JPH02101926A - Current limiting apparatus - Google Patents

Current limiting apparatus

Info

Publication number
JPH02101926A
JPH02101926A JP63253315A JP25331588A JPH02101926A JP H02101926 A JPH02101926 A JP H02101926A JP 63253315 A JP63253315 A JP 63253315A JP 25331588 A JP25331588 A JP 25331588A JP H02101926 A JPH02101926 A JP H02101926A
Authority
JP
Japan
Prior art keywords
current
superconducting
switch
coil
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63253315A
Other languages
Japanese (ja)
Other versions
JP2901068B2 (en
Inventor
▲つる▼永 和行
Kazuyuki Tsurunaga
Hiroyuki Okumura
奥村 博行
Daisuke Ito
伊藤 大佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63253315A priority Critical patent/JP2901068B2/en
Priority to US07/379,117 priority patent/US5021914A/en
Priority to EP89112845A priority patent/EP0350916B1/en
Priority to DE68912431T priority patent/DE68912431T2/en
Publication of JPH02101926A publication Critical patent/JPH02101926A/en
Application granted granted Critical
Publication of JP2901068B2 publication Critical patent/JP2901068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To miniaturize an apparatus by connecting a superconducting coil having a critical current value more than the current-limiting value of a circuit and a non-inductive superconducting switch having a critical current value lower than said current-limiting value and higher than a normal current in parallel with each other. CONSTITUTION:Between a power supply 1 and a load 5, a breaker 2 and a current-limiting device 3 are connected in series together with a line impedance 4. To form said current limiter 3, a reactor 3a of superconducting material having a critical current value more than a current value allowable for a line and a non-inductive switch 3b composed of superconducting material having a critical current value higher than a normal current value and lower than said allowable current are connected in parallel with each other. A normal current flows through said switch 3b, but, in case of an overload, the switch 3b opens to commutate a load current to said reactor 3a to limit said current. When the electric current further increases, however, the reactor 3a is also quenched and becomes higher in resistance to limit said current. Thus, an overload current is suppressed by a simple circuit.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、交流電路における過電流を電磁的に抑制す
る限流装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a current limiting device that electromagnetically suppresses overcurrent in an AC power line.

(従来の技術) この種の従来の装置として、例えば、特開昭60−74
932号公報に開示されたものがある。
(Prior Art) As a conventional device of this type, for example, Japanese Patent Laid-Open No. 60-74
There is one disclosed in Publication No. 932.

第12図はこの限流装置の構成を示す回路図である。同
図において、鉄芯33には起磁力が略等しくなるように
コイル34とコイル35とが巻装されると共に、磁束の
向きが逆になるようにコイル34およびコイル35の各
一端が電源側の電路31に接続されており、コイル34
の他端がスイッチ38を介して負荷側の電路32に接続
され、さらに、コイル35の他端が同じく負荷側の電路
32に接続されている。また、コイル34にはサージア
ブゾーバ36が並列接続され、スイッチ38には電流制
限抵抗37が並列接続されている。
FIG. 12 is a circuit diagram showing the configuration of this current limiting device. In the figure, a coil 34 and a coil 35 are wound around the iron core 33 so that the magnetomotive force is approximately equal, and one end of each of the coil 34 and the coil 35 is placed on the power supply side so that the direction of the magnetic flux is reversed. The coil 34 is connected to the electric circuit 31 of
The other end of the coil 35 is connected to the load-side electric path 32 via the switch 38, and the other end of the coil 35 is also connected to the load-side electric path 32. Further, a surge absorber 36 is connected in parallel to the coil 34, and a current limiting resistor 37 is connected in parallel to the switch 38.

一方、電路32に変流器39が設けられ、過電流を検出
したときスイッチ38をトリップさせるようになってい
る。
On the other hand, a current transformer 39 is provided in the electric line 32, and is configured to trip the switch 38 when an overcurrent is detected.

ここで、スイッチ38を閉成した状態で通常レベルの電
流(以下通常電流という)が電路31および32を通し
て流れると、この電流がコイル34と35とに分流する
が、これらのコイルに発生する磁束が相殺されるため、
電流はインダクタンスL t 、  L 2の影響を受
けないことになる。従って、漏れ磁束による僅かの損失
を除き、高効率で負荷に電力を供給することができる。
Here, when a normal level current (hereinafter referred to as normal current) flows through the electric circuits 31 and 32 with the switch 38 closed, this current is divided into the coils 34 and 35, but the magnetic flux generated in these coils are canceled out, so
The current will not be affected by the inductances L t , L 2 . Therefore, electric power can be supplied to the load with high efficiency, excluding a slight loss due to leakage magnetic flux.

一方、負荷の短絡等により電路31.32に過大電流が
流れると、変流器39がこれを検出してスイッチ38を
開放させ、コイル34の回路に抵抗37を挿入する。こ
れにより、コイル34の電流が減少すると同時にコイル
35の電流が増大し、鉄心33の磁束はコイル35によ
るものが支配的となる。従って、コイル35のインダク
タンスが作用して、すなわち、リアクトル作用により事
故電流を限流する。
On the other hand, when an excessive current flows through the electrical circuits 31 and 32 due to a load short circuit or the like, the current transformer 39 detects this, opens the switch 38, and inserts the resistor 37 into the circuit of the coil 34. As a result, the current in the coil 34 decreases and at the same time the current in the coil 35 increases, and the magnetic flux of the iron core 33 becomes dominated by the coil 35. Therefore, the inductance of the coil 35 acts, that is, the reactor acts to limit the fault current.

(発明が解決しようとする課題) 上述した限流装置には定常時、数百〜数千アンペアの電
流が流れるため、コイル34.35の断面積を大きくし
なければならず、しかも、限流インピーダンスを大きく
するべく巻数も多くしなければならないため、装置が大
型化すると同時に、熱による多量の電力損失も避けられ
ないという問題点があった。
(Problem to be Solved by the Invention) Since a current of several hundred to several thousand amperes flows through the above-mentioned current limiting device during steady state, the cross-sectional area of the coils 34 and 35 must be made large, and the current limiting device Since the number of turns must be increased in order to increase the impedance, there is a problem in that the device becomes larger and a large amount of power loss due to heat cannot be avoided.

また、上述した限流装置にあっては、スイッチ38とし
て機械的なものが用いられることが多く、過電流を検出
してからスイッチ38を開放して限流動作を行うまで、
1〜3サイクル分の時間を必要とし、この間、線路の保
護が困難になるという問題点もあった。
In addition, in the above-mentioned current limiting device, a mechanical switch is often used as the switch 38, and from the time an overcurrent is detected to the time when the switch 38 is opened to perform the current limiting operation,
Another problem is that it requires 1 to 3 cycles, making it difficult to protect the line during this time.

なお、この対策として、スイッチ38にサイリスタ等の
半導体スイッチを用いることもできるが、この場合には
サイリスクの順方向における電圧降下によって電力損失
を生じ、装置がさらに大型化する共に、複雑化するため
その採用は難しかった。
As a countermeasure against this, a semiconductor switch such as a thyristor can be used as the switch 38, but in this case, a power loss occurs due to the voltage drop in the forward direction of the thyrisk, and the device becomes larger and more complicated. Recruitment was difficult.

この発明は上記の問題点を解決するためになされたもの
で、装置の小形化および確実な線路保護を図り得ると共
に、熱に伴う電力損失を極めて低く抑えることのできる
限流装置を得ることを目的とする。
This invention was made in order to solve the above problems, and aims to provide a current limiting device that can miniaturize the device, ensure line protection, and keep power loss due to heat extremely low. purpose.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この目的を達成するために、第1の発明は、電路の電流
を制限値以下に抑えるインダクタンスを有し、且、前記
制限値以上の臨界電流値を持つ超電導コイルと、無誘導
に形成され、前記制限値より小さく、通常電流より大き
い臨界電流値を持つ超電導スイッチとを備え、前記超電
導コイルおよび超電導スイッチを並列接続したことを特
徴とするものである。
(Means for Solving the Problem) In order to achieve this object, a first invention provides a superconducting material having an inductance that suppresses the current in an electric circuit to a limit value or less, and having a critical current value greater than or equal to the limit value. It is characterized by comprising a coil and a superconducting switch formed without induction and having a critical current value smaller than the limit value and larger than the normal current, and the superconducting coil and the superconducting switch are connected in parallel.

また、第2の発明は、電路の電流を制限値以下に抑える
インダクタンスを有し、且、前記制限値以上の臨界電流
値を持つ第1の超電導コイルと、この第1の超電導コイ
ルに対して共通の磁芯に巻装されると共に、同一の端子
電圧に対して略等しい起磁力が得られる第2の超電導コ
イルと、無誘導に形成され、前記電路の過大電流に比例
する臨界電流値を持つ超電導スイッチとを備え、前記第
1および第2の超電導コイルを、磁束の向きが互いに逆
になるように並列接続すると共に、前記超電導スイッチ
を前記第2の超電導コイルに直列に挿入したことを特徴
とするものである。
Further, a second invention provides a first superconducting coil having an inductance that suppresses a current in an electric circuit to a limit value or less and having a critical current value greater than or equal to the limit value, and a first superconducting coil for the first superconducting coil. a second superconducting coil that is wound around a common magnetic core and can obtain substantially the same magnetomotive force for the same terminal voltage; the first and second superconducting coils are connected in parallel so that the directions of magnetic flux are opposite to each other, and the superconducting switch is inserted in series with the second superconducting coil. This is a characteristic feature.

(作 用) 第1の発明においては、電路に通常電流しか流れていな
ければ、超電導コイルおよび超電導スイッチのどちらも
超電導状態に保持され、しかも、電路に並列に挿入・さ
れた超電導コイルが比較的大きいインピーダンスを持つ
が、超電導スイッチのインピーダンスは実質的に零であ
り、電路の電流の殆どが超電導スイッチを流れる。そし
て、電路の電流が過大になると超電導スイッチがクエン
チし、今まで流れていた電流を超電導コイルに転流させ
る。そこで、超電導コイルにより電路の電流を制限値に
抑えることができる。
(Function) In the first invention, if only a normal current flows in the electric circuit, both the superconducting coil and the superconducting switch are maintained in a superconducting state, and moreover, the superconducting coil inserted in parallel to the electric circuit is relatively Although it has a large impedance, the impedance of a superconducting switch is essentially zero, and most of the current in the electrical path flows through the superconducting switch. Then, when the current in the circuit becomes excessive, the superconducting switch quenches, and the current that has been flowing until now is diverted to the superconducting coil. Therefore, the current in the electric circuit can be suppressed to a limited value by using a superconducting coil.

