 13 is used, it has sufficient strength and can withstand thermal stress generated in the annular wall 21 and the welded portion, buckling generated in the cover, and the like.

このように、環状空間(ガスダム)22は常に密閉空間
に維持される。したがって、その熱遮蔽作用が完全に果
され、原子炉容器1に太きな熱応力が発生するようなこ
とはない。また、環状空間(ガスダム)22の下部すな
わち環状壁21の下部は、低温ナトリウムブール13と
なっているので、原子炉容器1は低温に保たれる。さら
に上記構成であると、ポンプ等の設備も不要で、稼動部
もなく、構造が簡単で、信頼性を向上させることができ
る。
In this way, the annular space (gas dam) 22 is always maintained in a closed space. Therefore, the heat shielding effect is completely achieved, and no large thermal stress is generated in the reactor vessel 1. Further, since the lower part of the annular space (gas dam) 22, that is, the lower part of the annular wall 21, is a low-temperature sodium boule 13, the reactor vessel 1 is kept at a low temperature. Furthermore, with the above configuration, equipment such as a pump is not required, there are no moving parts, the structure is simple, and reliability can be improved.

〔発明の効果〕〔Effect of the invention〕

このように本発明の高速増殖炉の熱遮蔽装置によれば、
原子炉容器壁の内方全周に冷却材から区画する環状空間
(ガスダム)を形成する熱遮蔽装置において、上記環状
空間(ガスダム)への冷却材の侵入(流下、付着)を確
実に防ぐことができ、これによって冷却材のg、面近傍
の原子炉容器内面と高−の冷却材とをガス空間によシ確
実に隔離することができ、冷却材から原子炉容器への伝
熱量を低減させて原子炉容器の熱応力を減少させ、原子
炉容器の健全性を確保し、更に構造が簡単で長期に亘る
熱遮蔽性能を維持できる。したがって、信頼性の大きな
高速増殖炉の実現に寄与することができる。
As described above, according to the fast breeder reactor heat shielding device of the present invention,
In a heat shielding device that forms an annular space (gas dam) that is separated from the coolant all around the inner circumference of the reactor vessel wall, it is possible to reliably prevent the coolant from entering (flowing down, adhering to) the annular space (gas dam). As a result, the inner surface of the reactor vessel near the surface of the coolant and the high-temperature coolant can be reliably isolated from the gas space, reducing the amount of heat transferred from the coolant to the reactor vessel. The thermal stress of the reactor vessel is reduced, the integrity of the reactor vessel is ensured, and the structure is simple and heat shielding performance can be maintained over a long period of time. Therefore, it is possible to contribute to the realization of a highly reliable fast breeder reactor.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の高速増殖炉の熱遮蔽装置の実施例を示し
、第1図は、本発明の一実施例を備えた高速増殖炉の縦
断側面図、第2図は同実施別の要部拡大断面図である。 1・・・炉容器、3・・・液体金属ナトリウム、L・・
・液面、8・・・ルーフスラブ、14・・・カバーガス
、21・・・塊状壁、22・・・環状空間、23・・・
采性体カバー、24・・・熱遮散板。 出願人代理人  弁理士 鈴 江 武 診矛1図
The drawings show an embodiment of a heat shielding device for a fast breeder reactor according to the present invention, and FIG. 1 is a longitudinal cross-sectional side view of a fast breeder reactor equipped with an embodiment of the present invention, and FIG. 2 is a main part of another embodiment of the same. It is an enlarged sectional view. 1...Furnace vessel, 3...Liquid metal sodium, L...
-Liquid level, 8... Roof slab, 14... Cover gas, 21... Massive wall, 22... Annular space, 23...
Glazed body cover, 24...heat shielding plate. Applicant's agent Patent attorney Takeshi Suzue Diagram 1

Claims (1)

【特許請求の範囲】[Claims] (1)内部に冷却材を収納した原子炉容器の内周面に沿
って、上記冷却材の自由液面上部から自由液面下部まで
の部分と上記原子炉容器の内面との間に、上記冷却材か
ら上記内面を区画する環状空間を形成する環状壁を設け
るとともに上記環状空間の上部開口部を密閉する薄肉の
柔性体カバーを設けてなることを特徴とする高速増殖炉
の熱遮蔽装置。
(1) Along the inner circumferential surface of the reactor vessel in which the coolant is stored, the above-mentioned A heat shielding device for a fast breeder reactor, comprising: an annular wall forming an annular space separating the inner surface from the coolant; and a thin flexible cover sealing an upper opening of the annular space.
JP60057724A 1985-03-22 1985-03-22 Thermal shielding device for fast breeder reactor Granted JPS61215993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057724A JPS61215993A (en) 1985-03-22 1985-03-22 Thermal shielding device for fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057724A JPS61215993A (en) 1985-03-22 1985-03-22 Thermal shielding device for fast breeder reactor

Publications (2)

Publication Number Publication Date
JPS61215993A true JPS61215993A (en) 1986-09-25
JPH023158B2 JPH023158B2 (en) 1990-01-22

Family

ID=13063882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057724A Granted JPS61215993A (en) 1985-03-22 1985-03-22 Thermal shielding device for fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS61215993A (en)

Also Published As

Publication number Publication date
JPH023158B2 (en) 1990-01-22

Similar Documents

Publication Publication Date Title
JP3602136B2 (en) Cooling device for cooling a containment chamber designed to contain core melt
JPS61215993A (en) Thermal shielding device for fast breeder reactor
US4021676A (en) Waste canister for storage of nuclear wastes
US3769161A (en) Reactor vessel supporting device
JP3666836B2 (en) Reactor containment cooling equipment
GB1582933A (en) Handling pot for a nuclear fuel assembly
JPS6246290A (en) Core upper mechanism
JP3093306B2 (en) Emergency condenser system
JPH023157B2 (en)
JPS58127199A (en) Emergency reactor cooling system
JPS61215989A (en) Protective device for reactor wall of fast breeder reactor
JPS59116580A (en) Reactor container
JPS60205278A (en) Fast breeder reactor
JPS6091191A (en) Heat exchanger
JPS5940294A (en) Nozzle structure of reactor container
JPS58171694A (en) Hollow pellet nuclear fuel rod
JPS60198482A (en) Fast breeder reactor
JPS59114487A (en) Fbr reactor vessel
JPS6256479B2 (en)
JPS6170486A (en) Fast breeder reactor
JPS63154992A (en) Heat removing system of fast breeder reactor
JPS61180190A (en) Heat shielding device for fast breeder reactor
JPS60188879A (en) Sodium evaporation inhibitor for fast breeder reactor
Costes Reactor vessel supporting device
JPS5972095A (en) Thermal shield device for fast breeder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term