JPS58167783A - Cathodic corrosion-proofness of aluminum material - Google Patents

Cathodic corrosion-proofness of aluminum material

Info

Publication number
JPS58167783A
JPS58167783A JP57050010A JP5001082A JPS58167783A JP S58167783 A JPS58167783 A JP S58167783A JP 57050010 A JP57050010 A JP 57050010A JP 5001082 A JP5001082 A JP 5001082A JP S58167783 A JPS58167783 A JP S58167783A
Authority
JP
Japan
Prior art keywords
corrosion
potential
aluminum material
point
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57050010A
Other languages
Japanese (ja)
Inventor
Teruo Miyashita
輝雄 宮下
Koichi Yoshida
幸一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP57050010A priority Critical patent/JPS58167783A/en
Publication of JPS58167783A publication Critical patent/JPS58167783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To prevent the generation of non-uniform corrosion such as pitting or interstitial corrosion, in a cathodic corrosion-proof method utilizing an Al material used in water as a cathode, by applying cathode pulse voltage to the Al material intermittently. CONSTITUTION:An anodic oxidation film is formed on the surface of a member made of Al or an Al alloy according to a usual method and fine pores in the film are subjected to sealing in boiled water. In using this Al member used in sea water, voltage is applied between the Al member as a cathode and an opposed electrode to apply cathodic corrosion-proofness. In this case, when the potential of the Al material in sea water is negative potential of 0.4-0.8V and the pH of sea water is within a range of 4-9, the Al member is stable and is no corroded. When the potential of the Al member is approaches a point A in the vicinity of 0.4V during cathodic corrosion-proofness, pulse voltage is applied to once reduce the potential of the Al member to a point B and, if the application of pulse voltage is stopped, potential is rapidly returned to a point C to enter an immobilized region generating no corrosion while is gradually moved to the point A. By repeating this process, the Al member is prevented from pitting generation.

Description

【発明の詳細な説明】 本発朗は、アルミニウム材の陰極防食法に関し詳しくは
アルミニウム材を陰極として、犠牲陽極または対極によ
り、陰極に間欠的に陰極パルス電圧を印加して防食する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cathodic protection of aluminum materials, and more particularly to a method for preventing corrosion by using an aluminum material as a cathode and intermittently applying cathodic pulse voltage to the cathode using a sacrificial anode or a counter electrode.

アルミニウム材は耐食性が優れており、特に作業性や省
エネルギーの点から、機器の@線化が重視されるように
なって、従来になかった新しい分野、より酷しい腐食環
境にさらされる分野に利用されるようになって来た。
Aluminum material has excellent corrosion resistance, and with the emphasis on @ wire equipment for workability and energy saving, it is being used in new fields that were not previously available, fields that are exposed to more severe corrosive environments. It has come to be.

アルミニウム材の防食法としては陽極酸化皮膜処理、塗
装、この両者の併用等があり、またアルミニウムーマグ
ネシウム系の合金は海水にも良好な耐食性を有し、耐食
アルミ合金として耐食性を要求される分野に使用されて
いる。このような表面処理を施したアルミニウム材や耐
食アルミ合金も、使用環境が酷しくなるに従い、表面層
の劣化や孔食の発生が問題となって来た。また構造物に
微細な隙間がある場合に、いわゆる隙間腐食が起ること
も知られており、孔食、隙間腐食等の、いわゆる不均一
腐食を如何にして防[1−するかが、今後のアルミニウ
ムの用途拡大にとって、不可避の課Mである。
Corrosion prevention methods for aluminum materials include anodic oxide coating, painting, and a combination of both.Also, aluminum-magnesium alloys have good corrosion resistance even in seawater, and are suitable for fields where corrosion resistance is required as a corrosion-resistant aluminum alloy. used in Even with such surface-treated aluminum materials and corrosion-resistant aluminum alloys, as the environments in which they are used become more severe, problems such as deterioration of the surface layer and occurrence of pitting corrosion have become a problem. It is also known that so-called crevice corrosion occurs when there are minute gaps in a structure. This is an unavoidable issue for expanding the uses of aluminum.