また、第2の発明においては、電路に通常電流しか流れ
ていなければ、第1、第2の超電導コイルおよび超電導
スイッチのいずれもが超電導状態に保持され、電路の電
流はインピーダンスが実質的に零になるように巻装され
た第1の超電導コイルと第2の超電導コイルに分流する
。そして、電路に過大電流が流れると超電導スイッチが
クエンチするため、今まで第2の超電導コイルに流れて
いた電流が第1の超電導コイルに転流すると共に、この
第1の超電導コイルにのみ電路電流が流れることになる
。従って、第1の超電導コイルのインダクタンスが作用
して電路の電流を制限値に抑えることができる。
Further, in the second invention, if only a normal current is flowing through the electric path, both the first and second superconducting coils and the superconducting switch are maintained in a superconducting state, and the impedance of the current in the electric path is substantially zero. The current is divided into a first superconducting coil and a second superconducting coil that are wound so that Then, when an excessive current flows in the electrical circuit, the superconducting switch quenches, so the current that had been flowing in the second superconducting coil is commutated to the first superconducting coil, and the electrical current flows only in this first superconducting coil. will flow. Therefore, the inductance of the first superconducting coil acts to suppress the current in the electric path to the limit value.

(実施例) 第1図はこの出願の第1の発明に対応する実施例の構成
を、適用対象と併せて示した回路図である。同図におい
て、交流電源1と負荷5とを結ぶ電路としての線路の一
方に、遮断器2、限流装置3が挿入されると共に、線路
インピータンス4が挿入されたように示されている。こ
こで、限流装置3は線路の電流を制限値以下に抑えるイ
ンダクタンスを持つように巻装され、しかも、電流制限
値より大きな臨界電流値を持った超電導コイル3aと、
インダクタンスが実質的に零になるように無誘導(AP
)巻きされ、電路の通常電流より大きく、電流制限値よ
り小さい臨界電流値を持った超電導スイッチ3bとを並
列接続した構成になっている。
(Embodiment) FIG. 1 is a circuit diagram showing the configuration of an embodiment corresponding to the first invention of this application, together with an object to which it is applied. In the figure, a circuit breaker 2, a current limiting device 3, and a line impedance 4 are shown inserted into one side of a line serving as an electric path connecting an AC power source 1 and a load 5. Here, the current limiting device 3 includes a superconducting coil 3a that is wound so as to have an inductance that suppresses the current in the line below a limiting value, and has a critical current value larger than the current limiting value.
Non-inductive (AP) so that the inductance is virtually zero
) and is connected in parallel with a superconducting switch 3b having a critical current value larger than the normal current of the electric circuit and smaller than the current limit value.

第2図は超電導コイル3aおよび超電導スイッチ3bの
具体的な構成を示す図であり、超電導コイル3aはボビ
ン3Cに、超電導スイッチ3bはボビン3dにそれぞれ
巻装され、しかも、超電導スイッチ3bは超電導コイル
3aの内側に同志配置されており、コイル端が端子3e
、3fに共通接続されている。
FIG. 2 is a diagram showing a specific configuration of the superconducting coil 3a and the superconducting switch 3b. The superconducting coil 3a is wound around a bobbin 3C, and the superconducting switch 3b is wound around a bobbin 3d. 3a, and the coil end is connected to terminal 3e.
, 3f are commonly connected.

上記のように構成された本実施例の動作を以下に説明す
る。
The operation of this embodiment configured as described above will be explained below.

先ず、超電導コイル3aおよび超電導スイッチ3bがど
ちらも超電導状態にあるとき、線路を流れる電流に対し
て超電導コイル3aは比較的大きなインピータンスを示
すが、超電導スイッチ3bは無誘導であることからイン
ピータンスは実質的に零になる。第3図はこのことを説
明するための図で、超電導コイル3aおよび超電導スイ
ッチ3bに矢印方向の電流i。が流れたとすると、超電
導コイル3aによって磁束φ0が発生してインダクタン
スに応じたインピーダンスを持つが、AP巻きされた超
電導スイッチ3bの磁束φ1゜φ2は相殺されてインピ
ーダンスは実質的に零となる。
First, when both the superconducting coil 3a and the superconducting switch 3b are in a superconducting state, the superconducting coil 3a exhibits a relatively large impedance to the current flowing through the line, but the superconducting switch 3b exhibits a relatively large impedance because it is non-inductive. becomes essentially zero. FIG. 3 is a diagram for explaining this, in which a current i is applied to the superconducting coil 3a and the superconducting switch 3b in the direction of the arrow. If , a magnetic flux φ0 is generated by the superconducting coil 3a and has an impedance according to the inductance, but the magnetic fluxes φ1 and φ2 of the AP-wound superconducting switch 3b are canceled out and the impedance becomes substantially zero.

