JPS59113713A - Circuit breaker - Google Patents

Circuit breaker

Info

Publication number
JPS59113713A
JPS59113713A JP22131282A JP22131282A JPS59113713A JP S59113713 A JPS59113713 A JP S59113713A JP 22131282 A JP22131282 A JP 22131282A JP 22131282 A JP22131282 A JP 22131282A JP S59113713 A JPS59113713 A JP S59113713A
Authority
JP
Japan
Prior art keywords
current
current transformer
circuit
main circuit
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22131282A
Other languages
Japanese (ja)
Inventor
晃三 佐藤
谷元 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22131282A priority Critical patent/JPS59113713A/en
Publication of JPS59113713A publication Critical patent/JPS59113713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、静止形過電流引外し装置を備えた回路しゃ断
器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a circuit breaker equipped with a static overcurrent trip device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

静止形過電流引外し装置を備えた回路しゃ断器として、
従来第1図の如く構成されたものがある。第1図におい
て1は電源であり、この電源1には、主回路接点2を介
して負荷3が接続され主回路4を構成している。5は主
回路40通電電流を検出する変流器で、この変流器50
2次側には、非直線サージ吸収素子6及びダイオードよ
シなる整流回路7の入力端が夫々並列接続されている。
As a circuit breaker equipped with a static overcurrent trip device,
Conventionally, there is a device configured as shown in FIG. In FIG. 1, reference numeral 1 denotes a power source, and a load 3 is connected to the power source 1 via main circuit contacts 2 to form a main circuit 4. As shown in FIG. 5 is a current transformer that detects the current flowing through the main circuit 40;
On the secondary side, a nonlinear surge absorbing element 6 and an input terminal of a rectifier circuit 7 such as a diode are connected in parallel.

また、この整流回路7の出力端には、電圧変換用抵抗器
8が並列接続され、一方には抵抗器9を介し、更に非直
線サージ吸収素子10が並列接続されて静止形過電流引
外し装置11の入力端に接続されている。
In addition, a voltage conversion resistor 8 is connected in parallel to the output end of the rectifier circuit 7, and a non-linear surge absorbing element 10 is connected in parallel to one side via a resistor 9 to perform static overcurrent tripping. It is connected to the input end of the device 11.

この静止形過電流引外し装置1ノは、入力端に所定の大
きさの電圧信号が入力されると動作し、上記主回路接点
2を開路させるための引外し指令を出力する。
This static overcurrent tripping device 1 operates when a voltage signal of a predetermined magnitude is input to its input terminal, and outputs a tripping command for opening the main circuit contact 2.

次に上記のように構成された回路しゃ断器の動作につい
て述べる。即ち、主回路40通電電流は変流器5によシ
検出され、2次側に流れる検出電流は整流回路7にて直
流電流に変換され、更に電圧変換用抵抗器8にてこの直
流電流に対応した電圧信号に変換され、静止形過電流引
外し装置11に入力される。
Next, the operation of the circuit breaker configured as described above will be described. That is, the current flowing through the main circuit 40 is detected by the current transformer 5, the detected current flowing to the secondary side is converted into a DC current by the rectifier circuit 7, and further converted into DC current by the voltage conversion resistor 8. It is converted into a corresponding voltage signal and input to the static overcurrent tripping device 11.

上記静止形過電流引外し装置11は、第2図に示すよう
に、主回路40通電電流I (A)と時間t (see
)との間で3元利外し特性を有しているものである。3
元利外し特性としては、第2図に示すように、長限時列
外し特性LT、短限時側外し特性ST、瞬時引外し特性
lN5Tがあシ、この特性に対し入力電圧信号が所定時
間継続すると静止形過電流引外し装置11は動作し、引
外し指令を出力して、主回路接点2を開路する。
As shown in FIG.
) has a 3-yuan interest release characteristic. 3
As shown in Figure 2, the main and interest release characteristics are the long time series release characteristic LT, the short time side release characteristic ST, and the instantaneous tripping characteristic 1N5T. The overcurrent trip device 11 operates, outputs a trip command, and opens the main circuit contact 2.

