JPS5953645B2 - Manufacturing method for cross-linked polyolefin coated wire - Google Patents

Manufacturing method for cross-linked polyolefin coated wire

Info

Publication number
JPS5953645B2
JPS5953645B2 JP3959578A JP3959578A JPS5953645B2 JP S5953645 B2 JPS5953645 B2 JP S5953645B2 JP 3959578 A JP3959578 A JP 3959578A JP 3959578 A JP3959578 A JP 3959578A JP S5953645 B2 JPS5953645 B2 JP S5953645B2
Authority
JP
Japan
Prior art keywords
shielding layer
heating device
wire
conductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3959578A
Other languages
Japanese (ja)
Other versions
JPS54131793A (en
Inventor
正毅 松井
芳文 美濃和
憲治 吉沢
進 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3959578A priority Critical patent/JPS5953645B2/en
Publication of JPS54131793A publication Critical patent/JPS54131793A/en
Publication of JPS5953645B2 publication Critical patent/JPS5953645B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は架橋ポリオレフィン被覆電線の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a crosslinked polyolefin coated electric wire.

第1図は架橋または未架橋ポリオレフィン被覆電線の一
例を示す断面図であり、図中1は電気導体、21はこの
導体1上に形成された半導電性を有する導体遮蔽層、3
1はこの導体遮蔽層21を囲繞するように設けられた架
橋(または未架橋)フポリオレフインからなる絶縁層、
41はこの絶縁層31上に設けられた半導電性を有する
絶縁遮蔽層で゛ある。
FIG. 1 is a cross-sectional view showing an example of a crosslinked or uncrosslinked polyolefin-covered electric wire, in which 1 is an electric conductor, 21 is a semiconductive conductive shielding layer formed on this conductor 1, and 3
1 is an insulating layer made of crosslinked (or uncrosslinked) polyolefin provided so as to surround the conductor shielding layer 21;
41 is an insulating shielding layer having semiconductivity provided on this insulating layer 31.

従来、第1図に示すような架橋ポリオレフィン被覆電線
を製造する装置として第2図に示すもの、があつた。
Conventionally, there has been an apparatus shown in FIG. 2 as an apparatus for producing a crosslinked polyolefin-coated wire as shown in FIG.

図において、2は未架橋半導電性コンパウンドを上記電
線芯線としての導体1上に押し出し導体遮蔽層21を形
成せしめる押し出し機、3は例えば未架橋ポリエチレン
を上記導体遮蔽層21上に押し出し絶縁層31を形成せ
しめる押しフ出し機、4は未架橋半導電性コンパウンド
を上記絶縁層31上に押し出し絶縁遮蔽層41を形成せ
しめる押し出し機、11はこれら3つの被覆層21、3
1及び41により被覆された未架橋ポリエチレン被覆電
線、5はこの未架橋ポリエチレン被7覆電線11を外部
より加熱して上記3つの被覆層21、31及び41を架
橋せしめる加熱装置、6は加熱架橋された被覆層を冷却
するための冷却装置である。次に上記のように構成され
た従来装置の動作にθついて説明する。
In the figure, 2 is an extruder for extruding an uncrosslinked semiconductive compound onto the conductor 1 as the wire core wire to form a conductor shielding layer 21, and 3 is an extruder for extruding, for example, uncrosslinked polyethylene onto the conductor shielding layer 21 to form an insulating layer 31. 4 is an extruder for extruding the uncrosslinked semiconductive compound onto the insulating layer 31 to form an insulating shielding layer 41; 11 is an extruder for forming the insulating shielding layer 41;
1 and 41 are uncrosslinked polyethylene-coated wires; 5 is a heating device for heating the uncrosslinked polyethylene-covered wire 11 from the outside to crosslink the three coating layers 21, 31, and 41; and 6 is a heating crosslinking device. This is a cooling device for cooling the coated layer. Next, the operation of the conventional device configured as described above will be explained with respect to θ.