そして負荷5側に事故がなく、これに通常の大きさの電
流!。が流れたとき、超電導コイル3aに流れる電流を
iLl、超電導スイッチ3bに流れる電流を’L2とす
ると次式の関係が成立する。
And there was no accident on the load 5 side, and the current was normal! . When , the current flowing through the superconducting coil 3a is iLl, and the current flowing through the superconducting switch 3b is 'L2, the following relationship holds true.

L   −i   +i     ・・・(1)OLI
    L2 ’ Ll(iL2     ・・・(2)したがって、
線路の電流10の殆どが超電導スイッチ3bに流れ、し
かも、これに伴う電圧降下は実質的に零である。
L −i +i ... (1) OLI
L2'Ll(iL2...(2) Therefore,
Most of the line current 10 flows through the superconducting switch 3b, and the resulting voltage drop is substantially zero.

次に、負荷5の短絡事故等により、線路に過電流が流れ
、その値が超電導スイッチ3bの臨界電流値Jclを超
えると、超電導スイッチ3bが瞬時にクエンチし、極め
て大きな抵抗体となる。その結果、超電導スイッチ3b
に流れていた電流の殆どが超電導コイル3aに転流し、
両者の電流は下式に示す関係となる。
Next, when an overcurrent flows through the line due to a short-circuit accident in the load 5, and its value exceeds the critical current value Jcl of the superconducting switch 3b, the superconducting switch 3b instantly quenches and becomes an extremely large resistor. As a result, superconducting switch 3b
Most of the current flowing in the superconducting coil 3a is diverted to the superconducting coil 3a,
The relationship between both currents is shown in the equation below.

’ Ll>iL2    °−(3) 従って、超電導コイル3aのインダクタンスにより線路
電流が制限値に制限される。 この場合、超電導スイッ
チ3bに流れる電流’L2は極めて小さいので熱として
消費される電力損失は極めて僅かに抑えられる。
'Ll>iL2°-(3) Therefore, the line current is limited to the limit value by the inductance of the superconducting coil 3a. In this case, the current 'L2 flowing through the superconducting switch 3b is extremely small, so power loss consumed as heat can be suppressed to an extremely small amount.

第4図(a) 、(b)は電流iおよび限流装置のイン
ピーダンス2 が通常動作時と限流動作時とで、C どのように変化するかを示したものである。すなわち、
定常動作時においては、限流装置3のインピーダンス2
 は極めて小さく、線路の電流i。
FIGS. 4(a) and 4(b) show how the current i and the impedance 2 of the current limiting device C change during normal operation and during current limiting operation. That is,
During steady operation, the impedance 2 of the current limiting device 3
is extremely small, and the line current i.

SC は主に負荷のインピータンスzlによって正常に保たれ
ている。一方、負荷短絡が発生すると、線路には推定短
絡電流ifが流れようとする。しかしながら、線路電流
が超電導スイッチ3bの臨界電流値’clを超えた瞬間
、上述したように限流装置のインピーダンスが2 ′に
増大し、短絡電流e は制限値以下に限流される。
SC is maintained normally mainly by the load impedance zl. On the other hand, when a load short circuit occurs, an estimated short circuit current if tends to flow through the line. However, the moment the line current exceeds the critical current value 'cl' of the superconducting switch 3b, the impedance of the current limiting device increases to 2' as described above, and the short circuit current e is limited to below the limiting value.

この場合、超電導コイル3aの臨界電流値J。2は線路
の電流制限値より大きく設定されている。
In this case, the critical current value J of the superconducting coil 3a. 2 is set larger than the current limit value of the line.

また、限流装置3は、遮断器2で線路を遮断することに
よって冷却され、容易に定常状態に復帰する。
Further, the current limiting device 3 is cooled by interrupting the line with the circuit breaker 2, and easily returns to a steady state.

なお、上記実施例では、二つの超電導コイルを同志配置
したことにより、著しくコンパクト化されると共に、超
電導状態に保持し易くなっているが、これらの超電導コ
イルを離隔配置したとしても上述した限流動作を行なわ
せることができる。
In the above embodiment, the two superconducting coils are placed together, making it significantly more compact and making it easier to maintain the superconducting state. However, even if these superconducting coils are placed apart, the above-mentioned current limiting It can be made to perform an action.

しかして、この実施例によれば、超電導コイルを採用し
たこと、これらの超電導コイルを同志配置したことによ
り、構成の簡易化、装置の小型化が実現されると同時に
応答性が速く、しかも確実な線路保護が可能となる。
According to this embodiment, by employing superconducting coils and arranging these superconducting coils together, it is possible to simplify the configuration and miniaturize the device, and at the same time achieve fast response and reliability. line protection is possible.

第5図はこの出願の第2の発明に対応する実施例の構成
を、適用対象と併せて示した回路図である。同図におい
て、交流電源1と負荷5とを結ぶ線路の一方に、遮断器
2と、超電導リアクトル6および超電導スイッチ7でな
る限流装置とが挿入されると共に、線路インピータンス
4が挿入されたように示されている。ここで、超電導リ
アクトル6は線路の電流を制限値以下に抑えるインダク
タンスを持つものであり、これは、電流制限値より大き
な臨界電流値を持った超電導コイル6aと、この超電導
コイルと同一の鉄心に巻装され、線路に並列に挿入され
たとき起磁力が同じで磁束が相殺される超電導コイル6
bとでなり、それぞれ電流iLl、iL2が流れ込んだ
とき、インピーダンスが実質的に零となる。一方、超電
導スイッチ7は無誘導に巻装された超電導コイルで、こ
れは超電導コイル6bに直列接続されている。
FIG. 5 is a circuit diagram showing the configuration of an embodiment corresponding to the second invention of this application, together with the object to which it is applied. In the figure, a circuit breaker 2 and a current limiting device consisting of a superconducting reactor 6 and a superconducting switch 7 are inserted into one of the lines connecting an AC power source 1 and a load 5, and a line impedance 4 is inserted. It is shown as follows. Here, the superconducting reactor 6 has an inductance that suppresses the current in the line below the limit value, and this is because the superconducting coil 6a, which has a critical current value larger than the current limit value, and the same iron core as this superconducting coil are connected to each other. A superconducting coil 6 whose magnetomotive force is the same and the magnetic flux cancels out when it is wound and inserted in parallel to a railway line.
b, and when currents iLl and iL2 flow into them, the impedance becomes substantially zero. On the other hand, the superconducting switch 7 is a non-inductively wound superconducting coil, which is connected in series to the superconducting coil 6b.

第6図は超電導リアクトル6の具体的な構成を示す図で
あり、超電導コイル6aはボビン6Cに、超電導コイル
6bはボビン6dにそれぞれ巻装され、しかも、超電導
コイル6bは超電導コイル6aの内側に同志配置されて
おり、両コイルの各一端が端子6e、に共通接続され、
超電導コイル6aの他端が端子6fに、超電導コイル6
bの他端が端子6gにそれぞれ接続されている。なお、
6hはこれらの超電導コイルの端子6f、6g間の絶縁
を保持するスペーサである。
FIG. 6 is a diagram showing a specific configuration of the superconducting reactor 6, in which the superconducting coil 6a is wound around a bobbin 6C, the superconducting coil 6b is wound around a bobbin 6d, and the superconducting coil 6b is wound inside the superconducting coil 6a. The two coils are arranged one after the other, and one end of each coil is commonly connected to the terminal 6e.
The other end of the superconducting coil 6a is connected to the terminal 6f, and the superconducting coil 6
The other ends of the terminals b are respectively connected to the terminals 6g. In addition,
6h is a spacer that maintains insulation between terminals 6f and 6g of these superconducting coils.

第7図はこの超電導リアクトル6の内部結線と磁束の様
子を表す図であり、超電導コイル6a。
FIG. 7 is a diagram showing the internal connections and magnetic flux of this superconducting reactor 6, and shows the superconducting coil 6a.

6bが線路に並列接続されたとき、超電導コイル6aに
発生する磁束φ1と超電導コイル6bに発生する磁束φ
2とが相殺される構成になりでいる。
6b is connected in parallel to the line, the magnetic flux φ1 generated in the superconducting coil 6a and the magnetic flux φ generated in the superconducting coil 6b
The structure is such that the two cancel each other out.

第8図は上記超電導スイッチ7の具体的に構成を示す図
であり、これは超電導コイル7a、7bでなり、このう
ち、超電導コイル7aはボビン7cに、超電導フィル7
bはボビン7dにそれぞれ巻装され、しかも、超電導コ
イル7bは超電導コイル7aの内側に同志配置されてお
り、各コイルの一端が端子7eに共通接続され、他端が
端子7fに共通接続されている。
FIG. 8 is a diagram showing a concrete configuration of the superconducting switch 7, which is composed of superconducting coils 7a and 7b, of which the superconducting coil 7a is mounted on the bobbin 7c and the superconducting film 7 is mounted on the bobbin 7c.
b are respectively wound around a bobbin 7d, and the superconducting coils 7b are arranged together inside the superconducting coil 7a, one end of each coil is commonly connected to the terminal 7e, and the other end is commonly connected to the terminal 7f. There is.

第9図はこの超電導スイッチ7の内部結線と磁束の様子
を表す図であり、端子7es7f間に電流を流すと、こ
の電流が各コイルに分流されて超電導コイル7aに発生
する磁束φ1と超電導コイル7bに発生する磁束φ2と
が相殺される構成になっている。
FIG. 9 is a diagram showing the internal wiring and magnetic flux of this superconducting switch 7. When a current is passed between the terminals 7es and 7f, this current is divided into each coil and the magnetic flux φ1 generated in the superconducting coil 7a and the superconducting coil The configuration is such that the magnetic flux φ2 generated in 7b is canceled out.

なお、超電導リアクトルを構成する超電導コイル6a、
6bの臨界電流値は線路の電流制限値より大きくなるよ
うに製作されており、超電導スイッチ7は線路の過電流
に比例する値、例えば、線路の過電流に対応して超電導
コイル6bの電流が増大するとクエンチするように製作
されている。
Note that the superconducting coil 6a constituting the superconducting reactor,
The critical current value of the superconducting coil 6b is made to be larger than the current limit value of the line, and the superconducting switch 7 has a value proportional to the overcurrent of the line, for example, the current of the superconducting coil 6b is set to a value proportional to the overcurrent of the line. It is designed to quench when it increases.

上記の如く構成された本実施例の動作を第10図をも参
照して以下に説明する。
The operation of this embodiment configured as described above will be explained below with reference to FIG. 10.

先ず、線路に流れる電流i。が正常であれば、超電導リ
アクトル6および超電導スイッチ7は双方とも超電導状
態に保持される。これにより、超電導スイッチ7を構成
する超電導コイル7a。
First, the current i flowing through the line. If the superconducting reactor 6 and the superconducting switch 7 are normal, both the superconducting reactor 6 and the superconducting switch 7 are maintained in a superconducting state. Thereby, the superconducting coil 7a that constitutes the superconducting switch 7.

7bの抵抗は零で、しかも、無誘導の素子となっている
。従って、電流ioが超電導リアクトル6を構成する超
電導コイル5a、 6bに分流し、これらのコイルに流
れる電流lLl”L2によって磁束が相殺され、相互イ
ンダクタンス−Mを持つものの、自己インダクタンスL
l、L2は電流に影響を与えない状態になっている。
The resistance of 7b is zero, and moreover, it is a non-inductive element. Therefore, the current io is divided into the superconducting coils 5a and 6b forming the superconducting reactor 6, and the magnetic flux is canceled by the current lLl''L2 flowing through these coils, and although the current io has a mutual inductance -M, a self-inductance L
1 and L2 are in a state where they do not affect the current.

第10図(a)はその等価回路であり、超電導スイッチ
7は微小の漏れインダクタンスL3しか持たない素子と
して作用し、超電導リアクトル6もまた、相互インダク
タンス−Mしか持たない素子として作用する。
FIG. 10(a) is an equivalent circuit thereof, in which the superconducting switch 7 acts as an element having only a minute leakage inductance L3, and the superconducting reactor 6 also acts as an element having only a mutual inductance -M.

次に、負荷短絡等の事故が発生したことにより、電源電
圧Eと線路のインピーダンスZ1とで定まる推定短絡電
流1fが流れようとすると、電流の増大に応じて超電導
スイッチ7の電流も増大する。
Next, when an accident such as a load short circuit occurs and an estimated short circuit current 1f determined by the power supply voltage E and line impedance Z1 begins to flow, the current in the superconducting switch 7 also increases in accordance with the increase in current.

この超電導スイッチ7を構成する超電導コイル6a、6
bはその増大途中の電流値、に対応する臨界電流値Jc
lをもっており、超電導コイル6aを流れる電流’L2
がこの電流値J。1を超えると同時にクエンチし、超電
導コイル6bに流れていた電流iL2が超電導コイル6
aに転流する。この結果、線路を流れる電流の殆どが超
電導コイル6aに流れる。従って、超電導リアクトル6
は超電導コイル6aが発生する磁束φ1によって大きな
インダクタンスを持つことになる。第10図(b)はこ
の場合の等価回路であり、超電導スイッチ7は極めて大
きな抵抗値Rを有する素子に変化し、線路電流i。は超
電導コイル6aの自己インダクタンスL1によって限流
される。
Superconducting coils 6a, 6 constituting this superconducting switch 7
b is the current value in the middle of its increase, and the corresponding critical current value Jc
current 'L2 flowing through the superconducting coil 6a.
is this current value J. The current iL2 that was flowing through the superconducting coil 6b is quenched as soon as it exceeds 1, and the current iL2 that was flowing through the superconducting coil 6b is
Commutation to a. As a result, most of the current flowing through the line flows through the superconducting coil 6a. Therefore, superconducting reactor 6
has a large inductance due to the magnetic flux φ1 generated by the superconducting coil 6a. FIG. 10(b) is an equivalent circuit in this case, in which the superconducting switch 7 changes to an element having an extremely large resistance value R, and the line current i. is limited by the self-inductance L1 of the superconducting coil 6a.

しかして、この実施例によれば、通常の線路電流に対し
ては実質的なインピーダンスが零となり、過電流に対し
ては瞬時にリアクトルとなって線路電流を限流させる。
According to this embodiment, the impedance becomes substantially zero for normal line currents, and instantaneously acts as a reactor to limit the line currents for overcurrents.

第10図(a) 、(b)は電流i。および限流装置の
インピーダンスZ が通常動作時と限流動作時C とで、どのように変化するかを示したものである。
Figures 10(a) and 10(b) show the current i. and how the impedance Z of the current limiting device changes between normal operation and current limiting operation.