上記の場合、変流器5の1次側、2次側の巻回数をN1
、N2とし、IOlを励磁電流とし、11を変流器50
1次側電流、即ち主回路40通電電流、I2を変流器5
02次側の検出電流とするとllN1=Lo1N1+I
2N2なる関係が成立する。この場合、I 01N1に
比してI 2N2は十分大きいので11N1=■2N2
と表わせる。従って主回路40通電電流即ち、変流器5
01次側電流11は、第3図(、)に示す如く正弦波で
あシ、変流器502次側の検出電流I2は第3図(b)
に示す如く、上記主回路401次側電流IIK比例した
正弦波である。
In the above case, the number of turns on the primary and secondary sides of the current transformer 5 is N1.
, N2, IOl is the exciting current, and 11 is the current transformer 50.
The primary current, that is, the current flowing through the main circuit 40, I2 is transferred to the current transformer 5.
If the detection current on the secondary side is llN1=Lo1N1+I
A 2N2 relationship is established. In this case, I 2N2 is sufficiently large compared to I 01N1, so 11N1 = ■2N2
It can be expressed as Therefore, the current flowing through the main circuit 40, that is, the current transformer 5
The primary current 11 is a sine wave as shown in Figure 3 (,), and the detected current I2 on the secondary side of the current transformer 50 is as shown in Figure 3 (b).
As shown in the figure, the primary current IIK of the main circuit 40 is a sine wave proportional to the primary current IIK.

上記のように変流器501次側、2次側の電流及び電流
を比例させるため、従来においては、変流器5の鉄心の
断面積を大きくし、更に2次側の巻線は線径の太いもの
を使用し、2次側の巻線が数千〜数百の巻回数となって
も、インピーダンス値があまシ大きな値とならないよう
にしていた。このため変流器5は大型の鉄心と、線径の
太い巻線を必要とし、結果として変流器5を含む回路し
ゃ断器は大型且つ高価格なものとなっていた。
In order to make the currents on the primary and secondary sides of the current transformer 50 proportional as described above, conventionally, the cross-sectional area of the iron core of the current transformer 5 is increased, and the secondary winding is A thick one was used to prevent the impedance value from becoming too large even if the number of windings on the secondary side was several thousand to several hundred. For this reason, the current transformer 5 requires a large iron core and a winding wire with a large wire diameter, and as a result, the circuit breaker including the current transformer 5 has become large and expensive.

また上記3元利外し特性において、長限時列外し特性L
Tと短限時側外し特性STとを組み含せた場合は、変流
器501次側、即ち主回路4における通電電流は、10
〜100kAで0.05〜0.6秒間も流れることがあ
る。この場合、変流器5の鉄心の断面積は大きく、且つ
2次側の巻線の線径は太く、2次側のインピーダンス値
は小さいので、変流器5は飽和しにくい。従って変流器
5の2次側には大きな過電圧が発生するという欠点があ
った。
In addition, in the above three-dimensional interest release characteristic, the long time series release characteristic L
When T and the short-time side disconnection characteristic ST are combined, the current flowing in the primary side of the current transformer 50, that is, the main circuit 4, is 10
~100kA may flow for as long as 0.05-0.6 seconds. In this case, the cross-sectional area of the iron core of the current transformer 5 is large, the wire diameter of the secondary winding is large, and the impedance value of the secondary side is small, so the current transformer 5 is difficult to saturate. Therefore, there is a drawback that a large overvoltage occurs on the secondary side of the current transformer 5.

そこで、上記過電圧を吸収する手段として、非直線ザー
ジ吸収素子6の他、抵抗器9及び非直線サージ吸収素子
10を設けている。この場合、耐量の大きい非直線サー
ジ吸収素子6゜10を夫々分散して設けて、過電圧から
静止形過電流引外し装置1ノを保護している。しかしな
がら上述したように非直線サージ吸収素子6゜10は、
耐量の大きなものを必要とし、大型且つ高価格となシ、
回路しゃ断器も大型化、且つ高価格となってしまった。
Therefore, in addition to the non-linear surge absorbing element 6, a resistor 9 and a non-linear surge absorbing element 10 are provided as means for absorbing the overvoltage. In this case, non-linear surge absorbing elements 6 and 10 having a large withstand capacity are separately provided to protect the static overcurrent tripping device 1 from overvoltage. However, as mentioned above, the nonlinear surge absorption element 6°10
Requires a large capacity, large size and high price.
Circuit breakers have also become larger and more expensive.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に基づいてなされたもので、その目的
とするところは、変流器から発生する倦 過電圧を確実に抑制しつつ小−型化且つご価格化を図る
ことが可能な回路しゃ断器を提供することにある。
The present invention has been made based on the above circumstances, and its purpose is to provide a circuit breaker that can reduce the size and cost while reliably suppressing the overvoltage generated from a current transformer. It is about providing the equipment.

〔発明の概要〕[Summary of the invention]

本発明による回路しゃ断器は、常温時には低抵抗値を示
し、電流通電に伴う発熱時には高抵抗値を示す正の非線
形特性を有する非直線形抵抗素子と、抵抗器とからなる
並列回路を、変流器の2次側と静止形過電流引外し装置
との間に直列接続した構成とすることにょシ、上記目的
を達成するようにしたことを特徴とする。
The circuit breaker according to the present invention transforms a parallel circuit consisting of a resistor and a nonlinear resistance element having positive nonlinear characteristics that exhibits a low resistance value at room temperature and a high resistance value when heat is generated due to current flow. The above object is achieved by connecting the secondary side of the current flow device in series with the static overcurrent tripping device.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。第4
図は本発明による回路しゃ断器の一実施例を示す回路図
であシ、第1図と同一部分に同一符号を付してその説明
は省略し、ここでは異なる部分についてのみ説明する。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
The figure is a circuit diagram showing an embodiment of the circuit breaker according to the present invention, and the same parts as in FIG.

即ち本実施例では第1図における抵抗器9及び非直線サ
ージ吸収素子10を除去し、これに代えて変流器502
次側の一方と、整流回路70入力端の一方との間に非直
線形抵抗素子12と、抵抗8よシも抵抗値がはるか忙大
きく且つ数百(Ω)の抵抗値を有した抵抗器13とから
なる並列回路を直列接続したものである。
That is, in this embodiment, the resistor 9 and the nonlinear surge absorbing element 10 in FIG. 1 are removed, and a current transformer 502 is used instead.
A non-linear resistance element 12 is placed between one side of the next side and one of the input ends of the rectifier circuit 70, and a resistor whose resistance value is much larger than that of the resistor 8 and has a resistance value of several hundred (Ω). This is a parallel circuit consisting of 13 connected in series.

上記において、非直線形抵抗素子12は、常温時には低
抵抗値を示し、通電電流によシ発熱したときは高抵抗値
を示す正の非線形特性を有するものであシ、例えば米国
Rayehem社のPo lySwl tchを用いる
〇 次に上記のように構成された本実施例の動作について述
べる。
In the above, the non-linear resistance element 12 has a positive non-linear characteristic that shows a low resistance value at room temperature and shows a high resistance value when heated by a current. Using lySwl tch Next, the operation of this embodiment configured as described above will be described.

まず、主回路4の通電電流が平常値の場合について述べ
る。即ち、主回路40通電電流は、変流器5によシ検出
され、その2次側の検出電流は、常温時において低抵抗
値を示す非直線形抵抗素子12を通って整流回路7に入
力され、ここで整流した後、静止形過電流引外し装置1
1に入力される。
First, a case where the current flowing through the main circuit 4 is a normal value will be described. That is, the current flowing through the main circuit 40 is detected by the current transformer 5, and the detected current on the secondary side is input to the rectifier circuit 7 through the non-linear resistance element 12 which exhibits a low resistance value at room temperature. After being rectified here, the static overcurrent trip device 1
1 is input.

一方、主回路4に短絡電流のような大電流が流れた場合
は、この大電流に比例した大きな値の事故時検出電流が
変流器5の2次側に流れる。
On the other hand, when a large current such as a short-circuit current flows in the main circuit 4, a large fault detection current proportional to this large current flows to the secondary side of the current transformer 5.

この事故時検出電流が非直線形抵抗素子12に流れると
、この非直線形抵抗素子12は発熱し正の非線形特性に
よシ急速に高抵抗値となる。
When this fault detection current flows through the non-linear resistance element 12, the non-linear resistance element 12 generates heat and rapidly attains a high resistance value due to its positive non-linear characteristics.

従って、上記事故時検出電流は、この時に非直線形抵抗
素子12よシも低抵抗値である抵抗器13を通って整流
回路7に入力され、ここで整流した後、静止形過電流引
外し装置1ノに入力される。
Therefore, at this time, the fault detection current is input to the rectifier circuit 7 through the resistor 13, which has a low resistance value as well as the non-linear resistance element 12, and is rectified there. It is input to device 1.

上記においては、変流器5の検出電流が定格の10倍ま
では、第5図における20℃前後で数Ωである特性領域
の非直線抵抗素子12を通して通電路が形成される。ま
た同様に定格の20倍までは、第5図における数100
での特性領域の非直線抵抗素子12を通して通電路が形
成される。更に同様に定格の20倍以上では、第5図に
示すように非線形抵抗素子12は発熱して高抵抗値を示
すため、この時に低抵抗値である抵抗器13を通して通
電路が形成される。
In the above, until the detected current of the current transformer 5 is 10 times the rated value, a current conducting path is formed through the non-linear resistance element 12 in the characteristic region of several Ω at around 20° C. in FIG. Similarly, up to 20 times the rating is the number 100 in Figure 5.
An energizing path is formed through the non-linear resistance element 12 in the characteristic region. Similarly, at 20 times the rated value or more, the nonlinear resistance element 12 generates heat and exhibits a high resistance value as shown in FIG. 5, so that at this time a current conducting path is formed through the resistor 13 having a low resistance value.

上記のように、変流器5の検出電流はその大小に応じて
非直線形抵抗素子12、または抵抗器13の一方を通電
路としているので、変流器5の出力負担は小さくて済み
、従って変流器5の出力電圧も比較的小さくて済むので
、変流器5の鉄心は小型のもので十分である。
As mentioned above, the current detected by the current transformer 5 uses either the nonlinear resistance element 12 or the resistor 13 as the current path depending on its magnitude, so the output load of the current transformer 5 is small. Therefore, since the output voltage of the current transformer 5 is also relatively small, a small iron core of the current transformer 5 is sufficient.

また変流器5の2次側に事故時検出電流が流れた場合、
2次側電圧は、抵抗器13の抵抗値が電圧変換用抵抗器
8の抵抗値よりもはるかに大きいので、抵抗器13にほ
とんど印加される。
In addition, if the fault detection current flows to the secondary side of the current transformer 5,
The secondary voltage is mostly applied to the resistor 13 because the resistance value of the resistor 13 is much larger than the resistance value of the voltage conversion resistor 8.

更に、変流器502次側電圧の上限は非直線抵抗素子1
2の抑制電圧に依存することになる。
Furthermore, the upper limit of the secondary side voltage of the current transformer 50 is determined by the nonlinear resistance element 1.
It depends on the suppression voltage of 2.

従って変流器5の2次側電圧は、抑制され、整流回路7
、静止形過電流引外し装置11には適正な電圧呟を有す
る電圧信号が入力される。この電圧信号が入力された静
止形過電流引外し装置11は第1図にて説明したように
、引外し特性を満たす電圧信号が所定時間継続すると、
引外し指令を出力し、主回路接点2を開路する。
Therefore, the secondary voltage of the current transformer 5 is suppressed, and the rectifier circuit 7
A voltage signal having an appropriate voltage level is input to the static overcurrent tripping device 11. As explained in FIG. 1, the static overcurrent tripping device 11 to which this voltage signal is input, when the voltage signal satisfying the tripping characteristics continues for a predetermined time,
Outputs a trip command and opens main circuit contact 2.

上記においては、第6図(a) ICys5すように、
主回路4の通電電流、即ち変流器5の1次側電流11は
正弦波波形であるが、変流器5の2次側から非直線抵抗
素子12或いは抵抗器13を介して検出電流■2は第6
図(b) K示すように、上記正弦波に対し、尖頭値の
みは比例しているが、波形後部は、変流器5の鉄心が飽
和しているため、欠落して歪んだ波形となる。変流器5
02次側の電圧波形も上記電流波形と同様に尖頭値のみ
が比例し、波形後部は欠落して歪んだ波形となる。また
変流器5の2次側の巻線径を細くし、巻線の抵抗値を大
きくすると、変流器5の2次側のインピーダンスは大き
くなり、2次側電圧は、非直線サージ吸収素子6よシも
変流器502次側に大きく電圧分担される。したがって
非直線サージ吸収素子6としては容量の小さいものを使
用することができる。
In the above, as shown in Figure 6(a) ICys5,
The current flowing through the main circuit 4, that is, the primary current 11 of the current transformer 5 has a sine wave waveform, but the detected current 2 is the 6th
As shown in Figure (b) K, only the peak value is proportional to the above sine wave, but the rear part of the waveform is missing and distorted because the iron core of the current transformer 5 is saturated. Become. current transformer 5
Similarly to the current waveform, only the peak value of the voltage waveform on the secondary side is proportional, and the rear part of the waveform is missing, resulting in a distorted waveform. Also, if the diameter of the winding on the secondary side of the current transformer 5 is made thinner and the resistance value of the winding is increased, the impedance on the secondary side of the current transformer 5 will increase, and the secondary side voltage will be reduced by non-linear surge absorption. The voltage of the element 6 is largely shared by the secondary side of the current transformer 50. Therefore, as the non-linear surge absorbing element 6, one with a small capacity can be used.

以上述べたように本実施例では、変流器5の2次側に流
れる検出電流の大きさに応じて、非直線形抵抗素子12
或いは抵抗器13にて通電路を形成し、変流器502次
側の過電圧に対しては、上記非直線形抵抗素子12にて
吸収するようにしだので、非直線サージ吸収素子6とし
ては、耐電圧、及び容量の小さいものを採用することか
可能となる。また静止形過電流引外し装置11には、高
電圧が入力されることがないので、耐電圧及び消費電力
の小さいものを採用することが可能となる。
As described above, in this embodiment, the non-linear resistance element 12
Alternatively, the resistor 13 forms a conduction path, and the overvoltage on the secondary side of the current transformer 50 is absorbed by the non-linear resistance element 12, so the non-linear surge absorption element 6 is It becomes possible to use a device with low withstand voltage and low capacity. Furthermore, since high voltage is not input to the static overcurrent tripping device 11, it is possible to use a device with low withstand voltage and low power consumption.

次に、第7図を参照して本発明の他の実施例について説
明する。第7図においては、変流器5の2次側に直接、
整流回路7を接続し、この整流回路2の出力端に非直線
サージ吸収素子6を並列接続し、更に非直線抵抗素子1
2と抵抗器13とからなる並列回路を直列接続し、電圧
変換用抵抗器8を並列接続して静止形過電流引外し装置
11の入力端に接続している。
Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 7, directly on the secondary side of the current transformer 5,
A rectifier circuit 7 is connected, a non-linear surge absorption element 6 is connected in parallel to the output terminal of the rectifier circuit 2, and a non-linear resistance element 1 is connected in parallel to the output terminal of the rectifier circuit 2.
2 and a resistor 13 are connected in series, and a voltage conversion resistor 8 is connected in parallel and connected to the input end of a static overcurrent tripping device 11.

このような構成の回路しゃ断器としても、動作及び効果
は、第6図に示す回路しゃ断器と同様である。
Even with a circuit breaker having such a configuration, the operation and effect are similar to those of the circuit breaker shown in FIG. 6.

本発明は上記各実施例に限定されるものではなく、本発
明の要旨を変更しない範囲で種々変形して実施すること
ができる。
The present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、常温時には低抵抗値
を示し、電流通電に伴う発熱時には高抵抗値を示す正の
非線形特性を有する非直線形抵抗素子と抵抗器とからな
る並列回路を主回路電流の検出用の変流器の2次側と静
止形過電流引外し装置との間に直列接続する構成とした
ので、変流器から発生する過電圧を確実に抑制イ氏 しつつ小型化且つ蛇価格化を図ることが可能な回路し中
断器が提供できる。
As described above, according to the present invention, a parallel circuit consisting of a resistor and a nonlinear resistance element having positive nonlinear characteristics that exhibits a low resistance value at room temperature and a high resistance value when heat is generated due to current flow is provided. Since the configuration is connected in series between the secondary side of the current transformer for detecting the main circuit current and the static overcurrent trip device, the overvoltage generated from the current transformer can be reliably suppressed while still being compact. It is possible to provide a circuit interrupter that can be made more compact and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回路し中断器を示す回路図、第2図は静
止形過電流引外し装置の引外し特性を示す図、第3図(
、)(b)は第1図における回路しゃ断器の動作を説明
するための波形図、第4図は本発明による回路しゃ断器
の一実施例を示す作を説明するための波形図、第7図は
本発明の他の実施例を示す回路図である。 1・・・電源、2・・・主回路接点、3・・・負荷、4
・・・主回路、5・・・変流器、6,10・・・非直線
サージ吸収素子、7・・・整流回路、8・・・抵抗器、
9・・・電圧変換用抵抗器、11・・・静止形過電流引
外し装置、12・・・非直線形抵抗素子、13・・抵抗
器。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 −1(A’) 第3図 (a) (b) 第4図 第5図 第6図 (a) (b) 17 図
Figure 1 is a circuit diagram showing a conventional circuit interrupter, Figure 2 is a diagram showing the trip characteristics of a static overcurrent trip device, and Figure 3 (
,)(b) is a waveform diagram for explaining the operation of the circuit breaker in FIG. 1, FIG. 4 is a waveform diagram for explaining the operation of an embodiment of the circuit breaker according to the present invention, and FIG. The figure is a circuit diagram showing another embodiment of the present invention. 1...Power supply, 2...Main circuit contact, 3...Load, 4
... Main circuit, 5... Current transformer, 6, 10... Non-linear surge absorption element, 7... Rectifier circuit, 8... Resistor,
9... Voltage conversion resistor, 11... Static overcurrent trip device, 12... Non-linear resistance element, 13... Resistor. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2-1 (A') Figure 3 (a) (b) Figure 4 Figure 5 Figure 6 (a) (b) 17

Claims (1)

【特許請求の範囲】[Claims] 電源よシ主回路接点を介して負荷に電力を供給する主回
路の主回路電流を変流器によシ検出し、この変流器によ
シ検出された検出電流が過電流事故相当の大きさである
場合、静止形過電流引外し装置を動作させて前記主回路
接点を開路させる回路しゃ断器において、常温時には低
抵抗値を示し、電流通電に伴う発熱時には高抵抗値を示
す正の非線形特性を有する非直線形抵抗素子と抵抗器と
からなる並列回路を前記変流器の2次側と前記静止形過
電流引外し装置との間に直列接続したことを特徴とする
回路しゃ断器0
A current transformer detects the main circuit current of the main circuit that supplies power to the load through the main circuit contacts of the power supply, and the current detected by the current transformer is large enough to be equivalent to an overcurrent fault. In this case, the circuit breaker that operates the static overcurrent trip device to open the main circuit contact has a positive nonlinearity that exhibits a low resistance value at room temperature and a high resistance value when heat is generated due to current flow. A circuit breaker 0 characterized in that a parallel circuit consisting of a non-linear resistance element having a characteristic and a resistor is connected in series between the secondary side of the current transformer and the static overcurrent tripping device.
JP22131282A 1982-12-17 1982-12-17 Circuit breaker Pending JPS59113713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22131282A JPS59113713A (en) 1982-12-17 1982-12-17 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22131282A JPS59113713A (en) 1982-12-17 1982-12-17 Circuit breaker

Publications (1)

Publication Number Publication Date
JPS59113713A true JPS59113713A (en) 1984-06-30

Family

ID=16764822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22131282A Pending JPS59113713A (en) 1982-12-17 1982-12-17 Circuit breaker

Country Status (1)

Country Link
JP (1) JPS59113713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272817A (en) * 1986-05-19 1987-11-27 富士電機株式会社 Apparatus for tripping circuit breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272817A (en) * 1986-05-19 1987-11-27 富士電機株式会社 Apparatus for tripping circuit breaker
JPH0556094B2 (en) * 1986-05-19 1993-08-18 Fuji Electric Co Ltd

Similar Documents

Publication Publication Date Title
US4425596A (en) Electric circuit breaker
US8547673B2 (en) Electrical switching apparatus with overvoltage protection
JP4328860B2 (en) Fault current limiter and power system using the same
KR930010685B1 (en) Circuit breaker
KR930010684B1 (en) Circuit breaker
JPS59113713A (en) Circuit breaker
JPS6165829U (en)
JPH02202320A (en) Superconducting current limiter
JPS6331418A (en) Circuit breaker
JP2002291150A (en) Current limiter device
JP3317386B2 (en) Secondary voltage suppression circuit of power supply CT
DE1763710A1 (en) Residual current circuit breaker with additional overcurrent release
JP2010040326A (en) Ground fault interrupter
JPH031887B2 (en)
JPS61266014A (en) Circuit breaker
JPH02101926A (en) Current limiting apparatus
JPS6211160Y2 (en)
JPS596112Y2 (en) fuse circuit
JPS6233484Y2 (en)
JPS6059915A (en) Defect current protecting device
SU746313A1 (en) Current sensor
JPS5875422A (en) Device for protecting current transformer
JPS61269609A (en) Protective relay
JPS60105123A (en) High speed current limiting breaker
JPS5889025A (en) Breaking device