JPS59113186A - Cathodic corrosion protection method of aluminum material - Google Patents

Cathodic corrosion protection method of aluminum material

Info

Publication number
JPS59113186A
JPS59113186A JP57222980A JP22298082A JPS59113186A JP S59113186 A JPS59113186 A JP S59113186A JP 57222980 A JP57222980 A JP 57222980A JP 22298082 A JP22298082 A JP 22298082A JP S59113186 A JPS59113186 A JP S59113186A
Authority
JP
Japan
Prior art keywords
potential
cathode
aluminum material
water
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57222980A
Other languages
Japanese (ja)
Other versions
JPS6039754B2 (en
Inventor
Teruo Miyashita
輝雄 宮下
Koichi Yoshida
幸一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP57222980A priority Critical patent/JPS6039754B2/en
Priority to GB08321430A priority patent/GB2132226B/en
Priority to CA000434217A priority patent/CA1229320A/en
Priority to US06/521,753 priority patent/US4510030A/en
Priority to FR8314067A priority patent/FR2538004B1/en
Priority to DE19833338179 priority patent/DE3338179A1/en
Publication of JPS59113186A publication Critical patent/JPS59113186A/en
Publication of JPS6039754B2 publication Critical patent/JPS6039754B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To prevent effectively corrosion over a wide range even if the environment for using an Al material changes drastically in a titled method using an external power source by suppressing intermittently the cathode potential of the Al material in accordance with the cathode potential of said material with respect to a reference electrode provided in water. CONSTITUTION:A reference electrode 2 is provided in water in proximity to an Al material 1, which is a material to be protected and is immersed in the water. The cathode potential V of the material 1 with the electrode 2 as a reference is measured by a potential measurement device 3, via circuits 7, 7. A signal is emitted from the device 3 to a relay device 5 at every rise of the potential V to a preset upper potential Vu. A counter electrode 4 and the material 1 are connected, via the device 5, to an external power source 6, whereby cathode current circuits 8, 8 are formed. The circuits are normally held open but when the potential V rises up to the Vu, the device 5 is operated by the above-mentioned signal, by which the circuits 8, 8 are closed for a short time. The cathode current is run between the material 1 and the electrode 4 during this time and the potential V is intermittently suppressed.

Description

【発明の詳細な説明】 本発明は、アルきニウムおよびアルミニウム合金(以下
アルキニウムという)材の陰極防食法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathodic protection method for aluminium and aluminum alloy (hereinafter referred to as alkynium) materials.

アル1ニウム材は、@惜にして熱伝導性がよく。Aluminum material has good thermal conductivity.

しかも中性環境においては比較的腐食され難い金属材料
であるので、近時、化学用機器などの構造材として、広
〈産業分野において使用されているのであるが1例えば
、これを熱交換器や貯液槽などの海水や工業用水(以下
水という)に直接触れる箇所に使用した場合、しばしば
孔食や粒界腐食などのいわゆる不均一腐食を生ずること
が知られている。
Moreover, since it is a metal material that is relatively resistant to corrosion in a neutral environment, it has recently been used in a wide range of industrial fields as a structural material for chemical equipment. It is known that when used in locations that come into direct contact with seawater or industrial water (hereinafter referred to as water), such as in liquid storage tanks, so-called non-uniform corrosion such as pitting corrosion and intergranular corrosion often occurs.

このような水に触れb箇所に使用されたアルミニウム材
に生ずる孔食や粒界腐食は、アルミニウム材と水との界
面に生ずる電位差に起因する電気化学的現象によるもの
であるから、アルミニウム材表面に化学皮膜や陽極酸化
皮膜を施すか、1*は塗料などで塗装することによって
も、ある程度の腐食を防止することができるのであるが
、このような保獲皮膜や塗装は必ずしも完全なものとは
いい難く、皮膜や塗装面に存在する潜在的な欠陥や、塗
膜の劣化などによって、長期に渉って十分な防食効果を
期待することはできなかった。
The pitting corrosion and intergranular corrosion that occur in aluminum materials used in areas exposed to water are due to electrochemical phenomena caused by the potential difference that occurs at the interface between the aluminum material and water. Corrosion can be prevented to a certain extent by applying a chemical film or anodic oxide film to the surface, or by painting it with paint, etc. However, such a protective film or painting is not necessarily perfect. However, due to latent defects in the film and painted surface, as well as deterioration of the paint film, it was not possible to expect sufficient corrosion protection over the long term.

従来、このような水中に浸漬された金属材の防食法とし
て、金属材に犠牲陽極を取付けなり、水中に設けた対極
と金属材との間に、外部電源を使用して微弱な防食電流
を流すことによって、水中における金属材の電位を孔食
電位以下になるように抑制し、これによって金縞材の電
気化学的腐食全防止するいわゆる陰極防食法が知られて
おシ。
Conventionally, as a method for preventing corrosion of metal materials immersed in water, a sacrificial anode is attached to the metal material, and a weak anti-corrosion current is applied between the counter electrode placed in the water and the metal material using an external power source. A so-called cathodic protection method is known in which the electric potential of metal materials in water is suppressed to below the pitting corrosion potential by flowing water, thereby completely preventing electrochemical corrosion of gold striped materials.

鋼材などの腐食防止法として広く使用され効果を挙げて
いる。
It is widely used and effective as a corrosion prevention method for steel materials.

本発明者らは、水中に浸漬したアルミニウム材に上記陰
極防食法を適用すべく種々実験を重ねたしかしながら、
アルミニウム材の場合、単に上記従来の陰極防食法を適
用したのでは、必ずしも鋼材におけるような満足すべき
効果を発揮させることができなかった。この刈1由は、
アルミニウム材は鋼材とは異なり、酸およびアルカリに
溶けるいわゆる両性金属であることによるものである。
The present inventors have repeatedly conducted various experiments to apply the above cathodic protection method to aluminum materials immersed in water.
In the case of aluminum materials, simply applying the conventional cathodic protection method described above does not necessarily produce the same satisfactory effects as with steel materials. This Kari 1 Yu is
This is because, unlike steel, aluminum is a so-called amphoteric metal that dissolves in acids and alkalis.

す々わち、アルミニウム材が水中において実質的に腐食
を受けないで長期間安定して存在するための条件は、ア
ルミニウム材の合金の種類や浸漬環境などによっても幾
分具りるのであるが、その水中における電位が孔食電位
を上限として、それより03ないしは114V程度低い
電位までの狭い電位域内に保たれねばならないことが知
られている。したがって、陰極防食法によってアルキニ
ウム材を防食するためには、アルミニウム材の陰極電位
が常に上記安定電位域内に保たれるように陰極電流を制
御しなければならないのであるが、一方において、水中
におけるアルミニウム材の電位は、それに接触する水の
温度や流速の変化によって可成りの変動を受けているの
であって、このような電位変動を伴う苛酷な環境下にお
いて従来の陰極防食法によったのでは、アルミニウム材
の陰極電位を広範囲に渉って上記したような狭い域内に
制御することはきわめて困難なのであった。すなわち、
アルミニウム劇の電位上昇による孔食や粒界腐食を広範
囲に渉って防ごうとして電位を低く押えようとすると、
陽極近傍においてしばしば過度の抑制が行われることに
なシ、このために電位低下に起因するアルミニウム材の
溶解、すなわちアルカリ腐食を起し勝ちとなるのであっ
た。
In other words, the conditions for an aluminum material to exist stably for a long period of time without being substantially corroded in water depend to some extent on the type of alloy of the aluminum material and the immersion environment. It is known that the potential in the water must be maintained within a narrow potential range from the pitting potential as an upper limit to a potential lower by about 0.3 to 114 V. Therefore, in order to protect alkynium materials by cathodic protection, the cathode current must be controlled so that the cathode potential of the aluminum material is always kept within the above stable potential range. The potential of a material is subject to considerable fluctuations due to changes in the temperature and flow rate of the water that comes into contact with it, and in harsh environments with such potential fluctuations, it is difficult to use conventional cathodic protection methods. However, it is extremely difficult to control the cathode potential of the aluminum material over a wide range within the narrow range described above. That is,
If you try to keep the potential low in order to prevent pitting corrosion and intergranular corrosion caused by the increase in potential of aluminum over a wide area,
Excessive suppression is often performed in the vicinity of the anode, which tends to cause melting of the aluminum material due to potential drop, that is, alkali corrosion.

本発明は、上記したような従来の陰極防食法の欠点を防
止したものであって、烈しい使用環境の変動に対しても
よく対応して、広範囲に渉って孔食とアルカリ腐食のい
ずれをも効果的に抑制し得るアルミニウム材の陰極防食
法を提供したものである。
The present invention prevents the drawbacks of the conventional cathodic protection methods as described above, and can respond well to severe changes in the usage environment and prevent both pitting corrosion and alkali corrosion over a wide range. The present invention provides a cathodic protection method for aluminum materials that can effectively suppress corrosion.

すなわち1本発明は、外部電源を使用したアルミニウム
材の陰極防食法において、水中に設けた参照電極を基準
として測定されたアルミニウム材の陰極電位が、あらか
じめ設定された上限電位にまで上昇するごとに、該アル
ミニウム材に外部電源から短時間負の電圧を印加するこ
とによって。
In other words, 1. In the cathodic protection method for aluminum materials using an external power source, each time the cathode potential of the aluminum material measured with reference to a reference electrode set in water rises to a preset upper limit potential, , by applying a negative voltage from an external power source to the aluminum material for a short period of time.

陰極電位を間欠的に繰返して抑制するアルミニウム材の
陰極防食法である。
This is a cathodic protection method for aluminum materials that suppresses the cathode potential by repeating it intermittently.

以下、添付図面に基いて本発明の方法を、更に具体的に
述べる。
Hereinafter, the method of the present invention will be described in more detail based on the accompanying drawings.

第1図は2本発明の方法の実施態様を例示する説明図で
ある。図において、(1)は水中に浸漬され穴被防食材
としてのアルミニウム材、(2)はアルミニウム材+1
1に近接して水中に設けられた参照電極である。参照電
極(2)としてはカロメル電極のような基準電極を使用
することができるが、必ずしもこれに限られるものでは
なく、亜鉛やマグネシウムのような外部環境の変動に対
して、比較的安定した電極電位を示す金属または金属合
金製の極を使用しても差支えない。(3)は電位測定装
置であって、アルミニウム材(1)と参照電極(2)と
は導線によって電位測定装R(3)に結ばれて電位測定
回路(7) (7)が形成されていて、電位測定装置(
3)によって測定された参照電極を基準とし次アルミニ
ウム材(1)の陰極電位Vがあらかじめ設定された上限
電位Vuにまで上昇すると、電位測定装置(3)からリ
レー装置(5)に信号が発せられる。(4)は水中に設
けられた対極であって、対極(4)は、磁性酸化鉄、プ
ラチナコートされたチタニウム材のような不溶性の導電
材料で袈られている。対極(4)とアル1ニウム材(1
)とは、リレー装置(6)t−介して外部電源(6)に
結ばれ陰極電流回路(8) (8)が形成されている。
FIG. 1 is an explanatory diagram illustrating two embodiments of the method of the present invention. In the figure, (1) is an aluminum material immersed in water and serves as a hole protection material, and (2) is an aluminum material + 1
A reference electrode is placed in water close to 1. As the reference electrode (2), a reference electrode such as a calomel electrode can be used, but is not necessarily limited to this, and an electrode that is relatively stable against fluctuations in the external environment such as zinc or magnesium can be used. Electrodes made of metals or metal alloys exhibiting electrical potential may also be used. (3) is a potential measuring device, in which the aluminum material (1) and the reference electrode (2) are connected to the potential measuring device R (3) by a conductive wire to form a potential measuring circuit (7) (7). and a potential measuring device (
When the cathode potential V of the aluminum material (1) rises to the preset upper limit potential Vu with respect to the reference electrode measured in step 3), a signal is emitted from the potential measuring device (3) to the relay device (5). It will be done. (4) is a counter electrode placed in water, and the counter electrode (4) is lined with an insoluble conductive material such as magnetic iron oxide or platinum coated titanium material. Counter electrode (4) and aluminum material (1
) is connected to an external power source (6) via a relay device (6) to form a cathode current circuit (8).