押し出し機2、3及び4によリ形成された導体遮蔽層2
L絶縁層31及び絶縁遮蔽層41により被覆された未架
橋ポリエチレン被覆電線11は加熱装置5中を通過する
間に全被覆層が架橋温度に達するまで加熱される。この
よ5うにして加熱架橋されたポリエチレン被覆電線は冷
却装置6を通過する間に冷却され架橋ポリエチレン被覆
電線10となる。ここで加熱装置5は高圧蒸気、電気ヒ
ータ等を用いた外部表面より加熱する加熱装置のため、
最内部の未架橋被覆層21が架橋温度に達するまで熱伝
導を待たねばならない。今、導体1の直径26mm、被
覆電線11の外径44mm、すなわち被覆厚9mmの電
線を、被覆外表面の温度を270℃に保つて加熱した場
合の昇温特性の一例を第3図に示す。この図において横
軸は電線中心からの距離、縦軸は温度、1,21,31
及び41は第1図に示すものと同一部分を示す。又、e
は導体]の初期温度、fは各被覆層21,31及び41
の初期温度を示す。これらの温度にある電線が加熱装置
5を通過中に加熱されるが、ここでは被覆外表面の温度
を約270℃に保つようにして加熱する装置について、
加熱開始後の経過時間ごとの電線内の温度分布を示して
いる。曲線G,h,i,jはそれぞれ加熱開始後100
秒、200秒、300秒、400秒における温度分布で
ある。この図かられかるように、被覆層の最内部が架橋
温度(約180℃)に達するのは加熱開始後300〜4
00秒である。したがつて、未架橋ポリエチレン被覆電
線は加熱装置中を300〜400秒かかつて通過しなけ
ればならない。そこで、電線製造速度を毎秒10cmと
すれば第1図の加熱装置5の長さは30〜40m必要に
なる。又、この例のような被覆外表面の温度を直接高温
に保つ加熱装置ではなく、高圧蒸気等加熱媒体を通して
加熱する加熱装置ではさらに多くの加熱時間を要し、長
い装置が必要となる。上記のように従来の方法を用いた
装置では、被覆外表面から、熱の不良導体であるポリオ
レフインを通して熱伝導によつて加熱するため、被覆の
厚い電線では最内部が架橋温度に達するまで長時間を要
し、装置が長大なものとなり、又、装置を収容する建屋
も長大あるいは高いものとなる欠点があつた。さらに、
加熱装置として高周波加熱装置を用いる方法も考えられ
ているが、第1図に示すような絶縁遮蔽層4]の設けら
れた電線では、高周波電力の大部分を該絶縁遮蔽層41
で吸収、発熱するため、内部での発熱が少なく、従来の
被覆表面からの加熱による欠点を大きく改善できない。
この発明は上記のような従来の方法の欠点をなくすため
になされたもので、絶縁遮蔽層41を形成する前に、高
周波を用いて導体遮蔽層21を加熱することにより被覆
内部を予備加熱し、その後絶縁遮蔽層41を形成し、再
び加熱し、被覆層全体を短時間に架橋温度に達せしめる
ことにより架橋時間の短縮化を可能とした方法を提供す
ることを目白勺としている。
Conductor shielding layer 2 formed by extruders 2, 3 and 4
The uncrosslinked polyethylene-coated wire 11 covered with the L insulation layer 31 and the insulation shielding layer 41 is heated while passing through the heating device 5 until the entire coating layer reaches the crosslinking temperature. The polyethylene-coated electric wire heat-crosslinked in this way is cooled while passing through the cooling device 6 and becomes a cross-linked polyethylene-coated electric wire 10. Here, the heating device 5 is a heating device that heats from the external surface using high pressure steam, electric heater, etc.
Heat conduction must wait until the innermost uncrosslinked coating layer 21 reaches the crosslinking temperature. Figure 3 shows an example of the temperature rise characteristics when a conductor 1 has a diameter of 26 mm and a covered wire 11 has an outer diameter of 44 mm, that is, a wire with a coating thickness of 9 mm is heated while maintaining the temperature of the outer surface of the coating at 270°C. . In this figure, the horizontal axis is the distance from the center of the wire, and the vertical axis is the temperature, 1, 21, 31
and 41 indicate the same parts as shown in FIG. Also, e
is the initial temperature of the conductor], and f is the initial temperature of each coating layer 21, 31 and 41.