アルミニウムまたはアルミニウム合金、これらの表面に
陽極酸化皮膜処理や電着塗装を施したもの(以下、これ
らをアルミニウム材と称する)が水と接触する場合の防
食法に関しては、犠牲陽極が一般に使用されている。し
かし、温度や不純物置の変動、水の流動の有無等により
安定ではなく犠牲陽極を設けた場合でも、しばしば腐食
が発生することが知られている。これは、犠牲陽極の供
給可能な電流に上限があるため、アルミニウム材表面に
おける環境条件が変動すると、それに対応つきなくなる
ためである。
Sacrificial anodes are generally used as a corrosion protection method when aluminum or aluminum alloys, the surfaces of which have been anodized or electrodeposited (hereinafter referred to as aluminum materials), come into contact with water. There is. However, it is known that it is not stable due to fluctuations in temperature, impurity storage, the presence or absence of water flow, and corrosion often occurs even when a sacrificial anode is provided. This is because there is an upper limit to the current that can be supplied by the sacrificial anode, so if the environmental conditions on the surface of the aluminum material change, the sacrificial anode cannot cope with it.

電力、外部電源を用いる陰極防食の方法(供給可能電力
が犬となる)もあるが、小にアルミニウム材の電位分布
のみを不動態域に保つだけでは、pHの変動もあり、逆
にアルカリ腐食の起きる条件で陰極電位を固定され、孔
食は防止できても、却ってアルカリ腐食を促進する危険
性があり、工業的に使用するには問題があった。犠牲陽
極法においても、亜鉛合金より電位の卑なマグネシウム
合金を陽極として使用することは、アルミニウムの場合
、アルカリ腐食を起すため不可とされて来ていた。
There is a cathodic protection method that uses electric power or an external power source (the amount of power that can be supplied is limited), but simply keeping the potential distribution of the aluminum material in the passive region will also cause pH fluctuations, which can lead to alkaline corrosion. Even if the cathode potential could be fixed under conditions where pitting corrosion could be prevented, there was a risk of accelerating alkaline corrosion, which was problematic for industrial use. Even in the sacrificial anode method, it has been considered impossible to use a magnesium alloy, which has a lower potential than a zinc alloy, as an anode because it causes alkali corrosion in the case of aluminum.

本願は、陰極防食法の上記欠点を改良したもので、水中
におけるアルミニウム材電位が孔食電位より低く、かつ
アルカリ腐食が起きる電位以上でしかも液のpHが4〜
9の範囲であれば安定であることに着目し、その範囲内
にほぼ保つようにアルミニウム材に陰極のパルス電圧を
印加する方法である。
The present application improves the above-mentioned drawbacks of the cathodic protection method, and the potential of the aluminum material in water is lower than the pitting corrosion potential and is higher than the potential at which alkaline corrosion occurs, and the pH of the solution is 4 to 4.
This method focuses on the fact that it is stable within the range of 9, and applies a cathode pulse voltage to the aluminum material so as to maintain it approximately within that range.

アルミニウム材の電位が孔食電位以上では、孔食が起き
るので、このアルミニウム材の電位は孔食電位以下に常
時保つ必要がある。また、水溶液のpl+が9以上では
アルカリ腐食が起きる危険性が出て来る。このアルカリ
腐食は表面が均一に溶解するもので、短時間であれば、
特に構造物(こ対し問題とする程ではない。
If the potential of the aluminum material is higher than the pitting corrosion potential, pitting corrosion will occur, so the potential of the aluminum material must always be kept below the pitting corrosion potential. Furthermore, if the pl+ of the aqueous solution is 9 or more, there is a risk of alkali corrosion occurring. This alkaline corrosion dissolves the surface uniformly, and for a short period of time,
In particular, structures (this is not a problem).

従来から知られているよう(こ、腐食に対する安′lど
域け、液のpHと陰極アルミニウムの電位で決まるもの
で、第1図に示すように、縦軸に電位。
As has been known in the past, the safe range for corrosion is determined by the pH of the solution and the potential of the cathode aluminum; as shown in Figure 1, the vertical axis represents the potential.

横軸にpHをとったアルミニウム腐食図では、安定域は
アルミニウム合金の種類にもよるが、一般には水素電極
を基準としたとき、電位がα4〜08V、pHが4〜9
で囲まれた長方形範囲内に任り、’pHが9より大きい
部分はアルカリ腐食域を形成し、前記長方形範囲内にア
ルミニウム材全体の電位を保つことは、かなり困難であ
る。
In an aluminum corrosion diagram with pH on the horizontal axis, the stable range depends on the type of aluminum alloy, but generally, when the hydrogen electrode is referenced, the potential is α4 to 08V and the pH is 4 to 9.
Within the rectangular range surrounded by ', the part where the pH is greater than 9 forms an alkaline corrosion area, and it is quite difficult to maintain the potential of the entire aluminum material within the rectangular range.

