JPS59113037A - Method for crosslinking polyethylene under heating - Google Patents

Method for crosslinking polyethylene under heating

Info

Publication number
JPS59113037A
JPS59113037A JP22199982A JP22199982A JPS59113037A JP S59113037 A JPS59113037 A JP S59113037A JP 22199982 A JP22199982 A JP 22199982A JP 22199982 A JP22199982 A JP 22199982A JP S59113037 A JPS59113037 A JP S59113037A
Authority
JP
Japan
Prior art keywords
polyethylene
crosslinking
under heating
infrared rays
organic peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22199982A
Other languages
Japanese (ja)
Other versions
JPH0261975B2 (en
Inventor
Hisanosuke Yaguchi
矢口 尚之助
Mikio Yoshinuma
吉沼 幹夫
Kazuhiro Hatasa
畑佐 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22199982A priority Critical patent/JPS59113037A/en
Publication of JPS59113037A publication Critical patent/JPS59113037A/en
Publication of JPH0261975B2 publication Critical patent/JPH0261975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To obtain effectively crosslinked polyethylene usable for insulating layers of electric wires and cables, etc. without causing expansion nor hexagonal patterns, by crosslinking polyethylene with far infrared rays. CONSTITUTION:A polyethylene composition containing an organic peroxide, e.g. di-alpha-cumyl peroxide, is molded into a given shape and then irradiated with radiation of far infrared rays under heating to decompose the organic peroxide in the polyethylene composition under heating and crosslink the polyethylene.

Description

【発明の詳細な説明】 本発明はポリエチレンを化学的に架橋する方法の改良に
係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in methods for chemically crosslinking polyethylene.

ポリエチレンは鎖状高分子で電気絶縁性に優れているも
のの熱的性質が劣るため、架橋によりこの欠点を解消し
て例えば電線ケーブルの絶縁層等に広く用いられている
Although polyethylene is a chain polymer and has excellent electrical insulation properties, it has poor thermal properties, so this drawback is overcome by crosslinking, and it is widely used, for example, as an insulating layer for electric wires and cables.

ところでこの架橋手段には種々の方法があるが、有機過
酸化物を配合したポリエチレン組成物を所定の形状に成
形した後、前記有機過酸化物の熱分解により架橋する方
法が一般的である。
By the way, there are various methods for this crosslinking method, but a common method is to mold a polyethylene composition containing an organic peroxide into a predetermined shape and then crosslink it by thermal decomposition of the organic peroxide.

この熱分解に箔って多くは水蒸気加熱全行なっているが
、この方法は架橋ポリエチレン表面に水蒸気加熱に起因
する亀甲模様が生じ、商品価値を低下させるおそれがろ
るとともに、架橋速度全増大しようとすると、一層高圧
の水蒸気を用い高温で架橋しなければならないので製造
設備の耐圧構造を一層頑丈なものとしなければならない
が、現実には200℃以上に昇温させることは蒸気圧の
著るしい上昇を伴なうため実用上はとんど不可能であり
、これによって架橋速度も自から制限されるという不利
かめる。
For this thermal decomposition, most foils are heated with steam, but this method has the risk of reducing the commercial value due to the formation of a tortoise-shell pattern on the surface of cross-linked polyethylene due to steam heating, and it also increases the cross-linking speed. In this case, the pressure-resistant structure of the manufacturing equipment must be made even more robust because crosslinking must be carried out at higher temperatures using steam at even higher pressures, but in reality, raising the temperature to over 200°C increases the vapor pressure. This is practically impossible because of the excessive increase in crosslinking rate, and this has the disadvantage that the crosslinking rate is also limited by itself.

又、ポリエチレン混和物の架橋を発泡防止の見地から見
ると、雰囲気圧力は2屋普以上、好ましくは5〜s k
q/cjとされており、発泡防止に必要以上の高圧雰囲
気下で架橋処理をすることは耐EE製造設備の無駄を伴
なうものであるとさ−れている。
In addition, from the viewpoint of preventing foaming from crosslinking the polyethylene mixture, the atmospheric pressure is 2°F or higher, preferably 5 to 5°C.
q/cj, and it is said that crosslinking treatment under an atmosphere of higher pressure than necessary to prevent foaming involves waste of EE manufacturing equipment.

