JPH0556094B2 - - Google Patents

Info

Publication number
JPH0556094B2
JPH0556094B2 JP61113994A JP11399486A JPH0556094B2 JP H0556094 B2 JPH0556094 B2 JP H0556094B2 JP 61113994 A JP61113994 A JP 61113994A JP 11399486 A JP11399486 A JP 11399486A JP H0556094 B2 JPH0556094 B2 JP H0556094B2
Authority
JP
Japan
Prior art keywords
circuit
current
resistor
detection
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61113994A
Other languages
Japanese (ja)
Other versions
JPS62272817A (en
Inventor
Tsuneo Ebisawa
Akihiko Kobanawa
Seiichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11399486A priority Critical patent/JPS62272817A/en
Publication of JPS62272817A publication Critical patent/JPS62272817A/en
Publication of JPH0556094B2 publication Critical patent/JPH0556094B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 利用分野 この発明は、回路しや断器に関し、特に回路し
や断器に備えられた空心変流器及び電子回路によ
り、電流を検出し、時延動作を行い、しや断動作
のためにトリツプコイルを駆動する、回路しや断
器の引き外し装置に関する。
[Detailed Description of the Invention] (a) Field of Application The present invention relates to circuit breakers and breakers, and in particular, detects current by using an air-core current transformer and an electronic circuit provided in the circuit breakers and performs delayed operation. The present invention relates to a tripping device for a circuit breaker, which performs the following operations and drives a trip coil for a tripping operation.

(ロ) 従来技術 回路しや断器として例えば第5図に示す構成が
知られている。第5図において、符号1は回路し
や断器の入力端子を、2は出力端子を夫々示し、
入力端子1と出力端子2は内部導体3によつ開閉
器の接点4を介して接続されている。この接点4
は開閉機構5によつて開成又は閉成され、さらに
開閉機構5はトリツプコイル6により動作され
る。
(b) Prior Art For example, the configuration shown in FIG. 5 is known as a circuit breaker. In FIG. 5, reference numeral 1 indicates the input terminal of the circuit breaker and 2 indicates the output terminal, respectively.
The input terminal 1 and the output terminal 2 are connected by an internal conductor 3 via a contact 4 of a switch. This contact point 4
is opened or closed by an opening/closing mechanism 5, and the opening/closing mechanism 5 is further operated by a trip coil 6.

前記回路しや断器に備えられた引き外し装置は
以下のように構成されている。即ち、内部導体3
に流れる電流は空心変流器(CT)7,8,9及
び検出回路10により該電流に比例した電圧とし
て検出されてレベル判別回路11に与えられる。
レベル判別回路11は電圧値のレベルを判別し、
その判別レベルに応じて時延回路12又は瞬時動
作回路13へ出力する。レベル判別回路11の判
別レベルは動作特性設定回路14によつて自由に
設定される。時延回路12は入力する電圧に応じ
た所定の時延の後にトリツプ駆動回路15へ駆動
出力する。また、瞬時動作回路13は入力信号が
与えられると瞬時にトリツプ駆動回路15へ駆動
出力する。トリツプ駆動回路15は駆動入力が与
えられると、前記トリツプコイル6を励磁する。
また、内部導体3に流れる電流は鉄心入り変流器
(CT)16,17,18を介して電源回路19に
与えられる。この電源回路19は前記トリツプコ
イル6に電力を供給するほか、前述した引き外し
装置の電子回路部に電力を供給する。
The tripping device provided in the circuit and disconnector is configured as follows. That is, the inner conductor 3
The current flowing through the current is detected as a voltage proportional to the current by air-core current transformers (CT) 7, 8, 9 and a detection circuit 10, and is applied to a level discrimination circuit 11.
The level discrimination circuit 11 discriminates the level of the voltage value,
The signal is outputted to the time delay circuit 12 or the instantaneous operation circuit 13 depending on the discrimination level. The discrimination level of the level discrimination circuit 11 is freely set by the operating characteristic setting circuit 14. The time delay circuit 12 outputs a drive signal to the trip drive circuit 15 after a predetermined time delay depending on the input voltage. Furthermore, when the instantaneous operation circuit 13 receives an input signal, it instantaneously outputs a drive signal to the trip drive circuit 15. The trip drive circuit 15 excites the trip coil 6 when a drive input is applied thereto.
Further, the current flowing through the internal conductor 3 is applied to the power supply circuit 19 via cored current transformers (CTs) 16, 17, and 18. This power supply circuit 19 not only supplies power to the trip coil 6 but also supplies power to the electronic circuit section of the tripping device described above.