犠牲陽極の場合(外部電源による場合も同様であるが)
犠牲陽極の近くでは、アルミニウム材は充分マイナスの
電位になるが、最も遠いアルミニウム材部分では孔食電
位以下のマイナスにならない、この部分でも孔食電位以
下にするためには、犠牲陽極の供給電流を大にするため
マグネシウム合金を使用する(限度がある)か、外部電
源で電流を大とするしかない。しかし、アルミニウム材
の電位を下げるとき、液のpHも第1図アルミニウム腐
食図の曲線1に示すように、右下りに傾斜した曲線に沿
って変動する。犠牲陽極または外部電源(V=一定)で
は、第1図C点のように安定域ぎりぎりの条件でセット
する場合が多く、アルミニウム材の水中における環境条
件、例えは温度や流速等が変動すると、安定域をはずれ
、孔食電位口しトか、孔食電位以下に充分とると、アル
カリ腐食域にセットしたことになり、長時間アルカリ腐
食域にさらされると腐食が促進される。
In the case of a sacrificial anode (although the same applies when using an external power source)
Near the sacrificial anode, the aluminum material has a sufficiently negative potential, but the farthest part of the aluminum material does not reach a negative potential below the pitting potential.In order to bring the potential below the pitting potential even in this area, the supply current of the sacrificial anode must be adjusted. In order to increase the current, the only options are to use a magnesium alloy (there is a limit) or to increase the current using an external power supply. However, when lowering the potential of the aluminum material, the pH of the solution also changes along a curve sloping downward to the right, as shown by curve 1 in the aluminum corrosion diagram in FIG. A sacrificial anode or an external power source (V = constant) is often set at the very edge of the stable range, as shown at point C in Figure 1, but if the environmental conditions in the aluminum material's water, such as temperature or flow rate, fluctuate, If the pitting corrosion potential is taken out of the stable range and well below the pitting corrosion potential, it means that it is set in the alkaline corrosion range, and if exposed to the alkaline corrosion range for a long time, corrosion will be accelerated.

本願は上記の欠点を改良したもので、第1図に基ずいて
説明すると、曲、Iilの0点の条件でセットしたとき
、アルミニウム材の電位が環境条件の変動によりA点近
くになったとき、パルス電位を印加してB点まで引下げ
るものである。B点まで到達しても、電圧の印加が解除
されると、アルミニウム材の電位は、かなり速く0点ま
で戻り、以後C点からA点まで、ゆpくり上昇する。従
ってこのヒステリシスは、安定域で殆ど占められること
になる。
The present application improves the above-mentioned drawbacks, and will be explained based on Figure 1. When set under the condition of 0 point of the song, Iil, the potential of the aluminum material becomes close to point A due to fluctuations in environmental conditions. At this time, a pulse potential is applied to lower the voltage to point B. Even when point B is reached, when the voltage application is removed, the potential of the aluminum material returns to point 0 fairly quickly, and thereafter gradually increases from point C to point A. Therefore, this hysteresis is mostly occupied by the stable region.

本発明方法は、環境条件が変っても良く対応し例えば第
1図でA点がA′に、B点がB′のように曲線2(こ変
化しても、B′(アルカリ腐食域)に在る時間が短かく
、かつアルカリ腐食には誘導期間がq任するので、殆ど
アルミニウム材の腐食速度に影響はない。
The method of the present invention can respond well to changes in environmental conditions. For example, in FIG. 1, point A becomes A', point B becomes B', and so on. Since the time spent in the alkali corrosion is short and the induction period is dependent on the alkaline corrosion, there is almost no effect on the corrosion rate of the aluminum material.

孔食電位はアルミニウム材の合金の種類や浸漬条件によ
って與なるが、参照電極を飽和カロメル電極とした場合
、A 1100では、はぼ−α60Vである。
The pitting potential depends on the type of alloy of the aluminum material and the immersion conditions, but when a saturated calomel electrode is used as the reference electrode, it is approximately -α60V for A1100.

本発明において、パルス電圧の印加時間をt。In the present invention, the pulse voltage application time is t.

LI(の印加までの間隔をT、印加電圧をVとすると、
T > t 、好ましくは T > 10 tでt=1
/100 秒〜1秒。
If the interval until the application of LI ( is T and the applied voltage is V, then
T > t, preferably T > 10 t and t=1
/100 seconds to 1 second.

T−α1分〜10分。T-α 1 minute to 10 minutes.

V :2 volt 〜4 volt の範囲で適宜選ばれる。V: 2 volts ~ 4 volts be selected as appropriate within the range.

電圧の印加は、外部電源を対極とアルミニウム材間に設
け、または犠牲陽極に1時間通電してもよい。対極によ
る場合は、対極はアルミニウム材の長さ方向の一端また
は両端に若干離してセ・ソトしておく。
The voltage may be applied by providing an external power source between the counter electrode and the aluminum material, or by energizing the sacrificial anode for one hour. If a counter electrode is used, the counter electrode is placed at one end or both ends of the aluminum material with a slight distance between them.

また、実際のパルス電圧の印加は、孔食電位より5Q 
m Vマイナス電位側で行なった方が安全であろう。
In addition, the actual application of pulse voltage is 5Q from the pitting potential.
It would be safer to do this on the mV negative potential side.

本発明方法によれば、アルミニウム材は孔食電位以下の
マイナス電位に常に保たれるので、確実に孔食を防止す
ることができ、かつアルカリ腐食域にさらされる時間は
極めて短かいので、犠牲陽極による場合はもちろん、外
部電源による陰極防食法の場合でも、過防食が原因する
アルカリ腐食を回僻することができ、アルミニウム材の
応用分野を大きく拡張するものである。
According to the method of the present invention, since the aluminum material is always kept at a negative potential below the pitting corrosion potential, pitting corrosion can be reliably prevented, and the time of exposure to the alkaline corrosion region is extremely short, so the aluminum material can be sacrificed. Not only in the case of using an anode, but also in the case of cathodic protection using an external power source, alkaline corrosion caused by excessive corrosion can be avoided, greatly expanding the field of application of aluminum materials.

以下、本発明を、具体的に実施例について、さらに説明
する。
Hereinafter, the present invention will be further explained in detail with reference to Examples.

実施例 1 アルミニウム合金A 1100の厚さ1mmの圧延板を
常法により前処理後、15%硫酸溶液中で陽極酸化処理
を施し、20μの陽極酸化皮膜を表面に11す、封孔助
剤を含む沸騰水中で封孔処理した試11を、実験に供し
た。
Example 1 A rolled plate of aluminum alloy A 1100 with a thickness of 1 mm was pretreated by a conventional method, and then anodized in a 15% sulfuric acid solution to form a 20μ anodic oxide film on the surface. Test No. 11, which was subjected to a sealing treatment in boiling water, was subjected to an experiment.

試片は1 m m x 100 m m X 800 
m mとし、試片の両側の水の流路幅は約5mmに設定
し、板の一方の端からほばlQcm離れた位置に防食用
の径lQmmφ、長さlQmmの対極を設置し、この電
極と試片の間に間欠的に試片が陰極となるように通電で
きる防食用装置を設けた。、使用水は天然海水とし、は
ば20Cm/秒の流速で流路に沿って流した。
The specimen is 1 mm x 100 mm x 800
mm, the width of the water flow path on both sides of the specimen was set to approximately 5 mm, and a counter electrode with a diameter of lQmmφ and a length of lQmm for corrosion protection was installed at a position approximately lQcm away from one end of the plate. A corrosion protection device was installed between the electrode and the test piece to allow electricity to be applied intermittently so that the test piece served as a cathode. The water used was natural seawater, which was flowed along the channel at a flow rate of 20 cm/sec.

防食用装置は、試片に対し防食用電極と反対側に膜薄し
た参照電極を基準とした試片の電位を、2分間隔でチI
5ツクし、試片の電位が予め設定された臨界孔食電位を
越えて陽極側になった場合にのみ、約1秒間Z5Vの定
電圧源で電圧を印加する方法を採った。
The anti-corrosion device checks the potential of the specimen at 2-minute intervals with reference to a reference electrode with a thin film on the opposite side of the anti-corrosion electrode.
A method was adopted in which a voltage was applied for about 1 second using a constant voltage source of Z5V only when the potential of the sample exceeded a preset critical pitting potential and reached the anode side.