すなわち、定常動作時においては、限流装置3のインピ
ーダンスZ は極めて小さく、線路の電流C 1oは主に負荷のインピータンスz1によって正常に保
たれている。一方、負荷短絡が発生すると、線路には推
定短絡電流l、が流れようとする。しかしながら、線路
電流がJ まで増大したとき、超電導スイッチ7の電流
が臨界電流値J。1を超え、その瞬間超電導リアクトル
6のインピーダンスがZ ′に増大し、短絡電流は制限
値以下に限流さe れる。
That is, during steady operation, the impedance Z of the current limiting device 3 is extremely small, and the line current C 1o is maintained normally mainly by the load impedance z1. On the other hand, when a load short circuit occurs, an estimated short circuit current l tends to flow through the line. However, when the line current increases to J, the current in the superconducting switch 7 reaches the critical current value J. 1, the impedance of the superconducting reactor 6 increases to Z' at that moment, and the short circuit current is limited to below the limit value e.

かくして、この実施例によっても、超電導コイルを採用
したこと、これらの超電導コイルを同君配置したことに
より、構成の簡易化、装置の小型化が実現されると同時
に応答性が速く、しかも確実な線路保護が可能となる。
Thus, in this embodiment as well, by employing superconducting coils and arranging these superconducting coils in the same manner, it is possible to simplify the configuration and downsize the device, and at the same time achieve fast response and reliability. Line protection becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、本発明によれば、
装置の小形化および確実な線路保護を図り得ると共に、
熱に伴う電力損失を著しく低く抑えることができるとい
う効果がある。
As is clear from the above description, according to the present invention,
It is possible to downsize the device and ensure reliable line protection, and
This has the effect of significantly reducing power loss due to heat.

【図面の簡単な説明】 第1図はこの出願の第1の発明に対応する実施例の構成
を、適用対象と併せて示した回路図、第2図は同実施例
の具体的な構成を、部分的に断面で示した図、第3図は
同実施例の動作を説明するための磁束発生状態図、第4
図(a) (b)は同実施例の動作を説明するために電
流およびインピーダンスの時間的な変化を示した爵、第
5図はこの出願の第2の発明に対応する実施例の構成を
、適用対象と併せて示した回路図、第6図および第8図
はそれぞれ同実施例の主要素の具体的な構成を、部分的
に断面で示した図、第7図および第9図はこれらの主要
素の磁束発生状態図、第10図(a)。 (b)は同実施例の動作を説明するための等価回路図、
第11図(a) 、 (b)は同実施例の動作を説明す
るために電流およびインピーダンスの時間的な変化を示
した図、第12図は従来の限流装置の構成を示す回路図
である。 3・・・限流装置、3a、6a、6b・・・超電導コイ
ル、3b、7・・・超電導スイッチ、6・・・超電導リ
アクトル。
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure 1 is a circuit diagram showing the configuration of an embodiment corresponding to the first invention of this application, together with its application target, and Figure 2 is a circuit diagram showing the specific configuration of the embodiment. , a partially cross-sectional view, FIG. 3 is a magnetic flux generation state diagram for explaining the operation of the same embodiment, and FIG.
Figures (a) and (b) show temporal changes in current and impedance to explain the operation of the embodiment, and Figure 5 shows the configuration of the embodiment corresponding to the second invention of this application. , FIG. 6 and FIG. 8 are partial cross-sectional diagrams showing the specific configuration of the main elements of the same embodiment, and FIGS. 7 and 9 are circuit diagrams shown together with the applicable target. FIG. 10(a) is a magnetic flux generation state diagram of these main elements. (b) is an equivalent circuit diagram for explaining the operation of the same embodiment,
11(a) and 11(b) are diagrams showing temporal changes in current and impedance to explain the operation of the same embodiment, and FIG. 12 is a circuit diagram showing the configuration of a conventional current limiting device. be. 3... Current limiting device, 3a, 6a, 6b... Superconducting coil, 3b, 7... Superconducting switch, 6... Superconducting reactor.

Claims (1)

【特許請求の範囲】 1、電路の電流を制限値以下に抑えるインダクタンスを
有し、且、前記制限値以上の臨界電流値を持つ超電導コ
イルと、無誘導に形成され、前記制限値より小さく、通
常電流より大きい臨界電流値を持つ超電導スイッチとを
備え、前記超電導コイルおよび超電導スイッチを並列接
続したことを特徴とする限流装置。 2、電路の電流を制限値以下に抑えるインダクタンスを
有し、且、前記制限値以上の臨界電流値を持つ第1の超
電導コイルと、この第1の超電導コイルに対して共通の
磁芯に巻装されると共に、同一の端子電圧に対して略等
しい起磁力が得られる第2の超電導コイルと、無誘導に
形成され、前記電路の過大電流に比例する臨界電流値を
持つ超電導スイッチとを備え、前記第1および第2の超
電導コイルを、磁束の向きが互いに逆になるように並列
接続すると共に、前記超電導スイッチを前記第2の超電
導コイルに直列に挿入したことを特徴とする限流装置。
[Scope of Claims] 1. A superconducting coil having an inductance that suppresses the current in the electric circuit to a limit value or less, and having a critical current value greater than or equal to the limit value, and a superconducting coil that is formed non-inductively and is smaller than the limit value; 1. A current limiting device comprising: a superconducting switch having a critical current value larger than a normal current; and the superconducting coil and the superconducting switch being connected in parallel. 2. A first superconducting coil having an inductance that suppresses the current in the electric circuit below a limit value and having a critical current value greater than the limit value, and a coil wound around a common magnetic core for the first superconducting coil. a second superconducting coil which is equipped with a second superconducting coil and can obtain substantially equal magnetomotive force for the same terminal voltage; and a superconducting switch which is formed without induction and has a critical current value proportional to the excessive current in the electric circuit. , a current limiting device characterized in that the first and second superconducting coils are connected in parallel so that the directions of magnetic fluxes are opposite to each other, and the superconducting switch is inserted in series with the second superconducting coil. .
JP63253315A 1988-07-13 1988-10-07 Current limiting device Expired - Fee Related JP2901068B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63253315A JP2901068B2 (en) 1988-10-07 1988-10-07 Current limiting device
US07/379,117 US5021914A (en) 1988-07-13 1989-07-13 Superconducting switch and current limiter using such a switch
EP89112845A EP0350916B1 (en) 1988-07-13 1989-07-13 Superconducting switch and current limiter using such a switch
DE68912431T DE68912431T2 (en) 1988-07-13 1989-07-13 Superconducting switch and current limiter using such a switch.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253315A JP2901068B2 (en) 1988-10-07 1988-10-07 Current limiting device

Publications (2)

Publication Number Publication Date
JPH02101926A true JPH02101926A (en) 1990-04-13
JP2901068B2 JP2901068B2 (en) 1999-06-02

Family

ID=17249589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253315A Expired - Fee Related JP2901068B2 (en) 1988-07-13 1988-10-07 Current limiting device

Country Status (1)

Country Link
JP (1) JP2901068B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337785B1 (en) 1999-01-28 2002-01-08 Sumitomo Electric Industries, Ltd. Fault current limiter
JP2014204458A (en) * 2013-04-01 2014-10-27 住友電気工業株式会社 Current-limiting device
JP2017034194A (en) * 2015-08-05 2017-02-09 古河電気工業株式会社 Current limiter, overcurrent detection mechanism and drive circuit for superconducting coil
US9762051B2 (en) 2013-04-01 2017-09-12 Sumitomo Electric Industries, Ltd. Current-limiting and power-flow control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066130U (en) * 1973-10-17 1975-06-14
JPS5594071U (en) * 1978-12-22 1980-06-30
JPS5843125U (en) * 1981-09-18 1983-03-23 株式会社日立製作所 current limiting circuit
JPS63239876A (en) * 1987-03-27 1988-10-05 Toshiba Corp Thermal permanent current switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066130U (en) * 1973-10-17 1975-06-14
JPS5594071U (en) * 1978-12-22 1980-06-30
JPS5843125U (en) * 1981-09-18 1983-03-23 株式会社日立製作所 current limiting circuit
JPS63239876A (en) * 1987-03-27 1988-10-05 Toshiba Corp Thermal permanent current switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337785B1 (en) 1999-01-28 2002-01-08 Sumitomo Electric Industries, Ltd. Fault current limiter
JP2014204458A (en) * 2013-04-01 2014-10-27 住友電気工業株式会社 Current-limiting device
US9762051B2 (en) 2013-04-01 2017-09-12 Sumitomo Electric Industries, Ltd. Current-limiting and power-flow control device
US10218170B2 (en) 2013-04-01 2019-02-26 Sumitomo Electric Industries, Ltd. Current-limiting device utilizing a superconductor for a current-limiting operation
JP2017034194A (en) * 2015-08-05 2017-02-09 古河電気工業株式会社 Current limiter, overcurrent detection mechanism and drive circuit for superconducting coil

Also Published As

Publication number Publication date
JP2901068B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5021914A (en) Superconducting switch and current limiter using such a switch
JPS62138021A (en) Ac current limiter
US5225956A (en) Superconducting ac current limiter equipped with quick-recoverable trigger coils
JP2941833B2 (en) Superconducting current limiting device
JPH02101926A (en) Current limiting apparatus
JP2000132247A (en) Superconduction current controller
KR102289336B1 (en) Transformer type superconducting fault current limiter using double iron core
JP2000354326A (en) Current-limiting device utilizing superconducting transformer
JPH0581973A (en) Dc circuit breaker
JP3051916B2 (en) Flux-balanced superconducting current limiter
US6335851B1 (en) Current-limiting device
JP2000014173A (en) Fault resistance power supply circuit
JP3399905B2 (en) Three-phase current limiter
JPH08316534A (en) Current limiter
JP3231837B2 (en) Superconducting current limiting device
KR101402746B1 (en) Superconducting fault current limiter having contact switch and using magnetic coupling
JPH02266827A (en) Current limiter
JPH02237428A (en) Current limiting device
JP3045165B1 (en) Current limiting device
JP2792182B2 (en) Overcurrent limiting device
JP2947275B1 (en) Current limiting device
KR102472477B1 (en) Protection device for saturated iron-core superconducting fault current limiter
JP2879850B2 (en) Current limiting element
JPH09233691A (en) Overcurrent protector
JP3280609B2 (en) Current limiting device to limit fault current

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees