JP3020336B2 - Corrosion prevention method of steel by controlling flow velocity in neutral liquid - Google Patents

Corrosion prevention method of steel by controlling flow velocity in neutral liquid

Info

Publication number
JP3020336B2
JP3020336B2 JP3347838A JP34783891A JP3020336B2 JP 3020336 B2 JP3020336 B2 JP 3020336B2 JP 3347838 A JP3347838 A JP 3347838A JP 34783891 A JP34783891 A JP 34783891A JP 3020336 B2 JP3020336 B2 JP 3020336B2
Authority
JP
Japan
Prior art keywords
steel
corrosion
oxide film
neutral
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3347838A
Other languages
Japanese (ja)
Other versions
JPH05156474A (en
Inventor
祝治 朝倉
信孝 林
等 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koei Co Ltd
Original Assignee
Nippon Koei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koei Co Ltd filed Critical Nippon Koei Co Ltd
Priority to JP3347838A priority Critical patent/JP3020336B2/en
Publication of JPH05156474A publication Critical patent/JPH05156474A/en
Application granted granted Critical
Publication of JP3020336B2 publication Critical patent/JP3020336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、河川や湖沼の自然水な
どの中性液中に浸漬して使用される鋼製の機器の防食方
法に関するものである。なお、明細書中、中性または中
性領域とは特にことわりのない限り、約pH5〜9の範
囲を意味し、電位はSHE基準で表わされている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing corrosion of steel equipment used by being immersed in a neutral liquid such as natural water of rivers and lakes. In the specification, the neutral or neutral region means a range of about pH 5 to 9 unless otherwise specified, and the potential is represented by SHE standard.

【0002】[0002]

【従来の技術】河川や湖沼の自然水中に浸漬される鋼製
の機器の防食方法として、従来は被覆防食法やカソード
防食法などがあった。被覆防食法は、鋼の表面に耐食剤
のコーティング(めっきや塗装)やライニング(金属溶
射や琺瑯)を施して水を鋼に直接接触させないようにす
る方法である。通常、コーティングは鋼を外界から遮断
する目的のものが多いが、亜鉛めっきやカドミウムめっ
きのように局部的なカソード防食となるものもある。
2. Description of the Related Art As a method of preventing corrosion of steel equipment immersed in natural waters of rivers and lakes, there have conventionally been coating protection methods and cathode protection methods. The coating anticorrosion method is a method in which water is not brought into direct contact with steel by applying a coating (plating or painting) or a lining (metal spraying or enamel) of a corrosion inhibitor on the surface of the steel. Usually, the coating is intended to shield the steel from the outside world, but there are also coatings that provide localized cathodic protection, such as galvanization and cadmium plating.

【0003】一般に、電気化学的に鋼の腐食および防食
について論じるとき、図5に示す電位−pH図が用いら
れる。この電位−pH図において、下部が不活性域A、
上部右側が不動態域B、上部左側が腐食域Cであり、ま
た、前記不活性域Aと不動態域Bとの境界の右側に若干
の腐食域Dが存在する。この電位−pH図中、不活性域
Aと腐食域Cの境界は、Feイオン/Feの酸化還元対
の平衡電位である。
Generally, when electrochemically discussing corrosion and corrosion prevention of steel, a potential-pH diagram shown in FIG. 5 is used. In this potential-pH diagram, the lower part is an inactive area A,
The upper right side is a passivation zone B, the upper left side is a corrosion zone C, and there is a slight corrosion zone D on the right side of the boundary between the inactive zone A and the passivation zone B. In this potential-pH diagram, the boundary between the inactive region A and the corrosion region C is the equilibrium potential of the Fe ion / Fe redox couple.