陰極防食が実際に行なわれる各同量の時間間隔は6〜8
分間隔で充分であって、5ケ月間の連続試験を行なった
が、酸化皮膜の膜厚減少は認められない。
The time interval for each equivalent amount during which cathodic protection is actually carried out is 6 to 8
Minute intervals were sufficient, and a continuous test was conducted for 5 months, but no decrease in the thickness of the oxide film was observed.

膜厚の測定結果を次の表1に示す、なお、測定値はラミ
ツメ−ターによる測定点10点の平均値である。
The measurement results of the film thickness are shown in Table 1 below, and the measured values are the average values of 10 measurement points measured using a Lamitz meter.

また、孔食の発生は皆無であった。Further, there was no occurrence of pitting corrosion.

表   1 膜厚(μ) 実験前    21.2 1ケ月後      21.6 2ケ月後      2B4 3ケ月後      2L9 4ケ月後      2Z0 5ケ月後      22.2 実施例 2 実施例1に使用したJIS A 1100の圧延板を常
法による前処理を行なった後、15%硫酸浴中で陽極酸
化処理を行ない、しかる後、アクリルメラミン系の電着
塗装を施し、200°Gで焼付けを行なって実施例1と
同一の寸法の試片を作成し、実施例1に記載の方法で実
験を行なった。
Table 1 Film thickness (μ) Before experiment 21.2 After 1 month 21.6 After 2 months 2B4 After 3 months 2L9 After 4 months 2Z0 After 5 months 22.2 Example 2 Rolling of JIS A 1100 used in Example 1 After pre-treating the board in a conventional manner, it was anodized in a 15% sulfuric acid bath, then an acrylic melamine electrodeposition coating was applied, and baked at 200°G, the same as in Example 1. A test specimen with dimensions of 1 was prepared, and an experiment was conducted using the method described in Example 1.

陰極防食が実際に行なわれた各同量の時間間隔は2分間
隔であり、5ケ月を経ても、孔食は皆無であった。
The time interval at which cathodic protection was actually performed was 2 minutes, and there was no pitting corrosion even after 5 months.

実施例1と同様にして行なった膜厚測定結果を表2に示
す。表2から明らかなように膜厚の減少も認められなか
った。
Table 2 shows the results of film thickness measurements conducted in the same manner as in Example 1. As is clear from Table 2, no decrease in film thickness was observed.

表   2 膜厚(μ) 実験前    161 1−夕月後      162 2ケ月後      16.4 3ケ月後      161 4ケ月後      1&4 5ケ月後      165Table 2 Film thickness (μ) Before experiment 161 1-After the evening moon 162 2 months later 16.4 3 months later 161 4 months later 1 & 4 5 months later 165

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アルミニウム材電位と浸漬液のpHで示され
るアルミニウム材腐食図である。図中、平行斜線部分は
、アルミニウム材の腐食安定域を示す。 特許出願人  日本軽金属株式会社 代理人 弁理士 松水圭司 第   1   図 lJ 手続補正書 昭和57年7月30日 特許庁長官若杉和夫殿 を事件の表丞 昭和57年特許願 第50010号 2発明の名称 アルミニウム材の陰極防食法 3補正をする者 事件との関係  特許出願人 代表者松永義正 本代理人 〒156 電話東京(03) 322−4850住 所
  東京都世田姑区松原三丁目27番27号7、補正の
対象 明細書の「特許請求の範囲」の欄、「発明の詳細な説明
」の欄および添付図面 &補正の内容 (1)特許請求の範囲 別紙のとおり (2)発明の詳細な説明 1、 明細書第1頁 第13行〜第14行「犠牲陽極ま
たは対極により、」を削除する。 2゜同 第3頁 第12行〜第16行 「犠牲陽極法に・・・・・・・・・・不可とされて来て
いた。Jを削除する。 & 同  第5頁 第7行 [外部電源で電流を1を[外部電源を用いて供給する電
流をIに補正する。 4 同 第5貢 第17行 「セットしたことになり、」を[セットする危険もあり
、−1に補正する。 5 同 第5頁 第18行 「さらされると」を[さらされた場合Jに補1[:、す
る。 a 同  第7眞 第2行〜第4行 l t = 1 / 100 秒〜1秒。 T二01分〜10分。 V=2vnlt−4volt Jを 1− t = 1 / 200秒〜2秒。 T二1 / 1000 分〜10分。 V := 1 volt 〜4 volt  l ニ補
正する。 7、同  第7頁 第12行 150mV、、Iを[約50 m V Jに補正する。 a 同  第8頁 第1行と第2行の間に、次の文豪を
加入する。 [−なお、本願明細書における水とは、少なくとも51
)pmの塩素イオンを含む水溶液を指称し、例えば海水
、水道水、廃液処理水等である。1 9、同  第8頁 第11行 1の両側の水の」を[の両側に水路を作り、水の1に補
正する。 1G  同 第8貞 第18行 [防食用電極1を「防食用対極」に補正する。 (3)図面 別紙のとおり 以上 別紙 2、特許請求の範囲 1、 水中に浸漬させたアルミニウム材を陰極とし、対
極を外部電源に接続した陰極防食法(こおいて、アルミ
ニウム材の電極電位が孔食電位を越えたとき、アルミニ
ウム材に陰極パルス電圧を印加することを特徴とするア
ルミニウム材の陰極防食法。 第   1  図 k ム ′市 ト鉤 1、t べ^ 0    4    8     12pH
FIG. 1 is a corrosion diagram of an aluminum material shown by the potential of the aluminum material and the pH of the immersion liquid. In the figure, the parallel hatched area indicates the corrosion stable region of aluminum material. Patent Applicant Nippon Light Metal Co., Ltd. Agent Patent Attorney Keiji Matsumizu 1 Figure 1 J Procedural Amendment July 30, 1980 Case against Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1982 Patent Application No. 50010 2 Invention NameRelationship with the Case of Person Who Amends Cathodic Protection Method 3 for Aluminum MaterialsRepresentative Patent Applicant Yoshimasa MatsunagaRepresentative Address: 156 Telephone: (03) 322-4850 Address: 3-27-27 Matsubara, Setaga-ku, Tokyo 7. The "Claims" column, "Detailed Description of the Invention" column of the specification to be amended, and the attached drawings & contents of the amendment (1) As per the Claims appendix (2) Detailed description of the invention Explanation 1, page 1 of the specification, lines 13 to 14, "by means of a sacrificial anode or a counter electrode" is deleted. 2゜ Same, page 3, lines 12 to 16 ``The sacrificial anode method... has been considered impossible. Delete J. & Same, page 5, line 7 [ Correct the current supplied by an external power source to 1 by using an external power source. 4 Correct the current supplied by an external power source to I. 4. 5th contribution of the same, line 17, ``This means that it has been set,'' is changed to ``-1 because there is a risk of setting it.'' do. 5 Same page 5, line 18, ``When exposed'' is added to ``If exposed, add 1 to J[:,''. a Same 7th line 2nd line to 4th line t = 1/100 seconds to 1 second. T201 minutes to 10 minutes. V=2vnlt-4volt J to 1-t=1/200 seconds to 2 seconds. T21/1000 minutes to 10 minutes. V := 1 volt to 4 volt l 2 correction. 7, page 7, line 12, 150 mV, I is corrected to about 50 m V J. a Same page 8 Add the following literary giant between the first and second lines. [-In addition, water in the present specification refers to at least 51
) Refers to an aqueous solution containing chlorine ions of pm, such as seawater, tap water, treated waste water, etc. 1 9, same page 8, line 11, ``Water on both sides of 1'' is corrected to ``Water 1'' by creating channels on both sides of [. 1G Same 8th line 18th line [Correct the anti-corrosion electrode 1 to "counter electrode for anti-corrosion". (3) As shown in Appendix 2, Claim 1, Cathodic protection method in which an aluminum material immersed in water is used as a cathode and a counter electrode is connected to an external power source (in this case, the electrode potential of the aluminum material is A cathodic protection method for aluminum materials, which is characterized by applying a cathodic pulse voltage to the aluminum material when the corrosion potential is exceeded.

Claims (1)

【特許請求の範囲】[Claims] 1、 水中に浸漬させたアルミニウム材を陰極とし、犠
牲陽極法、または対極を設けた外部電数による陰極防食
法において、アルミニウム材の電極電位が孔食電位を越
えたとき、アルミニウム材に陰極パルス電圧を印加する
ことを特徴とするアルミニウム材の陰極防食法。
1. When the electrode potential of the aluminum material exceeds the pitting corrosion potential in the sacrificial anode method or the cathodic protection method using an external electrode with a counter electrode in which an aluminum material immersed in water is used as a cathode, a cathode pulse is applied to the aluminum material. A cathodic protection method for aluminum materials that involves applying voltage.
JP57050010A 1982-03-30 1982-03-30 Cathodic corrosion-proofness of aluminum material Pending JPS58167783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050010A JPS58167783A (en) 1982-03-30 1982-03-30 Cathodic corrosion-proofness of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050010A JPS58167783A (en) 1982-03-30 1982-03-30 Cathodic corrosion-proofness of aluminum material

Publications (1)

Publication Number Publication Date
JPS58167783A true JPS58167783A (en) 1983-10-04

Family

ID=12847020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050010A Pending JPS58167783A (en) 1982-03-30 1982-03-30 Cathodic corrosion-proofness of aluminum material

Country Status (1)

Country Link
JP (1) JPS58167783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029478A (en) * 1983-07-05 1985-02-14 Nippon Light Metal Co Ltd Cathodic corrosion protection method of aluminum material
JPS6423311A (en) * 1987-07-10 1989-01-26 Riguree Garii Electronic control circuit for cathode protector
KR101169676B1 (en) 2012-05-23 2012-08-06 (유)유달조선 Potentiostatic electrochemical method to prevent cavitation-erosion damage for al alloy in seawater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029478A (en) * 1983-07-05 1985-02-14 Nippon Light Metal Co Ltd Cathodic corrosion protection method of aluminum material
JPS6339677B2 (en) * 1983-07-05 1988-08-05 Nippon Light Metal Co
JPS6423311A (en) * 1987-07-10 1989-01-26 Riguree Garii Electronic control circuit for cathode protector
KR101169676B1 (en) 2012-05-23 2012-08-06 (유)유달조선 Potentiostatic electrochemical method to prevent cavitation-erosion damage for al alloy in seawater

Similar Documents

Publication Publication Date Title
Pang et al. Friction stir processing of aluminium alloy AA7075: microstructure, surface chemistry and corrosion resistance
US6117298A (en) Cathodic protective coating on magnesium or its alloys and method of producing the same
JPH0841679A (en) Electrogalvannealed steel sheet having excellent appearance
JPS58167783A (en) Cathodic corrosion-proofness of aluminum material
Nisancioglu et al. Improving the corrosion resistance of aluminum alloys by cathodic polarization in aqueous media
JP4060627B2 (en) Roughened steel sheet and roughening method
GB2132226A (en) Cathodic protection of aluminium articles
EP2045367A1 (en) Method for anodically oxidizing aluminum alloy and power supply for anodically oxidizing aluminum alloy
US4042475A (en) Pickling of aluminum
EP3255180B1 (en) Method of manufacturing a chemically treated sn plated steel sheet
JPS6339677B2 (en)
Stoychev et al. The influence of pulse frequency on the hardness of bright copper electrodeposits
US4194929A (en) Technique for passivating stainless steel
JPS6047353B2 (en) Method for manufacturing active cathode for electrochemical reactions
JP2018188702A (en) Removal method of oxide film on surface of metal material
Chernova et al. Increasing the passivation ability and corrosion resistance of chromium steel by surface alloying with palladium
Lozano-Morales et al. Electrically mediated process for functinal and decorative trivalent chromium electroplating: an alternative to hexavalent chromium
Zatkalikova et al. Corrosion properties of electropolished AISI 316L austenitic biomaterial in relation to electropolishing conditions
TWI224633B (en) Surface treatment method for hot-dip galvanized steel by micro-electric-arc plasma oxidation
JP3242056B2 (en) Insoluble electrode for chrome plating
Mandich et al. pH, Hydrogen evolution & their significance in electroplating operations
AU2007231304B2 (en) Electro-chemical method in an enrichment process
JPS6217198A (en) Method and apparatus for cathodic surface treatment
Hayette ELECTROCHEMICAL STUDIES OF ZINC DEPOSITION CONDITIONS
JPS59113186A (en) Cathodic corrosion protection method of aluminum material