第6図は前記検出回路10の回路構成を示し、
整流回路21と、この整流回路21に並列に接続
された検出抵抗22とからなつている。整流回路
21は2個直列接続された4組のダイオード23
と24,25と26,27と28,29と30を
夫々組ごとにアノード間及びカソード間を相互に
並列に接続して構成されている。そして、前記空
心変流器7,8,9からの各出力の一端は夫々対
応してダイオード23と24,25と26,27
と28の各中間接続点に接続され、各出力の他端
はダイオード29と30の中間接続点に共通して
接続されている。空心変流器7,8,9からの出
力は整流回路21によつて整流され、検出抵抗2
2により内部導体3に流れる電流と対応した検出
用の電圧を得る。
FIG. 6 shows the circuit configuration of the detection circuit 10,
It consists of a rectifier circuit 21 and a detection resistor 22 connected in parallel to the rectifier circuit 21. The rectifier circuit 21 includes four sets of diodes 23, two of which are connected in series.
and 24, 25 and 26, 27 and 28, and 29 and 30 are connected in parallel between the anodes and between the cathodes of each set. One end of each output from the air-core current transformers 7, 8, 9 is connected to diodes 23, 24, 25, 26, 27, respectively.
and 28, and the other end of each output is commonly connected to the intermediate connection point of diodes 29 and 30. Outputs from the air-core current transformers 7, 8, and 9 are rectified by a rectifier circuit 21, and a detection resistor 2
2, a detection voltage corresponding to the current flowing through the internal conductor 3 is obtained.

第7図は3相の内部導体3のうち単極、即ち単
相の導体のみ通電した場合における回路構成を示
し、この等価回路が第8図に示されている。第8
図において、空心変流器7はその内部抵抗32と
その起電力31に書き直されている。また空心変
流器8,9は夫々内部抵抗33,34として示さ
れている。各空心変流器の内部抵抗32,33,
34の抵抗値をRC、検出抵抗22の抵抗値をRL
起電力31の値をE、検出抵抗22の両端の電圧
をVRLとすると、 VRL≒E/RC+RL・RL (1) となる。
FIG. 7 shows a circuit configuration in the case where only a single pole, that is, a single phase conductor among the three-phase internal conductors 3 is energized, and this equivalent circuit is shown in FIG. 8th
In the figure, the air-core current transformer 7 has been rewritten as its internal resistance 32 and its electromotive force 31. Moreover, the air-core current transformers 8 and 9 are shown as internal resistances 33 and 34, respectively. Internal resistance of each air-core current transformer 32, 33,
34 resistance value is R C , the resistance value of the detection resistor 22 is R L ,
Assuming that the value of the electromotive force 31 is E and the voltage across the detection resistor 22 is V RL , then V RL ≈E/ RC + R L · R L (1).

第9図は3相の内部導体3のうち単相、即ち二
相の導体間のみを通電した場合における回路構成
図を示し、この等価回路が第10図に示されてい
る。第10図において、空心変圧器8の起電力3
5が第10図の回路にさらに付加されている。こ
の場合、検出抵抗22の両端の電圧VRLは、 VRL≒E/RC+RL/2・RL (2) となる。
FIG. 9 shows a circuit configuration diagram in the case where only one phase, that is, two phase conductors of the three-phase internal conductors 3 are energized, and this equivalent circuit is shown in FIG. 10. In FIG. 10, the electromotive force 3 of the air core transformer 8
5 is further added to the circuit of FIG. In this case, the voltage V RL across the detection resistor 22 is V RL ≈E/R C +R L/2 ·R L (2).