indicates the initial temperature of The electric wire at these temperatures is heated while passing through the heating device 5, but here we will talk about a device that heats the wire while maintaining the temperature of the outer surface of the coating at about 270°C.
It shows the temperature distribution within the wire at each elapsed time after the start of heating. Curves G, h, i, and j are respectively 100% after the start of heating.
These are temperature distributions at seconds, 200 seconds, 300 seconds, and 400 seconds. As can be seen from this figure, the innermost part of the coating layer reaches the crosslinking temperature (approx.
00 seconds. Therefore, the uncrosslinked polyethylene coated wire must pass through the heating device for 300 to 400 seconds. Therefore, if the wire manufacturing speed is 10 cm per second, the length of the heating device 5 shown in FIG. 1 will be 30 to 40 m. Further, instead of a heating device that directly maintains the temperature of the outer surface of the coating at a high temperature as in this example, a heating device that heats the coating through a heating medium such as high-pressure steam takes more heating time and requires a longer device. As mentioned above, in devices using conventional methods, heating is conducted from the outer surface of the sheath through polyolefin, which is a poor conductor of heat, so it takes a long time for thickly sheathed wires to reach the crosslinking temperature at the innermost part. This has the disadvantage that the equipment is long and the building that houses the equipment is also long or tall. moreover,
A method of using a high-frequency heating device as a heating device has been considered, but in the case of an electric wire provided with an insulating shielding layer 4 as shown in FIG.
Since it absorbs and generates heat, there is little heat generated internally, and the drawbacks of conventional coatings caused by heating from the surface cannot be greatly improved.
This invention was made in order to eliminate the drawbacks of the conventional method as described above. Before forming the insulating shielding layer 41, the inside of the coating is preheated by heating the conductive shielding layer 21 using high frequency. The objective is to provide a method in which the crosslinking time can be shortened by subsequently forming the insulating shielding layer 41 and heating it again to bring the entire coating layer to the crosslinking temperature in a short time.