陰極電流回路(8) (8)は、常時は開かれた状態に
あるが、アルミニウム材(1)の電位が上限電位vu、
にまで上昇した場合、を位測定装置(3)からの信号に
よってリレー装置(5)が作動して陰極電流回路(8)
 (8)が短時間閉ざされ、この間アルキニウム材(1
)と対極(4)との間に外部* m (6)からの陰極
電流が流されて、アルキニウム材filの陰極電位v’
6抑制するごとくに構成されている。
The cathode current circuit (8) (8) is normally open, but the potential of the aluminum material (1) is the upper limit potential vu,
When the current level rises to , the relay device (5) is activated by the signal from the position measuring device (3) and the cathode current circuit (8) is activated.
(8) is closed for a short time, during which time the alkynium material (1
) and the counter electrode (4), a cathode current from the outside * m (6) is passed, and the cathode potential v' of the alkynium material fil is
It is structured to suppress 6.

第2図は、第1図の装置によって本発明の方法を実施し
た場合の被防食材としてのアルミニウム材[11におけ
る陰極電位の時間的変化を例示し次ものである。図にお
いて、縦軸は飽和カロメル電極を基準としたアルミニウ
ム材の陰極電位、横軸は時間の経過ヲ衣わす。すなわち
、第2図において。
FIG. 2 shows an example of the temporal change in cathode potential in an aluminum material [11] as a material to be protected when the method of the present invention is carried out using the apparatus shown in FIG. 1. In the figure, the vertical axis represents the cathode potential of the aluminum material with respect to a saturated calomel electrode, and the horizontal axis represents the passage of time. That is, in FIG.

参照電極(2)によって測定されたアルミニウム材(1
)の陰極電位■が上昇して、あらかじめ設定された上限
電位Vu  のa1点に達したとき、電1位測定装置(
3)からの信号によってリレー装置(5)が作動して。
Aluminum material (1) measured by reference electrode (2)
) rises and reaches point a1 of the preset upper limit potential Vu, the voltage 1 position measuring device (
The relay device (5) is activated by the signal from 3).

陰極電流回路(8) (8)が閉ざされ、外部電源(6
)からアルミニウム材+11に短時間負の電圧が印加さ
れ、陰極電位Vは61点にまで速やかに引下げられる。
The cathode current circuit (8) (8) is closed and the external power supply (6
), a negative voltage is applied for a short time to the aluminum material +11, and the cathode potential V is quickly lowered to the 61 point.

外部電源(6)からの電圧の印加が解かれると、陰極電
位Vは直ちに上昇に転する。このときの陰極電位■の上
昇は1曲線b1→a、に示されるように、初期において
は速やかな回復が行われ、その後ゆるやかな上昇を続け
る。このようにして陰極電位Vが上限電位vuOa1点
にまで戻ると、電位測定装置(3)からの信号によって
リレー装置(6)が作動して。
When the application of voltage from the external power source (6) is removed, the cathode potential V immediately starts to rise. As shown by curve 1 b1→a, the cathode potential (2) at this time recovers rapidly at the initial stage, and then continues to rise slowly. When the cathode potential V returns to the upper limit potential vuOa1 point in this way, the relay device (6) is activated by a signal from the potential measuring device (3).

陰極電位Vは再び急速にす1点にまで引下げられた後、
上昇に転する。
After the cathode potential V is rapidly lowered to the 1 point again,
turn to rise.

上記から判るように2本発明はアルミニウム材の陰極電
位があらかじめ設定された上限電位vuにまで上昇した
ときに、外部電源からアルミニウム材に負の電圧を短時
間印加し、陰極電位を間欠的に繰返し低下させることに
よってアルミニウム材を陰極防食する方法であるが、上
記本発明におけるあらかじめ設定する上限電位Vu  
としては。
As can be seen from the above, in the second invention, when the cathode potential of the aluminum material rises to a preset upper limit potential vu, a negative voltage is applied to the aluminum material from an external power supply for a short time, and the cathode potential is intermittently increased. This is a method for cathodic protection of aluminum materials by repeatedly lowering the upper limit potential Vu, which is set in advance in the present invention.
as.

アルミニウム材の合金の種類、使用環境などによっても
異なるが、使用するアルミニウム合金材の孔食電位付近
(例えば、海水中における人1100材にあっては飽和
カロメル電極を基準として−0,70V程度)ないしは
孔食電位と孔食電位より50mV程度低い電圧小内に設
定することが望ましい。また、印加電圧は、それによっ
てアルミニウム材の陰極電位が上限電位より更に−α6
v低下する程度であることが望ましく、このような負電
圧全アルミニウム材に印加するためには、外部電源の電
圧を一定に調節することによって行うこともできるが、
外部電源を調節する代pに、あらかじめ下限電位VLを
設定しておいて、参照電極(2)によって測定されたア
ルミニウム材の陰極電位Vが、負電圧の印加によって下
限電位VLK’!で低下したときに、x位測定装置(3
)からの信号によって。
Although it varies depending on the type of aluminum alloy and the environment in which it is used, the pitting potential of the aluminum alloy material used is around (for example, about -0.70 V with respect to a saturated calomel electrode for human 1100 materials in seawater). Alternatively, it is desirable to set the pitting potential to within a voltage range about 50 mV lower than the pitting potential. In addition, the applied voltage is such that the cathode potential of the aluminum material is further −α6 than the upper limit potential.
It is desirable that the voltage decreases to a certain extent, and in order to apply such a negative voltage to the all-aluminum material, it can also be done by adjusting the voltage of the external power supply to a constant level.
A lower limit potential VL is set in advance for the amount p of adjusting the external power supply, and the cathode potential V of the aluminum material measured by the reference electrode (2) changes to the lower limit potential VLK'! by applying a negative voltage. x position measuring device (3
) by a signal from.

リレー(5)t−働かせ自動的に陰極電流回路(8) 
(8)を開くようにして行うこともできる。
Relay (5) t-work automatically cathode current circuit (8)
(8) It can also be done by opening it.

アルきニウム材に印加する一回の負電圧の印加時間は、
負電圧の大きさや使用環境によっても異なるが、アルミ
ニウム材が電位低下によるアルカリ腐食域に長時間曝さ
れることを避けるために。
The application time of one negative voltage applied to the aluminum material is
This varies depending on the magnitude of the negative voltage and the usage environment, but this is done to prevent aluminum materials from being exposed to alkaline corrosion areas for long periods of time due to a drop in potential.

少くとも数秒以下に留めることが必要でちゃ、好ましく
は1秒以下であることである。
It is necessary to keep the time at least several seconds or less, preferably one second or less.

上記したように1本発明の方法は、水中に浸漬されたア
ルミニウム材の陰極電位が孔食付近まで上昇するごとに
、短時間負の電圧を印加して陰極電位を低下させるので
あるから、アルミニウム材の電位は常に孔食電位より低
く保たれ孔食や粒界腐食を確実に防止することができる
だけでなく。
As described above, in the method of the present invention, each time the cathode potential of the aluminum material immersed in water rises to the vicinity of pitting corrosion, a negative voltage is applied for a short period of time to lower the cathode potential. The potential of the material is always kept lower than the pitting corrosion potential, which not only reliably prevents pitting corrosion and intergranular corrosion.

アルミニウム材に印加される負電圧の印加時間が短かく
、シかも、負電圧の印加が解かれた場合。
If the negative voltage applied to the aluminum material is not applied for a short time, the negative voltage may be removed.

アルミニウム材の電位は、初期において速やかに回復し
、その後ゆるやかに上昇するのであるから。
This is because the potential of the aluminum material recovers quickly in the initial stage and then increases slowly.

アルミニウム材の電位が実質的にアルカリ腐食域にある
時間は、きわめて短時間であり、かつ、アルカIJ g
食には誘導期間があるので、この間においてアルカリ腐
食を受けることはほとんどない。
The time that the potential of the aluminum material is substantially in the alkaline corrosion range is extremely short, and
Since there is an induction period during an eclipse, there is little chance of alkaline corrosion during this period.

したがって、常時連続して陰極電流を流す従来の外部電
源を使用した陰極防食法に比べて、アルミニウム材に印
加する負電圧を大きくしても過防食によるアルカリ腐食
を起させる恐れが少なく、苛酷な使用環境においてもア
ルミニウム材全体に渉って広範囲に防食効果を発揮させ
ることのできる優れた方法である。
Therefore, compared to the conventional cathodic protection method that uses an external power source that constantly supplies cathode current, there is less risk of alkaline corrosion caused by over-protection even if the negative voltage applied to the aluminum material is increased, and it is less severe. This is an excellent method that can exert a corrosion-preventing effect over a wide range of aluminum materials even in the usage environment.

次に1本発明の実施例を示す。Next, an example of the present invention will be shown.

実施例1 被防食材試片として人1100アルミニウム板材(長さ
800IIl11×巾100 m X厚さj m )を
使用し、実験に供し次。
Example 1 A 1100 aluminum plate (length 800II11 x width 100 m x thickness j m) was used as a specimen to be protected against corrosion and subjected to an experiment.

試片の両側の長手方向に沿って流路巾約5簡の水路をつ
く9.板の一方の端からほぼ10傭離れた位置に防食用
の径low、長さ10四の対極(材質フェライト)全設
置し、この電極と試片の間に間欠的に試片が陰極となる
ように通電できる陰極電流回路を設けた。使用水は天然
海水(約20℃)とし、はぼ20削/秒の流速で流路に
沿って流した。
9. Create a channel with a channel width of approximately 5 strips along the longitudinal direction on both sides of the specimen.9. A counter electrode (ferrite material) with a diameter of low and a length of 104 for anticorrosion was installed at a position approximately 10 cm away from one end of the plate, and the test piece intermittently served as a cathode between this electrode and the test piece. A cathode current circuit was installed to allow current to flow. The water used was natural seawater (approximately 20°C), which was flowed along the channel at a flow rate of 20 cuts/sec.

試片に対して、防食用電極(対極)と反対側に参照電極
(カロメル電極)を設置し、これを基準として測定され
た試片の電位が、あらかじめ設定された上限電位(−α
70Vに設定)にまで上昇するごとに、電位測定装置か
らの信号によって。
A reference electrode (calomel electrode) is installed on the opposite side of the specimen to the anticorrosion electrode (counter electrode), and the potential of the specimen measured with this as a reference is set to a preset upper limit potential (-α
70V) by the signal from the potential measuring device.

陰極電流回路を自動的に短時間(006秒に設定)閉ざ
して、試片と対極との間に外部電源(2,5vの定電圧
電源)からの電圧が繰返して印加された。
The cathode current circuit was automatically closed for a short time (set to 006 seconds), and a voltage from an external power source (2.5 V constant voltage power source) was repeatedly applied between the specimen and the counter electrode.

この間試片の陰極電位は、上限電位と、これより更に約
Q、6V低い電圧中肉で2〜5秒程度の間隔をもって2
間欠的に昇降を繰返した。
During this time, the cathode potential of the specimen was set at the upper limit potential and then at a voltage of about Q, 6V lower than this, at intervals of about 2 to 5 seconds.
It went up and down intermittently.

このようにして10力月間の連続試験を行ったが、この
間における孔食の発生は皆無でラシ、アルカリ腐食も認
められなかった。
Continuous testing was conducted in this manner for 10 months, during which no pitting corrosion occurred, and no rust or alkali corrosion was observed.

なお、比較のため同様の試片について、防食電流を流さ
ずして試験を行った結果は、海水を流し始めてから1週
間後に孔食の発生が認められた。
For comparison, a similar test piece was tested without applying an anti-corrosion current, and pitting corrosion was observed one week after the seawater started flowing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は9本発明方法の実施態様を例示する説明図、第
2図は1本発明方法によるアルオニウム材の陰極電位の
時間的変化を例示したものである。 (1)・・・アルミニウム材、(2)・・・参照電極、
(3)・・・電位測定装置、(4)・・・対極、(5)
・・・リレー装置、(6)・・・外部電源+ (7)(
7)・・・電位測定回路+ (8)(s)・・・陰極電
流回路。 特許出願人  日本軽金属株式会社 纂1図 第2図 吟間区盈− 手続補正書 昭和58年6月3日 特許庁長官 若杉和夫殿 1、事件の表示 昭和57年特許願第222980号 2発明の名称 アルミニウム材の陰極防食法 3、補正をする者 事件との関係 特許出願人 住所 東京都中央区銀座7丁目3番5号5、補正によシ
増加する発明の数  なし6、補正の対象 明細書 2補正の内容 別紙のとおり 補正の内容 1.明細書第8頁下から第1行目に1− o、 b v
 Jとあるを。 [0,3〜0.8 V Jと訂正。 2同第9頁上から第1行目に「望ましく、」とあるを。 「望ましいが、特にアルカリ腐食を起し難い環境におい
ては1vないしはそれ以上の低下を許容し得る。」と訂
正。 以上 423−
FIG. 1 is an explanatory diagram illustrating nine embodiments of the method of the present invention, and FIG. 2 is an illustration of temporal changes in the cathode potential of an alonium material according to the method of the present invention. (1)...Aluminum material, (2)...Reference electrode,
(3)...Potential measuring device, (4)...Counter electrode, (5)
... Relay device, (6) ... External power supply + (7) (
7)... Potential measurement circuit + (8) (s)... Cathode current circuit. Patent Applicant Nippon Light Metal Co., Ltd. Figure 1 Figure 2 Ginma-ku Ei - Procedural Amendment June 3, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi 1 Indication of Case Patent Application No. 222980 1988 2 Invention Name: Cathodic protection method for aluminum materials 3, Relationship with the case of the person making the amendment Patent applicant address: 7-3-5-5, Ginza, Chuo-ku, Tokyo Number of inventions to be increased by the amendment None 6, Specifications subject to the amendment Contents of Amendment 2 Contents of Amendment 1 as shown in the attached sheet. 1- o, b v in the first line from the bottom of page 8 of the specification
It says J. [Corrected to 0.3-0.8 V J. 2 On page 9 of the same book, the first line from the top says ``desirably.''"Although it is desirable, a drop of 1v or more can be tolerated, especially in environments where alkali corrosion is difficult to occur." Above 423-

Claims (1)

【特許請求の範囲】 +11外部電源を使用したアルミニウム材の陰極防食法
において、水中に設けた参照1!極を基準として測定さ
れたアルミニウム制の陰極電位が、あらかじめ設定され
た上限’11位にまで上昇するごとに。 該アルミニウム材に外部電源から短時間力の電圧を印加
することによって、陰極電位を間欠的に繰返して抑制す
ることを特徴とするアルミニウム材の陰極防食法。
[Claims] +11 In the cathodic protection method for aluminum materials using an external power source, Reference 1! Each time the cathode potential of the aluminum system, measured with reference to the pole, rises to the preset upper limit '11'. A cathodic protection method for aluminum material, characterized in that the cathode potential is intermittently and repeatedly suppressed by applying a short-time voltage to the aluminum material from an external power source.
JP57222980A 1982-12-21 1982-12-21 Cathodic protection method for aluminum materials Expired JPS6039754B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57222980A JPS6039754B2 (en) 1982-12-21 1982-12-21 Cathodic protection method for aluminum materials
GB08321430A GB2132226B (en) 1982-12-21 1983-08-09 Cathodic protection of aluminium articles
CA000434217A CA1229320A (en) 1982-12-21 1983-08-09 Method for cathodic protection of aluminum material
US06/521,753 US4510030A (en) 1982-12-21 1983-08-09 Method for cathodic protection of aluminum material
FR8314067A FR2538004B1 (en) 1982-12-21 1983-09-02 PROCESS FOR THE CATHODIC PROTECTION OF ALUMINUM OBJECTS
DE19833338179 DE3338179A1 (en) 1982-12-21 1983-10-20 Method for cathodic protection of an aluminium object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222980A JPS6039754B2 (en) 1982-12-21 1982-12-21 Cathodic protection method for aluminum materials

Publications (2)

Publication Number Publication Date
JPS59113186A true JPS59113186A (en) 1984-06-29
JPS6039754B2 JPS6039754B2 (en) 1985-09-07

Family

ID=16790904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222980A Expired JPS6039754B2 (en) 1982-12-21 1982-12-21 Cathodic protection method for aluminum materials

Country Status (1)

Country Link
JP (1) JPS6039754B2 (en)

Also Published As

Publication number Publication date
JPS6039754B2 (en) 1985-09-07

Similar Documents

Publication Publication Date Title
Gan et al. Cathodic protection to mitigate external corrosion of underground steel pipe beneath disbonded coating
US4510030A (en) Method for cathodic protection of aluminum material
GB860968A (en) Method of improving the corrosion resistance of titanium and titanium base alloys
US5338417A (en) Cathodic corrosion protection for an aluminum-containing substrate
US4240878A (en) Method of forming a platinum layer on tantalum
POURBAIX Characteristics of localized corrosion of steel in chloride solutions
JPS6029478A (en) Cathodic corrosion protection method of aluminum material
JPS59113186A (en) Cathodic corrosion protection method of aluminum material
Knudsen et al. Corrosion of Cathodically Polarized Thermally Sprayed Aluminum in Subsea Mud at High Temperature
Watkins et al. Electrochemical investigation of the corrosion rate of sacrificial coatings on steel
JPS6039755B2 (en) Cathodic protection method for aluminum materials
Robinson et al. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings
US4987037A (en) Galvanic coating with ternary alloys containing aluminum and magnesium
JPS6012427B2 (en) Cathodic protection method for aluminum materials
JPS61177384A (en) Electrolytic corrosion preventive device
JPS58167783A (en) Cathodic corrosion-proofness of aluminum material
JP2006029065A (en) Oceanic steel structure
JPH02156095A (en) Method and device for anticorrosion
JP2735792B2 (en) Method for corrosion protection of aluminum material and sacrificial anode for corrosion protection of aluminum material
Baldwin et al. Galvanic corrosion behaviour of electrodeposited zinc and Zn–Ni coatings coupled with aluminium alloys
Yaro et al. Sacrificial anode cathodic protection of low carbon steel in sea water
US4826657A (en) Galvanic coating with ternary alloys containing aluminum and magnesium
Curtis The Permanent Anode in Impressed‐current Cathodic Protection Systems—Part 2
Abd El Wanees et al. Pitting corrosion currents of tin in relation to the concentration of the inhibitive and corrosive anions under natural corrosion conditions
Røstbø Cathodic protection of steel-aluminium galvanic couples for a new generation of lightweight subsea structures