(ハ) 解決しようとする問題点 (1)式及び(2)式から、空心変流器の内部抵抗値
RCが検出抵抗値RLに比べて十分大きければ、単
極通電時と単相通電時において同一の電流に対す
る検出回路10の出力電圧VRLはほぼ等しくな
る。しかし、空心変流器は銅線を巻いて構成して
いるため、内部抵抗RCの温度係数は0.00393Ω/
℃となり、周囲温度により検出回路10の電圧出
力が変化し、この結果、回路しや断器の引き外し
特性が変動し、回路しや断器の使用上好ましくな
い問題があつた。特に、単極通電時と単相通電時
には検出電圧出力の相違により回路しや断器の引
き外し特性が異なる不都合があつた。
(c) Problem to be solved From equations (1) and (2), the internal resistance value of the air-core current transformer
If R C is sufficiently larger than the detection resistance value R L , the output voltage V RL of the detection circuit 10 for the same current will be approximately equal during single-polar energization and during single-phase energization. However, since air-core current transformers are constructed by winding copper wire, the temperature coefficient of internal resistance R C is 0.00393Ω/
℃, the voltage output of the detection circuit 10 changes depending on the ambient temperature, and as a result, the tripping characteristics of the circuit breakers and breakers fluctuate, creating an unfavorable problem in the use of the circuit breakers. In particular, there was a problem in that the circuit and disconnection characteristics differed due to the difference in detected voltage output when single-pole current was applied and when single-phase current was applied.

この発明の目的は、周囲温度による回路しや断
器の引き外し特性の変動を改善すると共に、単極
通電時と単相通電時にも引き外し特性が変動する
ことのない、回路しや断器引き外し装置を提供す
ることである。
The purpose of this invention is to improve the variation in the tripping characteristics of circuit breakers and disconnectors due to ambient temperature, and to provide circuit breakers and disconnectors whose tripping characteristics do not change even when single-pole and single-phase current is applied. An object of the present invention is to provide a tripping device.

(ニ) 問題点を解決するための手段 この発明は、空心変流器に内部抵抗に対して十
分大きな値を有する電流検出補償用の抵抗を該空
心変流器直列に接続し、該抵抗からの出力を検出
回路に与えることにより構成する。
(d) Means for solving the problem This invention connects a current detection compensation resistor having a sufficiently large value with respect to the internal resistance of the air-core current transformer in series, and It is configured by giving the output of 2 to a detection circuit.

(ホ) 実施例 第1図はこの発明の回路しや断器の一実施例を
示し、第5図の構成と相違するところは前記空心
変流器7,8,9の各出力の一端は夫々対応して
回路しや断器の通電電流の検出補償用の抵抗4
1,42,43の各一端に接続され、該各抵抗4
1,42,43の他端は検出回路10へ接続され
ている。第1図において、その他の構成は第5図
の構成と全く同様であるので同一部分には同一符
号を付して説明は省略する。
(E) Embodiment FIG. 1 shows an embodiment of the circuit breaker of the present invention, and the difference from the configuration shown in FIG. 5 is that one end of each output of the air-core current transformers 7, 8, and 9 is Resistor 4 for detecting and compensating for the current flowing in the circuit and disconnector correspondingly.
1, 42, and 43, each of the resistors 4
The other ends of 1, 42, and 43 are connected to the detection circuit 10. In FIG. 1, the other configurations are completely the same as those in FIG. 5, so the same parts are given the same reference numerals and the explanation will be omitted.

第2図は第1図の検出回路10の部分を詳細に
示したもので、その構成は第6図の場合と同一で
ある。第2図において、前記抵抗41,42,4
3の各他端は夫々対応して前記整流回路21を構
成するダイオード23と24,25と26,27
と28の各中間接続点に接続されている。
FIG. 2 shows the detection circuit 10 of FIG. 1 in detail, and its configuration is the same as that of FIG. 6. In FIG. 2, the resistors 41, 42, 4
The other ends of 3 are connected to diodes 23 and 24, 25 and 26, 27 which constitute the rectifier circuit 21, respectively.
and 28 intermediate connection points.

第2図において単極通電をした場合の等価回路
が第3図に示される。第3図において、第7図に
示す等価回路と相違するところは、各空心変流器
7,8,9の回路に夫々対応して前記検出補償用
の抵抗41,42,43が直列に接続されている
ことである。抵抗41,42,43の各抵抗値を
Rbとすると、検出抵抗22の両端の電圧VRLは、 VRL≒E/RC+Rb+RL・RL (3) となる。
FIG. 3 shows an equivalent circuit when single-pole current is applied in FIG. 2. The difference between the equivalent circuit shown in FIG. 7 and the equivalent circuit shown in FIG. This is what is being done. The resistance values of resistors 41, 42, and 43 are
Assuming that R b , the voltage V RL across the detection resistor 22 becomes V RL ≈E/R C +R b +R L ·R L (3).

第4図は第2図において単相通電をした場合の
等価回路図である。第4図は第10図に示す等価
回路に対応し、同回路と異なる点は各空心変流器
7,8,9の回路に夫々対応して前記検出補償用
の抵抗41,42,43が直列に接続されている
ことである。この場合の電圧VRLは VRL≒E/RC+Rb+RL/2・RL (4) となる。
FIG. 4 is an equivalent circuit diagram when single-phase current is applied in FIG. 2. FIG. 4 corresponds to the equivalent circuit shown in FIG. 10, and the difference from the circuit is that the detection compensation resistors 41, 42, 43 correspond to the circuits of the air-core current transformers 7, 8, and 9, respectively. They are connected in series. The voltage V RL in this case is V RL ≈E/R C +R b +R L/2 ·R L (4).

(3)式及び(4)式から明らかなように、空心変流器
7,8,9の内部抵抗値RCと抵抗値Rbとの和
(RC+Rb)を検出抵抗値RLに比べて十分大きくす
れば、単極通電時と単相通電時において回路しや
断器の同一の通電電流に対する検出回路10の出
力電圧VRLはほぼ等しくなる。さらに検出補償用
の抵抗値Rbを内部抵抗値RCに比べて十分大きく
すれば周囲温度の変化に対して出力電圧VRLの変
動は実用上問題にならない。即ち、空心変流器
7,8,9の巻線と線径、抵抗41,42,43
の抵抗値Rb、検出抵抗22の抵抗値、RLの組み
合せを適切にし、例えば抵抗41,42,43に
酸化金属皮膜抵抗を使用すれば、その温度係数は
350ppm/℃で銅線で作られた空心変流器の内部
抵抗よりも温度係数が1桁良く、したがつて、抵
抗41,42,43と内部抵抗32,33,34
の各直列接続された抵抗の全体の温度係数は検出
抵抗22の温度係数とほぼ等しくなり、この結
果、(3)、(4)式の検出電圧VRLは周囲温度による影
響をほとんどうけなくなる。
As is clear from equations (3) and (4), the sum (R C +R b ) of the internal resistance value R C and the resistance value R b of the air-core current transformers 7, 8, and 9 is detected as the resistance value R L If it is made sufficiently larger than VRL, the output voltage V RL of the detection circuit 10 for the same current flowing through the circuit or disconnector becomes approximately equal during single-pole current flow and during single-phase current flow. Furthermore, if the resistance value R b for detection compensation is made sufficiently larger than the internal resistance value R C , fluctuations in the output voltage V RL due to changes in ambient temperature will not be a problem in practice. That is, the windings and wire diameters of the air-core current transformers 7, 8, 9, and the resistances 41, 42, 43.
If the combination of the resistance value R b , the resistance value of the detection resistor 22, and R L is appropriate, and for example, metal oxide film resistors are used for the resistors 41, 42, and 43, the temperature coefficient will be
The temperature coefficient is an order of magnitude better than the internal resistance of an air-core current transformer made of copper wire at 350 ppm/℃, so the resistances 41, 42, 43 and internal resistances 32, 33, 34
The overall temperature coefficient of each series-connected resistor is approximately equal to the temperature coefficient of the detection resistor 22, and as a result, the detection voltage V RL in equations (3) and (4) is hardly influenced by the ambient temperature.

(ヘ) 効果 この発明は、回路しや断器の引き外し特性が周
囲温度の影響を受けずに実行でき、引き外し精度
を高めることができる。また、回路しや断器の内
部導体の単極通電時と単相通電時にも引き外し特
性を変動することなく、ほぼ均一な引き外し特性
が得られる。
(f) Effects According to the present invention, the tripping characteristics of a circuit or disconnector can be performed without being affected by the ambient temperature, and the tripping accuracy can be improved. Furthermore, almost uniform tripping characteristics can be obtained without fluctuations in the tripping characteristics even when the internal conductor of the circuit or disconnector is energized by a single pole or a single phase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の回路しや断器の一実施例を
示す概略回路構成図、第2図は第1図の検出回路
部の詳細な回路構成図、第3図は単極通電時にお
ける第2図の等価回路図、第4図は単相通電時に
おける第2図の等価回路図、第5図は従来の回路
しや断器の概略回路構成図、第6図は第1図の検
出回路部の詳細な回路構成図、第7図は第6図に
おいて単極のみを通電した場合の回路構成図、第
8図は第7図の等価回路図、第9図は第6図にお
いて単相のみを通電した場合の回路構成図、第1
0図は第9図の等価回路図である。 3……内部導体、7,8,9……空心変流器、
10……検出回路、21……整流回路、22……
検出抵抗、23〜30……ダイオード、41,4
2,43……検出補償用の抵抗。
FIG. 1 is a schematic circuit configuration diagram showing an embodiment of the circuit breaker of the present invention, FIG. 2 is a detailed circuit configuration diagram of the detection circuit section of FIG. 1, and FIG. Fig. 2 is an equivalent circuit diagram, Fig. 4 is an equivalent circuit diagram of Fig. 2 when single-phase current is applied, Fig. 5 is a schematic circuit diagram of a conventional circuit breaker, and Fig. 6 is a diagram of Fig. 1. A detailed circuit configuration diagram of the detection circuit section. Figure 7 is a circuit configuration diagram when only a single pole is energized in Figure 6. Figure 8 is an equivalent circuit diagram of Figure 7. Figure 9 is a diagram of the circuit diagram in Figure 6. Circuit configuration diagram when only single phase is energized, Part 1
FIG. 0 is an equivalent circuit diagram of FIG. 3... Internal conductor, 7, 8, 9... Air core current transformer,
10...detection circuit, 21...rectification circuit, 22...
Detection resistor, 23-30...Diode, 41,4
2, 43...Resistance for detection compensation.

Claims (1)

【特許請求の範囲】 1 三相の電流を検出する空心変流器と、この空
心変流器の出力を整流する整流回路およびこの整
流回路に並列に接続されて前記電流に比例する電
圧を検出するための検出抵抗を有する検出回路と
を備え、単相、二相および三相の電流検出の何れ
かを選択的に行う回路しや断器の引き外し装置に
おいて、 前記空心変流器と前記整流回路の間に接続さ
れ、前記空心変流器の内部抵抗よりも十分大きい
値を有する電流検出補償用の抵抗を備え、該電流
検出補償用の抵抗温度係数は、前記空心変流器の
内部抵抗と該電流検出補償用の抵抗との全体の抵
抗温度係数が前記検出抵抗の抵抗温度係数とほぼ
等しくなるように前記空心変流器の内部抵抗の抵
抗温度計数よりも小さい値であることを特徴とす
る、回路しや断器の引き外し装置。 2 特許請求の範囲1項に記載の回路しや断器の
引き外し装置において、前記検出補償用の抵抗は
酸化皮膜抵抗であることを特徴とする、回路しや
断器の引き外し装置。
[Scope of Claims] 1. An air-core current transformer that detects three-phase current, a rectifier circuit that rectifies the output of the air-core current transformer, and a voltage that is connected in parallel to the rectifier circuit and is proportional to the current. and a detection circuit having a detection resistor for detecting current, and selectively detects single-phase, two-phase, or three-phase current. A resistance for current detection compensation is connected between the rectifier circuits and has a value sufficiently larger than the internal resistance of the air-core current transformer, and the temperature coefficient of resistance for current detection compensation is equal to that of the internal resistance of the air-core current transformer. The total resistance temperature coefficient of the resistor and the current detection compensation resistor is smaller than the resistance temperature coefficient of the internal resistance of the air-core current transformer so that the resistance temperature coefficient of the entire resistance temperature coefficient of the resistor and the current detection compensation resistor is approximately equal to the resistance temperature coefficient of the detection resistor. Features: A tripping device for circuits and disconnectors. 2. The circuit breaker tripping device according to claim 1, wherein the detection compensation resistor is an oxide film resistor.
JP11399486A 1986-05-19 1986-05-19 Apparatus for tripping circuit breaker Granted JPS62272817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11399486A JPS62272817A (en) 1986-05-19 1986-05-19 Apparatus for tripping circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11399486A JPS62272817A (en) 1986-05-19 1986-05-19 Apparatus for tripping circuit breaker

Publications (2)

Publication Number Publication Date
JPS62272817A JPS62272817A (en) 1987-11-27
JPH0556094B2 true JPH0556094B2 (en) 1993-08-18

Family

ID=14626392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11399486A Granted JPS62272817A (en) 1986-05-19 1986-05-19 Apparatus for tripping circuit breaker

Country Status (1)

Country Link
JP (1) JPS62272817A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113713A (en) * 1982-12-17 1984-06-30 株式会社東芝 Circuit breaker
JPS60255008A (en) * 1984-05-28 1985-12-16 三菱電機株式会社 Switching device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263463U (en) * 1975-11-04 1977-05-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113713A (en) * 1982-12-17 1984-06-30 株式会社東芝 Circuit breaker
JPS60255008A (en) * 1984-05-28 1985-12-16 三菱電機株式会社 Switching device

Also Published As

Publication number Publication date
JPS62272817A (en) 1987-11-27

Similar Documents

Publication Publication Date Title
JP2735598B2 (en) Solid trip device
JP2633284B2 (en) Multi-pole breaker solid trip device to protect AC power supply
US4425596A (en) Electric circuit breaker
JP2510507B2 (en) Digital solid trip device for circuit breaker
JP2509182B2 (en) Digital solid trip device for circuit breaker
CA1151279A (en) Solid state trip unit for an electrical circuit breaker
CA1131296A (en) Ground fault circuit interrupter
JP4264817B2 (en) Earth leakage breaker
EP1841033B1 (en) Circuit breaker
JPS61240818A (en) Digital solid tripper for breaker
JPH0787667B2 (en) Circuit breaker
EP0219790A1 (en) Transformer protection system
EP0133968B1 (en) Solid state overcurrent detector
JP4931754B2 (en) Earth leakage breaker
KR930010684B1 (en) Circuit breaker
US20050141163A1 (en) Analogue electronic trip device for an electrical power breaker responding to a short-circuit
EP0302470B1 (en) Circuit breaker including selectively operable long-time-delay tripping circuit
JPS5989516A (en) Circuit breaker
JPH0714252B2 (en) Circuit breaker
JPH0556094B2 (en)
US6560132B1 (en) System for obtaining phase-ground voltages from a broken delta VT voltage connection system
US5598315A (en) Self-power tripping relay with balanced power supply current and measurement current
JPS62155720A (en) Signal regulating circuit for electronic trip circuit breaker
JP2809904B2 (en) Earth leakage breaker
JPH031887B2 (en)