蒸気加熱に代えて、発泡防止に必要なガス圧を加えた不
活性ガス雰囲気、例えば窒素ガス、炭酸ガス等のガス中
に於て輻射加熱して架橋剤人ポリエチレンを架橋させる
方法が生れたが、200〜350℃でガス王は8kfA
以下で行なわれるもので、輻射加熱には赤外線ヒーター
を用いることが考えられていた。
Instead of steam heating, a method has been developed to crosslink polyethylene with a crosslinking agent by radiant heating in an inert gas atmosphere, such as nitrogen gas or carbon dioxide gas, with the necessary gas pressure applied to prevent foaming. , Gas King is 8kfA at 200-350℃
It was considered that an infrared heater could be used for radiant heating, as described below.

ところが赤外線ヒーターを熱源とする上記の方法は、赤
外線の全波長0.76〜2.5μ机に亘って輻射する物
が多く、輻射加熱に効率の良い遠赤外線(2,5〜10
00μTrL)が効果的に輻射されるようになっている
わけではないので、エネルギー損失が多く、又、ポリエ
チレンの架橋速度を早めるためには多くの熱源を必要と
する方法であった。
However, in the above method using an infrared heater as a heat source, most of the infrared rays radiate over the entire wavelength range of 0.76 to 2.5 μm, and far infrared rays (2.5 to 10 μm), which are more efficient for radiant heating,
00 μTrL) is not effectively radiated, the method involves a large amount of energy loss and requires a large number of heat sources in order to accelerate the crosslinking rate of polyethylene.

本発明は上記のような実情に鑑みなされたもので、ポリ
エチレンの架橋を遠赤外線を利用し、効果的に実施する
方法に関するものである。
The present invention was made in view of the above-mentioned circumstances, and relates to a method for effectively crosslinking polyethylene using far infrared rays.

次に本発明の実施例(ケーブルの場合)について説明す
れば、次の通りである。
Next, an embodiment of the present invention (in the case of a cable) will be described as follows.

実施例1 22*Aの導体上に、ジ。α、クミルパーオキサイド0
.5重量係含んだ高密度ポリエチレン全3.5゛謹厚に
被覆し、窒素ガスで加圧しながら赤外線ランプを熱源と
し酸化チタン溶射ステンレスを輻射板として遠赤外線輻
射をするようにし加熱温度200℃窒素ガス圧5に−で
、発泡も亀甲模様も生じない架橋ポリエチレン電線を得
た。
Example 1 On a 22*A conductor, di. α, cumyl peroxide 0
.. The coating was carefully coated with high-density polyethylene containing 3.5% by weight, and while pressurized with nitrogen gas, an infrared lamp was used as a heat source and titanium oxide sprayed stainless steel was used as a radiant plate to radiate far infrared rays, and the heating temperature was 200℃ nitrogen. A crosslinked polyethylene electric wire without foaming or hexagonal pattern was obtained at a gas pressure of 5 to -.

実施例2 直径1.の導体上にシロα、クミルノぐ一オヤサイドを
05重量係含んだ低@度ポリエチレンを07鱈厚に被覆
し、ゲージlEl kicrlの窒素中で7−ズヒータ
を熱源として酸化ジルコニウムを溶射したステンレスを
輻射板とし加熱架橋な210℃で行なった。
Example 2 Diameter 1. The conductor is coated with low-temperature polyethylene containing Shiro α and Kumirnoguichi Oyaside to a thickness of 07 mm, and radiant stainless steel is thermally sprayed with zirconium oxide using a 7-Z heater as a heat source in nitrogen with a gauge of 1 El Kicrl. The crosslinking was carried out by heating at 210° C. using a plate.

得られた架橋ポリエチレン電線は発泡もなく、亀甲模様
も生じなかった。
The obtained crosslinked polyethylene electric wire did not have foaming or a hexagonal pattern.

上記と同じような架橋ポリエチレン電線を製造するため
に、従来の赤外綜幅射に比べると同じ程度の熱源では遠
赤外線を利用する本発明の方法がエネルギーロスが少な
いので架橋速度が早く、又、同じ架橋速度を実現するた
めには架橋設備が小さくて済む効果がhる。
In order to manufacture cross-linked polyethylene electric wires similar to those described above, the method of the present invention, which uses far-infrared rays from the same heat source as the conventional infrared beam radiation, has less energy loss, so the cross-linking speed is faster, and , the effect is that the crosslinking equipment needs to be smaller in order to achieve the same crosslinking speed.

なお、上記実施例では架橋ポリエチレン電線の製造につ
いて述べたが、架橋ポリエチレン試料ゾ或は架橋ポリエ
チレンノξイゾについても同様に実施することができる
In addition, although the above-mentioned example described the production of a crosslinked polyethylene electric wire, it can be carried out in the same way for a crosslinked polyethylene sample or a crosslinked polyethylene sample.

次に図面を参照しつ\本発明を説明すると、第1図は実
験装置の一例で、ヒーター1の背面には半円環状の反射
板3を設け、又、その反対面には赤外線を多く輻射する
ステンレス板及びクロム、ジルコニウム、チタニウム等
の金属酸化物からなる遠赤外線輻射性のセラミックを溶
射等によりステンレス板に被覆した輻射板2の谷々を介
在させ、その外側に架橋性ポリエチレンが配置されて加
熱架橋されるようになっている。
Next, to explain the present invention with reference to the drawings, Fig. 1 shows an example of an experimental apparatus, in which a semicircular reflector plate 3 is provided on the back side of the heater 1, and a large amount of infrared rays is emitted on the opposite side of the heater 1. A radiating stainless steel plate and a radiating plate 2 made of a far-infrared radiating ceramic made of metal oxides such as chromium, zirconium, and titanium are coated on the stainless steel plate by thermal spraying, etc., and cross-linked polyethylene is placed on the outside. It is designed to be heated and crosslinked.

なおポリエチレン試料4には熱電対線5を付して温度を
測定した。
Note that a thermocouple wire 5 was attached to the polyethylene sample 4 to measure the temperature.

上記の実検によりポリエチレンの輻射加熱時間とポリエ
チレンの温度との関係図を示せば第2図の通りで、ステ
ンレス板を用いた場合は赤外線の輻射が多くなり、およ
そ17分でポリエチレンは60’Cに達し以後は横這い
であるが、上記の金属酸化物セラミックを塗布した輻射
板では遠赤外線の輻射が多くなり、17分では90℃に
昇り、40分で100℃に達するので、本発明の方法が
極めて有効な加熱手段であると言える。
Figure 2 shows the relationship between the radiation heating time of polyethylene and the temperature of polyethylene based on the above actual test. C and remains the same after that, but in the radiant plate coated with the metal oxide ceramic described above, far-infrared radiation increases, rising to 90°C in 17 minutes and reaching 100°C in 40 minutes. It can be said that this method is an extremely effective heating means.

因みに輻射板の表面温度は本発明によるものは180〜
202℃であるがステンレスでは180〜193℃であ
った。
Incidentally, the surface temperature of the radiation plate according to the present invention is 180~
The temperature was 202°C, but for stainless steel it was 180-193°C.

なお酸化クロム、酸化ジルコニウム及び酸化チタン等を
ステンレス板への溶射のみならず、例えばセラミック焼
結体として形成してもよい。
Note that chromium oxide, zirconium oxide, titanium oxide, etc. may be formed not only by thermal spraying onto a stainless steel plate, but also as a ceramic sintered body, for example.

なお本発明の実施に除し遠赤外線をより多く照射できる
熱源を利用する方がより効果の大きいことは当然でβる
It goes without saying that it is more effective to use a heat source that can irradiate more far infrared rays when implementing the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実験装置の一例についての横断面図(イ)と一
部縦断側面図(ロ)とを示し、第2図はこの装置を用い
た実験例のポリエチレン温度と加熱時間の関係曲線でろ
る。 1ヒーター、2輻射板、3反射板。 代理人弁理士  竹 内   守 第1図
Figure 1 shows a cross-sectional view (a) and a partially longitudinal side view (b) of an example of the experimental equipment, and Figure 2 shows a relationship curve between polyethylene temperature and heating time for an experimental example using this equipment. Ru. 1 heater, 2 radiant plates, 3 reflectors. Representative Patent Attorney Mamoru Takeuchi Figure 1

Claims (1)

【特許請求の範囲】[Claims] 有機過酸化物を含有しているポリエチレン組成物を所定
の形状に成形した後、遠赤外線による輻射加熱を行ない
ポリエチレン組成物中の有機過酸5化物を加熱分解して
ポリエチレンを架橋せしめることを特徴とするポリエチ
レンの加熱架橋方法。
A feature of this method is that after a polyethylene composition containing an organic peroxide is molded into a predetermined shape, radiant heating is performed using far infrared rays to thermally decompose the organic peroxide pentoxide in the polyethylene composition and crosslink the polyethylene. A method for thermally crosslinking polyethylene.
JP22199982A 1982-12-20 1982-12-20 Method for crosslinking polyethylene under heating Granted JPS59113037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22199982A JPS59113037A (en) 1982-12-20 1982-12-20 Method for crosslinking polyethylene under heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22199982A JPS59113037A (en) 1982-12-20 1982-12-20 Method for crosslinking polyethylene under heating

Publications (2)

Publication Number Publication Date
JPS59113037A true JPS59113037A (en) 1984-06-29
JPH0261975B2 JPH0261975B2 (en) 1990-12-21

Family

ID=16775501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22199982A Granted JPS59113037A (en) 1982-12-20 1982-12-20 Method for crosslinking polyethylene under heating

Country Status (1)

Country Link
JP (1) JPS59113037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189233A (en) * 1984-10-08 1986-05-07 Tdk Corp Vulcanization process
EP0921921A2 (en) * 1995-09-20 1999-06-16 Wirsbo Bruks Aktiebolag Method for heating and/or cross-linking of polymers and apparatus therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189233A (en) * 1984-10-08 1986-05-07 Tdk Corp Vulcanization process
EP0921921A2 (en) * 1995-09-20 1999-06-16 Wirsbo Bruks Aktiebolag Method for heating and/or cross-linking of polymers and apparatus therefor
EP0921921B1 (en) * 1995-09-20 2002-06-26 Uponor Wirsbo AB Method for heating and/or cross-linking of polymers and apparatus therefor

Also Published As

Publication number Publication date
JPH0261975B2 (en) 1990-12-21

Similar Documents

Publication Publication Date Title
JPS56100412A (en) Manufacture of semiconductor device
TW201203362A (en) Method for integrating low-k dielectrics
JPH0369150B2 (en)
JPS59113037A (en) Method for crosslinking polyethylene under heating
FR2792774A1 (en) METHOD AND DEVICE FOR TREATING A MATERIAL BY ELECTROMAGNETIC RADIATION AND IN A CONTROLLED ATMOSPHERE
KR100627200B1 (en) Method And Device For Insulating Electro-Technical Components
JPS5727254A (en) Method of producing high heat resistance relief structure
US6551663B1 (en) Method for obtaining reduced thermal flux in silicone resin composites
SE7607041L (en) PROCEDURE FOR CONTINUOUS VULCANIZATION OF LONG-TERM VUCANIZED PRODUCTS AND FACILITIES FOR APPLYING THIS PROCEDURE
JP2017201058A (en) Heat treatment method
DE3062628D1 (en) Method of producing relief structures resistant to a high temperature, relief structures produced thereby and their use
JP6435915B2 (en) Manufacturing method and manufacturing apparatus for enameled wire
JPH10211624A (en) Apparatus for heat bridging of polyethylene insulation layer of power cable
JPS5842796B2 (en) How to dry coated arc welding rods
KR930005390Y1 (en) Capacitor lead orthopedic device bio infrared rays generation apparatus
JPS60127688A (en) Method of producing far infrared ray radiating panel heater
JPS5680138A (en) Manufacture of semiconductor device
JPH10214669A (en) Heating method of power cable connecting part
US2283420A (en) Method of finishing articles
JP2000068265A5 (en)
JPH0536471A (en) Electric heater
JPS566434A (en) Manufacture of semiconductor device
JPS5953645B2 (en) Manufacturing method for cross-linked polyolefin coated wire
JPH0333086B2 (en)
JPS6337948B2 (en)