以下、この発明の方法を適用した装置の一実施例を図に
ついて説明する。
An embodiment of an apparatus to which the method of the present invention is applied will be described below with reference to the drawings.

第4図において、5a,5bはそれぞれ高周波電源7,
8よりの高周波電力を未架橋ポリエチレン被覆電線12
,13に与え加熱するための高周波加熱装置である。こ
の他は従来の装置と同じ構成である。次にこの装置の動
作について説明する。
In FIG. 4, 5a and 5b are a high frequency power source 7,
High frequency power from 8 is connected to uncrosslinked polyethylene coated wire 12
, 13 for heating. Other than this, the configuration is the same as the conventional device. Next, the operation of this device will be explained.

従来法と同様にして導体1上に未架橋半導電性コンパウ
ンドからなる導体遮蔽層21および未架橋ポリエチレン
からなる絶縁層31がそれぞれ押し出し機2,3により
形成され、未架橋ポリエチレン被覆電線12を得る。こ
の未架橋ポリエチレン被覆電線12は、その後、高周波
加熱装置5a中を通過する間、高周波電源7よりの高周
波電力を2つの被覆層21及び31のうち主に導体遮蔽
層21が吸収して発熱し、熱の一部は絶縁層31にも伝
達される。さらに、高周波加熱装置5aを通過し被覆層
内部が加熱された未架橋ポリエチレン被覆t線上に、半
導電性コンパウンドを押し出し機4により押し出し、絶
縁遮蔽層41を形成して未架橋ポリエチレン被覆電線1
3を得る。この後、未架橋ポリエチレン被覆電線13は
高周波加熱装置5bを通過する間、高周波電源8よりの
高周波電力を3つの被覆層2],31及び4]のうち主
に絶縁遮蔽層41が吸収し発熱する。このようにして被
覆層全体が架橋温度に達し十分に架橋した電線は、冷却
装置6により冷却され架橋ポリエチレン被覆電線10と
なる。次にこの方法による加熱について図を用いて説明
する。
Similarly to the conventional method, a conductor shielding layer 21 made of an uncrosslinked semiconductive compound and an insulating layer 31 made of uncrosslinked polyethylene are formed on the conductor 1 using extruders 2 and 3, respectively, to obtain an uncrosslinked polyethylene covered wire 12. . While this uncrosslinked polyethylene coated wire 12 then passes through the high frequency heating device 5a, the conductor shielding layer 21 of the two coating layers 21 and 31 absorbs the high frequency power from the high frequency power source 7 and generates heat. , part of the heat is also transferred to the insulating layer 31. Further, a semiconductive compound is extruded by an extruder 4 onto the uncrosslinked polyethylene coated T-wire which has passed through the high frequency heating device 5a and the inside of the coating layer is heated, to form an insulating shielding layer 41, and the uncrosslinked polyethylene coated electric wire 1
Get 3. After that, while the uncrosslinked polyethylene coated electric wire 13 passes through the high frequency heating device 5b, the high frequency power from the high frequency power source 8 is mainly absorbed by the insulating shielding layer 41 of the three coating layers 2], 31 and 4], generating heat. do. The electric wire, in which the entire coating layer reaches the crosslinking temperature in this way and is sufficiently crosslinked, is cooled by the cooling device 6 and becomes a crosslinked polyethylene covered electric wire 10. Next, heating by this method will be explained using figures.

第5図においてeおよびfはそれぞれ導体1および被覆
層の初期温度、つまり高周波加熱装置5aに入る直前の
温度分布を示すものである。さらに、曲線kは高周波加
熱装置5aを出た直後、lは高周波加熱装置5bに入る
直前、mは高周波加熱装置5bを出た直後、nは冷却装
置6に入る直前の温度分布をそれぞれ示す。又、各曲線
の加熱開始すなわち高周波加熱装置5aに入つてからの
経過時間を示せば、kは10秒後、lは20秒後、mは
40秒後、nは70秒後である。したがつて、曲線nで
示されるように、被覆層全体は約70秒で架橋温度(約
180℃)に達する。よつて電線製造速度を毎秒10c
mとすれば加熱装置全体は7mで構成でき従来装置の数
分の1以下となる。又、装置の長さを従来のものと同一
とすれば、製造速度を上げる事ができ、電線単位長さ当
りの製造コストを安くできる。なお、上記実施例では絶
縁遮蔽層41を形成してから後の加熱装置にも高周波加
熱装置を用いたが、この部分は従米の外部から加熱する
加熱装置5を用いてもよく、この場合でも高周波加熱装
置5aにより被覆層内部が加熱されているため、やはり
加熱時間を十分短くでき、加熱装置全体は従来の装置よ
り短いものとする事ができる。
In FIG. 5, e and f respectively indicate the initial temperature of the conductor 1 and the coating layer, that is, the temperature distribution immediately before entering the high frequency heating device 5a. Further, curve k shows the temperature distribution immediately after leaving the high-frequency heating device 5a, l shows the temperature distribution just before entering the high-frequency heating device 5b, m shows the temperature distribution immediately after leaving the high-frequency heating device 5b, and n shows the temperature distribution just before entering the cooling device 6. Furthermore, if the elapsed time for each curve is shown after the start of heating, that is, after entering the high-frequency heating device 5a, k is after 10 seconds, l is after 20 seconds, m is after 40 seconds, and n is after 70 seconds. The entire coating layer therefore reaches the crosslinking temperature (about 180° C.) in about 70 seconds, as shown by curve n. Therefore, the wire manufacturing speed was reduced to 10 c/sec.
m, the entire heating device can be constructed with a length of 7 m, which is less than a fraction of that of conventional devices. Furthermore, if the length of the device is the same as that of the conventional device, the manufacturing speed can be increased and the manufacturing cost per unit length of electric wire can be reduced. In the above embodiment, a high-frequency heating device was also used as a heating device after forming the insulating shielding layer 41, but this part may be heated by a heating device 5 that heats from the outside of the base. Since the inside of the coating layer is heated by the high-frequency heating device 5a, the heating time can be sufficiently shortened, and the entire heating device can be made shorter than the conventional device.

なお上記説明では主に架橋ポリエチレン被覆電線を製造
する場合について述べたが他のポリオレフイン、例えば
ポリピロピレンなどでもよく、さらにこれらポリオレフ
インの共重合体を用いるものでも適用できることは勿論
であり、また上記ポ)オレフイン樹脂に着色剤など公知
の配合材を所望により適宜添加しても差支えない。
Although the above explanation mainly concerns the production of cross-linked polyethylene-coated wires, other polyolefins such as polypropylene may also be used, and copolymers of these polyolefins may also be used. Known compounding materials such as colorants may be appropriately added to the olefin resin as desired.

以上のようにこの発明によれば、絶縁遮蔽層を形成する
前に高周波加熱装置により導体遮蔽層を加熱するように
構成したため架橋時間を大巾に短縮することができると
いう効果がある。
As described above, according to the present invention, since the conductive shielding layer is heated by the high-frequency heating device before forming the insulating shielding layer, the crosslinking time can be significantly shortened.

なお本発明の方法を用いて架橋ポリオレフイン被覆電線
の製造装置を得る場合には装置全体を短くでき、また装
置を収容する建屋も小さいもので済み、設備費を大巾に
安くできる効果かある。あるいは装置の大きさを従来の
ものと同一とすれば製造速度を上げる事ができ、電線単
位長さ当りの製造コストを安くできる効果がある。
In addition, when the method of the present invention is used to obtain an apparatus for manufacturing a crosslinked polyolefin-coated electric wire, the entire apparatus can be shortened, and the building housing the apparatus can also be made small, which has the effect of greatly reducing equipment costs. Alternatively, if the size of the device is the same as that of the conventional device, the manufacturing speed can be increased and the manufacturing cost per unit length of electric wire can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリエチレン被覆電線の断面図、第2図は従来
の架橋ポリエチレン被覆電線の製造装置を示す概略構成
図、第3図は従来の装置による加熱特性の一例、第4図
はこの発明の一実施例による架橋ポリエチレン被覆電線
の製造装置を示す概略構成図、第5図はこの発明の装置
による加熱特性の一例を示すものである。 1・・・・・・導体、2,3及び4・・・・・・押し出
し機、5a,5b・・・・・・高周波加熱装置、10・
・・・・・架橋ポリエチレン被覆電線、2]・・・・・
・導体遮蔽層、31・・・・・・絶縁層、41・・・・
・・絶縁遮蔽層。
Fig. 1 is a cross-sectional view of a polyethylene-coated electric wire, Fig. 2 is a schematic configuration diagram showing a conventional cross-linked polyethylene-coated electric wire manufacturing apparatus, Fig. 3 is an example of heating characteristics by the conventional apparatus, and Fig. 4 is a diagram of the present invention. FIG. 5, which is a schematic configuration diagram showing an apparatus for manufacturing a crosslinked polyethylene coated electric wire according to an embodiment, shows an example of heating characteristics by the apparatus of the present invention. 1... Conductor, 2, 3 and 4... Extruder, 5a, 5b... High frequency heating device, 10.
...Cross-linked polyethylene coated wire, 2]...
・Conductor shielding layer, 31...Insulating layer, 41...
...Insulating shielding layer.

Claims (1)

【特許請求の範囲】 1 導体上に半導電性を有する導体遮蔽層と、この導体
遮蔽層を囲繞するように未架橋のポリオレフィンからな
る絶縁層を設けた後、上記導体遮蔽層を高周波によつて
加熱し、しかる後上記絶縁層を囲繞するように半導電性
を有する絶縁遮蔽層を設け、次いで上記絶縁層を少なく
とも上記ポリオレフインの架橋に必要な温度に加熱する
ようにしたことを特徴とする架橋ポリオレフィン被覆電
線の製造法。 2 ポリオレフィンがポリエチレンであることを特徴と
する特許請求の範囲第1項記載の架橋ポリオレフィン被
覆電線の製造法。
[Claims] 1. After providing a conductor shielding layer having semiconductivity on a conductor and an insulating layer made of uncrosslinked polyolefin so as to surround this conductor shielding layer, the conductor shielding layer is exposed to high frequency. After that, an insulating shielding layer having semiconductivity is provided so as to surround the insulating layer, and then the insulating layer is heated to at least a temperature necessary for crosslinking the polyolefin. A method for producing crosslinked polyolefin coated wire. 2. The method for producing a crosslinked polyolefin-coated electric wire according to claim 1, wherein the polyolefin is polyethylene.
JP3959578A 1978-04-04 1978-04-04 Manufacturing method for cross-linked polyolefin coated wire Expired JPS5953645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3959578A JPS5953645B2 (en) 1978-04-04 1978-04-04 Manufacturing method for cross-linked polyolefin coated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3959578A JPS5953645B2 (en) 1978-04-04 1978-04-04 Manufacturing method for cross-linked polyolefin coated wire

Publications (2)

Publication Number Publication Date
JPS54131793A JPS54131793A (en) 1979-10-13
JPS5953645B2 true JPS5953645B2 (en) 1984-12-26

Family

ID=12557453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3959578A Expired JPS5953645B2 (en) 1978-04-04 1978-04-04 Manufacturing method for cross-linked polyolefin coated wire

Country Status (1)

Country Link
JP (1) JPS5953645B2 (en)

Also Published As

Publication number Publication date
JPS54131793A (en) 1979-10-13

Similar Documents

Publication Publication Date Title
CA2012282A1 (en) Insulated electric wire and process for producing the same
US3479446A (en) Strand shielded cable and method of making
US3635621A (en) Apparatus for crosslinking in curable rubber or plastic electric wire and cable
JPS5953645B2 (en) Manufacturing method for cross-linked polyolefin coated wire
JPH0528838A (en) Insulated electric wire
JP2021170452A (en) Method for manufacturing power transmission cable
JP2002298673A (en) Manufacturing method of crosslinked polyethylene insulation power cable
JPS6331302Y2 (en)
KR101425073B1 (en) Continuous type cable manufacturing device and manufacturing method using the same
JPS6121833Y2 (en)
RU2611727C2 (en) Method and device for stitching or vulcanization of elongated element
JPH0199297A (en) Heat-shrinkable film for electromagnetic wave shield
JPH1153965A (en) Manufacture of cross-linked polyethylene insulated power cable
JPS5833620Y2 (en) Rubber plastic material
JPS60218714A (en) Method of producing rubber, plastic wire and cable
JPS6356650B2 (en)
JPS6048873B2 (en) Method for manufacturing cross-linked polyethylene power cable mold connections
JPS63168920A (en) Manufacture of wire cable
JPH0142586B2 (en)
JPS6014707A (en) Plastic insulated wire for wiring device
JPS5978411A (en) Device for bridging rubber or plastic cable
JPS62264510A (en) Manufacture of crosslinked polyethylene cable
JPH04155717A (en) Manufacture of electric wire with plastic covering
JPS5850166B2 (en) Kakiyo Polyolef Insei Kei Hinno Seizou Hohou
JPH11127516A (en) Extrusion mold connecting construction method for cross-linking polyethylene power cable