【0004】カソード防食法は、鋼の電位Eを充分に下
げて、図5に示す電位−pH図の不活性域Aに保持する
方法であり、鋼の電位Eを下げるためには外部電源方式
と流電陽極方式(犠牲アノード方式)などがある。外部
電源方式は、鋼を外部直流電源の負極に接続して鋼の電
位Eを下げる防食電流を流す方式であり、流電陽極方式
は、鋼にイオン化傾向の高い金属による低電位の犠牲ア
ノード電極を電気的に接続して鋼の電位Eを下げる防食
電流を発生させる方式である。
The cathodic protection method is a method of sufficiently lowering the potential E of steel and keeping it in an inactive region A of the potential-pH diagram shown in FIG. And a galvanic anode system (sacrificial anode system). The external power supply method is a method in which a steel is connected to the negative electrode of an external DC power supply and a corrosion prevention current that lowers the potential E of the steel is applied, and the galvanic anode method is a low-potential sacrificial anode electrode made of a metal having a high tendency to ionize steel. Are electrically connected to generate an anticorrosion current that lowers the potential E of the steel.

【0005】さらに、濃硫酸などの強酸性溶液中におい
ては、アノード防食法があった。このアノード防食法
は、鋼を外部直流電源の正極に接続して防食電流を流す
ことによって、鋼の表面に酸化被膜を形成して図5に示
す不動態域Bに鋼の電位Eを保持する方法であり、一旦
酸化被膜を形成した後は、形成された酸化被膜を維持す
るだけの僅かな防食電流だけで防食ができるという利点
を有している。
Further, there is an anodic protection method in a strongly acidic solution such as concentrated sulfuric acid. In this anode corrosion protection method, an oxide film is formed on the surface of steel by connecting the steel to the positive electrode of an external DC power supply and a corrosion protection current is applied, and the potential E of the steel is maintained in a passive region B shown in FIG. This method has the advantage that once the oxide film is formed, the corrosion can be prevented with only a small corrosion protection current for maintaining the formed oxide film.

【0006】[0006]

【発明が解決しようとする課題】被覆防食法は、耐食剤
のコーティングやライニングを全く欠陥なしに施すこと
が難しく、施工の欠陥部分から腐食が始まり、耐食剤と
鋼の間に入り込んで被覆されている部分にまで広がって
ゆくという問題があった。また、耐食剤は衝突などの外
力による破壊や経時的な劣化を免れることができないの
で、定期的な再コーティングが必要であり、この際、前
記施工の欠陥部分の腐食の補修などを含めて維持費がか
さむという問題があった。さらに、再コーティングに際
して、比較的小型の着脱容易な鋼製機器では問題は少な
いが、容易に着脱できない大型の鋼製機器では、装置全
体を停止しての大工事となり、工事の経費だけでなく、
装置の停止による営業的な損失を生じる場合があるとい
う問題があった。
According to the coating anticorrosion method, it is difficult to apply a coating or lining of an anticorrosion agent without any defect, and corrosion starts from a defective portion of the construction, and penetrates between the anticorrosion agent and steel to form a coating. There was a problem that it spreads to the part where it is. In addition, since corrosion inhibitors cannot be protected from destruction and deterioration over time due to external forces such as collisions, periodic recoating is necessary, and in this case, maintenance including repair of corrosion of defective parts of the construction There was a problem that costs were high. In addition, when recoating, there is little problem with relatively small and easily removable steel equipment, but with large steel equipment that can not be easily removed, the entire equipment has to be shut down and major work is required. ,
There has been a problem that a commercial loss may occur due to the stoppage of the device.

【0007】外部電源方式のカソード防食法は、外部電
源装置を必要とするだけでなく、鋼の電位を図5の不活
性域Aに保持するため常に大きな防食電流を流さなけれ
ばならないので維持費(電気代)がかさむという問題が
あった。流電陽極方式のカソード防食法は、鋼に電気的
に接続して犠牲となるアノード電極が必要であり、この
アノード電極は鋼に代わって消耗してゆくので、定期的
に交換が必要であるという問題があった。
The external power supply method of cathodic protection requires not only an external power supply, but also a large anticorrosive current which must always flow to maintain the steel potential in the inactive region A of FIG. There was a problem that (electricity bill) increased. The cathodic protection method of the galvanic anode method requires a sacrificial anode electrode that is electrically connected to steel, and this anode electrode wears out instead of steel, so it needs to be replaced periodically. There was a problem.

【0008】アノード防食法は、一旦、酸化被膜を形成
してしまえば、この酸化被膜を維持するだけの僅かな電
流で防食できるので、外部電源方式によるカソード防食
法に比べて維持費(電気代)が少ないという利点はある
が、濃硫酸などの強酸性溶液中でなければ利用できない
という問題があった。正確な理由は解明されていない
が、中性液中では、あまり大きな防食電流を流すと、酸
化被膜の形成速度より、Fe(鋼)のイオン化による溶
出速度の方が速くなってしまい、酸化被膜が形成できな
いのではないかと思われる。
[0008] In the anode corrosion protection method, once an oxide film is formed, the corrosion can be prevented with a small current just enough to maintain the oxide film. ), But there is a problem that it can be used only in a strongly acidic solution such as concentrated sulfuric acid. Although the exact reason has not been elucidated, if a large anticorrosive current is applied in a neutral solution, the elution rate due to ionization of Fe (steel) will be faster than the formation rate of the oxide film. It seems that it cannot be formed.

【0009】本発明は、耐食材のコーティングやライニ
ングを施すことなく、また、外部電源装置や犠牲アノー
ド電極を必要としない中性液中での鋼の防食方法を提供
し、また、中性液中で利用できるアノード防食法を提供
することを目的とする。
The present invention provides a method for preventing corrosion of steel in a neutral solution without applying a coating or lining of a corrosion-resistant material and without requiring an external power supply device or a sacrificial anode electrode. It is an object of the present invention to provide an anodic corrosion protection method that can be used in steel.

【0010】[0010]

【課題を解決するための手段】本発明は以上のような課
題を解決するためになされたもので、鋼を中性液中に浸
漬し、この鋼と中性液を高速の相対流速をもって接触さ
せることによって、鋼の表面への酸化被膜形成を促進さ
せて腐食電位を不動態域まで上昇させるものである。ま
た、鋼の腐食電位を不動態域まで上昇させるだけの速い
相対流速が得られない場合には、ある程度の相対流速に
加えて、同時に前記鋼に外部直流電源の正極を接続する
アノード防食法により鋼の表面への酸化被膜形成をさら
に促進させて腐食電位を不動態域にまで上昇させるもの
である。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and immerses steel in a neutral solution and contacts the steel with the neutral solution at a high relative flow rate. By doing so, the formation of an oxide film on the surface of the steel is promoted, and the corrosion potential is raised to the passivation region. Further, when a relative velocity that is high enough to raise the corrosion potential of the steel to the passivation region cannot be obtained, in addition to a certain relative velocity, an anode corrosion protection method of simultaneously connecting a positive electrode of an external DC power supply to the steel is used. It further promotes the formation of an oxide film on the surface of the steel and raises the corrosion potential to the passivation region.

【0011】[0011]

【作用】鋼を中性液に浸漬し、この鋼と中性液を高速の
相対流速をもって接触させる。すると、鋼の表面への酸
化被膜形成が促進されて、鋼の腐食電位が不動態域まで
上昇する。この高速の相対流速を一定時間以上保持する
ことによって、防食に充分な酸化被膜が鋼の表面に形成
されてゆく。また、鋼の腐食電位を不動態域まで上昇さ
せるだけの速い相対流速が得られない場合には、前記鋼
に外部直流電源の正極を接続するアノード防食法を加え
ることによって鋼の表面への酸化被膜形成さらに促進さ
れて腐食電位が不動態域にまで上昇させられる。
The steel is immersed in a neutral solution, and the steel and the neutral solution are brought into contact at a high relative flow rate. Then, the formation of an oxide film on the surface of the steel is promoted, and the corrosion potential of the steel increases to the passivation region. By maintaining this high relative flow rate for a certain period of time or more, an oxide film sufficient for anticorrosion is formed on the surface of the steel. Further, when a high relative flow velocity that cannot raise the corrosion potential of the steel to the passivation region is not obtained, oxidation to the steel surface is performed by adding an anodic protection method for connecting the positive electrode of an external DC power supply to the steel. The film formation is further accelerated, and the corrosion potential is raised to the passivation zone.

【0012】[0012]

【実施例】本発明の第1実施例を図1ないし図4に基づ
いて説明する。図3は本発明の一実施例を簡単に説明す
る略図で、(1)は直径7.2cmの普通鋼製の水車で
あり、この水車(1)は水槽(2)に溜められた中性液
(3)に浸漬されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a schematic view for briefly explaining an embodiment of the present invention. (1) is a water turbine made of ordinary steel having a diameter of 7.2 cm, and this water wheel (1) is a neutral water stored in a water tank (2). It is immersed in the liquid (3).

【0013】この構成において、水車(1)をモータな
ど(図示せず)により回転させて初期運転を始め、水車
(1)の回転速度Rを、水車(1)と中性液(3)との
相対流速Sが少なくとも4m/s以上になるように制御
し、少なくとも5時間以上この回転速度Rを維持して水
車(1)の初期運転を続ける。ちなみに、上記の大きさ
の水車(1)であれば、回転速度Rが2000rpm程
度で、上記の相対流速Sは得られる。このとき、水車
(1)と中性液(3)の相対速度Sが維持できれば負荷
をかけても良いし、かけなくても良い。
[0013] In this configuration, the turbine (1) is rotated by a motor or the like (not shown) to start the initial operation, and the rotation speed R of the turbine (1) is increased by the rotation of the turbine (1) and the neutral liquid (3). Is controlled to be at least 4 m / s or more, and the rotational speed R is maintained for at least 5 hours or more, and the initial operation of the water turbine (1) is continued. Incidentally, in the case of the water turbine (1) having the above-described size, the relative flow velocity S can be obtained at a rotation speed R of about 2000 rpm. At this time, a load may or may not be applied as long as the relative speed S between the water turbine (1) and the neutral liquid (3) can be maintained.

【0014】水車(1)と中性液(3)との相対流速S
が4m/s以上で初期運転することよって、普通鋼製の
水車(1)の表面に酸化被膜が形成されてゆく。防食に
必要な酸化被膜が形成された後は、回転速度Rを変化さ
せても良く、相対流速Sが極端に下がらなければ4m/
s以下になっても良い。
[0014] Relative flow velocity S of water turbine (1) and neutral liquid (3)
By performing the initial operation at a speed of 4 m / s or more, an oxide film is formed on the surface of the water turbine (1) made of ordinary steel. After the oxide film required for anticorrosion is formed, the rotation speed R may be changed, and if the relative flow speed S does not drop extremely, 4 m /
s or less.

【0015】図2は、中性領域における普通鋼の電位−
pH図であり、下部が不活性域A、右上側が不動態域
B、左中側が腐食域Cである。この図2から判るように
普通鋼は、腐食電位Eが約−0.62V以下で不活性化
して腐食しなくなる。これは従来のカソード防食法であ
る。また、pH7の中性液(3)中では、普通鋼の表面
に酸化被膜が形成されて不動態化すると、腐食電位Eが
約−0.13V以上になり腐食しなくなる。
FIG. 2 shows the potential of ordinary steel in the neutral region.
It is a pH diagram. The lower part is an inactive area A, the upper right side is a passive area B, and the middle left is a corrosion area C. As can be seen from FIG. 2, the ordinary steel is inactivated and does not corrode when the corrosion potential E is about -0.62 V or less. This is a conventional cathodic protection method. Further, in a neutral solution (3) having a pH of 7, when an oxide film is formed on the surface of ordinary steel and passivated, the corrosion potential E becomes about -0.13 V or more, and the steel does not corrode.

【0016】図1は、中性液(pH7)中における、鋼と
中性液との相対流速Sおよび鋼の腐食電位Eの関係を示
す特性図であり、横軸が鋼と中性液との相対流速S(m
/s)を表わし、縦軸が鋼の腐食電位E(V)を表わして
いる。この図1において実線で示されているように、鋼
の腐食電位Eは、相対流速Sが0のときは約−0.5V
であり、相対流速Sの増加にともなって上昇し、相対流
速Sが約6m/s以上において約−0.13Vで略飽和
している。すなわち、約6m/s以下では鋼と中性液と
の相対流速Sが速いほど酸化被膜形成が促進されて腐食
電位Eが上がり、遅いほど下がる。
FIG. 1 is a characteristic diagram showing the relationship between the relative flow velocity S of steel and the neutral liquid and the corrosion potential E of the steel in the neutral liquid (pH 7). Relative velocity S (m
/ S), and the vertical axis represents the corrosion potential E (V) of steel. As shown by the solid line in FIG. 1, the corrosion potential E of the steel is about -0.5 V when the relative flow rate S is zero.
And rises with an increase in the relative flow velocity S, and is substantially saturated at about -0.13 V when the relative flow velocity S is about 6 m / s or more. That is, at about 6 m / s or less, the higher the relative flow rate S between the steel and the neutral liquid, the more the oxide film formation is promoted and the corrosion potential E increases, and the lower the slower, the lower the corrosion potential E.

【0017】図2で表わされたpH7の中性液中におけ
る普通鋼の不動態域の下限の腐食電位Eである−0.1
3Vを図1中に破線で示した。普通鋼は、腐食電位Eが
この破線より下では腐食域Cにあるので腐食し、破線よ
り上では不動態域Bにあるので酸化被膜を形成して不動
態化しており、腐食しない。すなわち、相対流速Sが約
3.7m/s以上では、普通鋼は酸化被膜を形成して不
動態化し、腐食電位Eが−0.13V以上になる。一
旦、形成された酸化被膜は、相対流速Sが極端に下がら
ないかぎりも無くなることはない。
The corrosion potential E at the lower limit of the passivation range of ordinary steel in a neutral solution of pH 7 shown in FIG. 2 is -0.1.
3V is indicated by a broken line in FIG. The ordinary steel is corroded because the corrosion potential E is in the corrosion zone C below the broken line, and is in the passivation zone B above the broken line, so that it is passivated by forming an oxide film and does not corrode. That is, when the relative flow velocity S is about 3.7 m / s or more, ordinary steel forms an oxide film and is passivated, and the corrosion potential E becomes -0.13 V or more. The oxide film once formed does not disappear unless the relative flow rate S decreases extremely.

【0018】約3.7m/s以上、約6m/s以下にお
いては、相対流速Sが速いほど酸化被膜の形成速度が速
くなり腐食電位Eが上がり、逆に、相対流速Sが遅いほ
ど酸化被膜の形成速度が遅くなり腐食電位Eが下がる。
ちなみに、上記の実施例では図4に示すように、約30
時間以降は腐食電位Eおよび分極コンダクタンスがとも
にほとんど変化しなくなり、酸化被膜の形成速度と溶解
速度が定常平衡に達して酸化被膜の厚さが変化しなくな
ったと考えられる。
In the range of about 3.7 m / s or more and about 6 m / s or less, the higher the relative flow velocity S, the faster the formation rate of the oxide film and the higher the corrosion potential E. Conversely, the lower the relative flow rate S, the more the oxide film Is slowed down and the corrosion potential E is lowered.
Incidentally, in the above embodiment, as shown in FIG.
It is considered that the corrosion potential E and the polarization conductance hardly changed after time, and the formation rate and dissolution rate of the oxide film reached a steady state equilibrium, and the thickness of the oxide film did not change.

【0019】つぎに、本発明の第2実施例について説明
する。前記第1実施例と同様の構成において、水車
(1)と中性液(3)との相対速度Sが4m/s以上に
することできない場合、アノード防食法を組み合わせる
ことができる。例えば、水車(1)と中性液(3)との
相対速度Sが3m/sしか得られない場合、水車(1)
の腐食電位Eは−0.16Vで、図2に示す電位−pH
図の腐食域Cにあるので腐食してしまう。ところが、普
通鋼製の水車(1)に外部直流電源の正極を接続して防
食電流を流せば、酸化被膜が形成されて分極を起こし、
腐食電位Eが不動態域に移動する。
Next, a second embodiment of the present invention will be described. In the same configuration as the first embodiment, when the relative speed S between the water turbine (1) and the neutral liquid (3) cannot be set to 4 m / s or more, the anode corrosion protection method can be combined. For example, when the relative speed S between the water turbine (1) and the neutral liquid (3) is only 3 m / s, the water wheel (1)
Has a corrosion potential E of -0.16 V and a potential -pH shown in FIG.
Since it is in the corrosion area C in the figure, it is corroded. However, if an anti-corrosion current is passed by connecting the positive electrode of an external DC power supply to the water turbine (1) made of ordinary steel, an oxide film is formed and polarization occurs.
The corrosion potential E moves to the passive area.

【0020】もちろん、水車(1)と中性液(3)との
相対流速Sが0または低く、電源に接続前の腐食電位E
が低すぎれば、大きな防食電流を流さなければならない
ので従来と同様、酸化被膜の形成速度よりFe(鋼)の
イオン化による溶出速度の方が速くなってしまい、酸化
被膜が形成できない。酸化被膜が形成された後は、従来
のアノード防食法と同じく、酸化被膜を維持するだけの
電流を流しておけば防食できる。
Of course, the relative flow rate S between the water turbine (1) and the neutral liquid (3) is zero or low, and the corrosion potential E before connection to the power supply is obtained.
Is too low, a large anticorrosion current must be passed, so that the elution rate due to ionization of Fe (steel) becomes faster than the formation rate of the oxide film, as in the prior art, and the oxide film cannot be formed. After the oxide film is formed, corrosion can be prevented by passing a current sufficient to maintain the oxide film, as in the conventional anode corrosion protection method.

【0021】以上の実施例では、鋼製の機器として水中
で積極的に回転して中性液との相対流速を生ずる水車を
例として説明したが、本発明はこれに限られるものでは
なく中性液中に浸漬される鋼製の機器であって、この鋼
製の機器と中性液との間にある程度以上の相対流速を生
じせしめることができるものであれば、どのような機器
にも応用することができるものである。例えば、水力発
電機のように、水の流れによって受動的に回転する水車
にも応用できる。また、回転する機器でなくてもよい。
例えば、水路のようなものにも応用できるものである。
In the above embodiment, a water turbine that is actively rotated in water to generate a relative flow velocity with a neutral liquid has been described as an example of a steel device, but the present invention is not limited to this. Any equipment made of steel that is immersed in a neutral liquid and that can generate a relative flow rate of a certain degree or more between the steel equipment and the neutral liquid It can be applied. For example, the present invention can be applied to a water turbine that is passively rotated by the flow of water, such as a hydroelectric generator. Further, the device need not be a rotating device.
For example, it can be applied to something like a waterway.

【0022】[0022]

【発明の効果】本発明は以上のように構成したので、耐
食材のコーティングやライニングを施す必要がなく、充
分な鋼製の機器と中性液との相対流速が得られる場合に
は、外部電源装置や犠牲アノード電極および大きな防食
電流を流すための維持費(電気代)を必要とせずに、中
性液中で鋼の機器を防食することができるという効果を
有するものである。
Since the present invention is constructed as described above, there is no need to apply a coating or lining of a corrosion-resistant material, and if a sufficient relative flow rate between the steel equipment and the neutral liquid can be obtained, the external The present invention has an effect that steel equipment can be protected in a neutral solution without requiring a power supply device, a sacrificial anode electrode, and a maintenance cost (electricity cost) for flowing a large anticorrosion current.

【0023】また、充分な鋼製の機器と中性液との相対
流速が得られない場合でも、中性液中でアノード防食法
を実施することができる。アノード防食法を用いれば、
カソード防食法に比べて極めて少ない防食電流を流すだ
けで防食することができ、維持費(電気代)が減少でき
るという効果を有するものである。
Further, even when a sufficient relative flow rate between the equipment made of steel and the neutral solution cannot be obtained, the anodic protection method can be performed in the neutral solution. If you use the anode protection method,
Corrosion can be prevented only by applying an extremely small amount of anticorrosion current as compared with the cathodic protection method, and the maintenance cost (electricity cost) can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】中性液中の鋼と中性液との相対流速および鋼の
腐食電位の関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between a relative flow rate of steel in a neutral solution and a neutral solution and a corrosion potential of the steel.

【図2】中性領域における普通鋼の電位−pH図であ
る。
FIG. 2 is a potential-pH diagram of ordinary steel in a neutral region.

【図3】本発明の一実施例である水車の略図である。FIG. 3 is a schematic view of a water turbine according to an embodiment of the present invention.

【図4】図3の水車において、2000rpmで初期運
転したときの腐食電位−分極コンダクタンス軌跡図であ
る。
FIG. 4 is a diagram showing a corrosion potential-polarization conductance trajectory when the turbine of FIG. 3 is initially operated at 2000 rpm.

【図5】プルベ(Pourbaix)の電位−pH図であ
る。
FIG. 5 is a potential-pH diagram of Pourbaix.

【符号の説明】[Explanation of symbols]

(1)…水車、(2)…水槽、(3)…中性液。 (1) ... water wheel, (2) ... water tank, (3) ... neutral liquid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 等 神奈川県横浜市港北区新吉田町2940番地 日本工営株式会社横浜事業本部内 (58)調査した分野(Int.Cl.7,DB名) C23F 13/00 - 15/00 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Okada et al. 2940 Shinyoshida-cho, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Nippon Koei Co., Ltd. Yokohama business headquarters (58) Field surveyed (Int.Cl. 7 , DB name) C23F 13/00-15/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋼を中性液中に浸漬し、この鋼と中性液を
高速の相対流速をもって接触させることによって、鋼の
表面への酸化被膜形成を促進させて鋼の腐食電位を不動
態域まで上昇させることを特徴とする中性液中での流速
制御による鋼の防食方法。
The steel is immersed in a neutral solution, and the steel and the neutral solution are brought into contact at a high relative flow rate to promote the formation of an oxide film on the surface of the steel, thereby reducing the corrosion potential of the steel. A corrosion prevention method for steel by controlling a flow rate in a neutral liquid, wherein the steel is raised to a dynamic range.
【請求項2】4m/s以上の相対流速をもって鋼と中性
液を5時間以上接触させることを特徴とする請求項1記
載の中性液中での流速制御による鋼の防食方法。
2. The method according to claim 1, wherein the steel is brought into contact with the neutral liquid at a relative flow rate of 4 m / s or more for 5 hours or more.
【請求項3】鋼を中性液中に浸漬し、この鋼と中性液を
相対流速をもって接触させることによって、鋼の表面へ
の酸化被膜形成を促進させて鋼の腐食電位を上昇させる
と同時に、前記鋼に外部直流電源の正極を接続するアノ
ード防食法によりさらに酸化被膜形成を促進させて鋼の
腐食電位を不動態域にまで上昇させることを特徴とする
中性液中での流速制御による鋼の防食方法。
3. A method in which a steel is immersed in a neutral solution, and the steel and the neutral solution are brought into contact with each other at a relative flow rate to promote the formation of an oxide film on the surface of the steel to increase the corrosion potential of the steel. At the same time, a flow rate control in a neutral liquid characterized by further promoting the formation of an oxide film by an anodic corrosion protection method in which a positive electrode of an external DC power supply is connected to the steel to raise the corrosion potential of the steel to a passive region. Corrosion protection method of steel.
【請求項4】酸化被膜形成完了後は、鋼に外部直流電源
の正極を接続し、形成された酸化被膜を保持するのに必
要な電流を供給することを特徴とする請求項1、請求項
2または請求項3記載の中性液中での流速制御による鋼
の防食方法。
4. After completion of the formation of the oxide film, a positive electrode of an external DC power supply is connected to the steel to supply a current necessary for holding the formed oxide film. The method for preventing corrosion of steel by controlling the flow rate in a neutral liquid according to claim 2 or 3.
JP3347838A 1991-12-03 1991-12-03 Corrosion prevention method of steel by controlling flow velocity in neutral liquid Expired - Fee Related JP3020336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347838A JP3020336B2 (en) 1991-12-03 1991-12-03 Corrosion prevention method of steel by controlling flow velocity in neutral liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347838A JP3020336B2 (en) 1991-12-03 1991-12-03 Corrosion prevention method of steel by controlling flow velocity in neutral liquid

Publications (2)

Publication Number Publication Date
JPH05156474A JPH05156474A (en) 1993-06-22
JP3020336B2 true JP3020336B2 (en) 2000-03-15

Family

ID=18392952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347838A Expired - Fee Related JP3020336B2 (en) 1991-12-03 1991-12-03 Corrosion prevention method of steel by controlling flow velocity in neutral liquid

Country Status (1)

Country Link
JP (1) JP3020336B2 (en)

Also Published As

Publication number Publication date
JPH05156474A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
US6358397B1 (en) Doubly-protected reinforcing members in concrete
AU2012392207B2 (en) System and method for providing corrosion protection of metallic structure using time varying electromagnetic wave
JP3020336B2 (en) Corrosion prevention method of steel by controlling flow velocity in neutral liquid
US5338417A (en) Cathodic corrosion protection for an aluminum-containing substrate
US3360452A (en) Cathodic protection system
US3385777A (en) Electrochemical deposition of organic films
JP4146637B2 (en) Corrosion protection method for harbor steel structures
JP2001137891A (en) Method for preventing scale
JPH0133552B2 (en)
JP2649090B2 (en) Desalination method for RC / SRC structure
CA2092421C (en) Method for corrosion-proofing of a water system
Ball et al. Corrosion mitigation systems for concrete structures.
Yaro et al. Sacrificial anode cathodic protection of low carbon steel in sea water
JPH07286289A (en) Electric protection method
JP2735792B2 (en) Method for corrosion protection of aluminum material and sacrificial anode for corrosion protection of aluminum material
JPH037393Y2 (en)
Norman Cathodic Protection of Steel Water Tanks
Lehmann Control of Corrosion in Water Systems
JPS58167783A (en) Cathodic corrosion-proofness of aluminum material
RU2006522C1 (en) Method and apparatus for corrosion protection of metallic structures
KR20000000726A (en) Controlling method for galvanic corrosion of pipe for sea water
JP2004060042A (en) Electrolytic protection system in atmospheric environment
JPH1150277A (en) Electronic rust-prevention system of inner wall of tank
JP2000017629A (en) Anti-fouling and anti-corrosion device of condenser
JP2951482B2 (en) Highly corrosion-resistant inclined sprayed steel plate for tank bottom plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees