JPS60218714A - Method of producing rubber, plastic wire and cable - Google Patents

Method of producing rubber, plastic wire and cable

Info

Publication number
JPS60218714A
JPS60218714A JP59075359A JP7535984A JPS60218714A JP S60218714 A JPS60218714 A JP S60218714A JP 59075359 A JP59075359 A JP 59075359A JP 7535984 A JP7535984 A JP 7535984A JP S60218714 A JPS60218714 A JP S60218714A
Authority
JP
Japan
Prior art keywords
layer
cable
temperature
rubber
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075359A
Other languages
Japanese (ja)
Inventor
利夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59075359A priority Critical patent/JPS60218714A/en
Publication of JPS60218714A publication Critical patent/JPS60218714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、絶縁体の長さ方向での収縮を減少させ、寸法
安定性などの向上を図ったゴム、プラスチック電線拳ク
ープルの製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a rubber or plastic electric wire couple that reduces shrinkage in the longitudinal direction of the insulator and improves dimensional stability. It is something.

〈背景技術とその問題点〉 ゴム、プラスチック電線−ケーブルに訃いて、絶縁体の
長さ方向での収縮が少なく、寸法安定性がよいことは、
電線・ケーブルの接続部や終端部にあって、施工当初の
状態がそのま〜維持され、経時的に絶縁体がずれたp1
剥離したシすることがないなどの利点がある。
<Background technology and its problems> Rubber and plastic electric wires - The fact that the cable has little shrinkage in the longitudinal direction of the insulator and good dimensional stability is that
P1 located at the connection or terminal part of electric wires/cables, where the initial state of construction is maintained and the insulation has shifted over time.
It has the advantage of not causing peeling or staining.

しかしながら、従来の通常の方法により、製造され九ゴ
ム、プラスチック電線拳ケーブルにあっては、寸法安定
性が一般に悪かった。
However, the dimensional stability of rubber, plastic cables manufactured by conventional conventional methods has generally been poor.

そこで、本発明者は、従来の電線−ケーブルにおける絶
縁体の長さ方向での収縮原因について、種々の検討を加
えた。
Therefore, the present inventor conducted various studies regarding the causes of shrinkage in the length direction of the insulator in conventional electric wires and cables.

先ず、従来の電線・ケーブルは、導体外7i!13にゴ
ム、プラスチックの絶縁体層を押出被覆した後、通常加
熱架橋させ、その後冷却させて製造されているが、この
架橋工程では電線嗜ケーブル温度が150〜350℃に
も達し、この後、上記のように冷却される。
First of all, conventional electric wires and cables are 7i outside the conductor! After coating 13 with an insulating layer of rubber or plastic by extrusion, it is usually manufactured by heating and crosslinking, and then cooling it, but in this crosslinking process, the temperature of the electric wire cable reaches 150 to 350°C, and after this, Cooled as above.

とヒろが、この冷却工程では、電線・ケーブルの絶縁体
層は、外層側から温度が低下してくるため、絶縁体層の
内層側と外層側とでは温度差が生じ、ある特定の温度分
布が生ずることが確認された。
Tomohiro explains that in this cooling process, the temperature of the insulating layer of the wire/cable decreases from the outer layer side, so a temperature difference occurs between the inner layer side and the outer layer side of the insulating layer, and at a certain temperature It was confirmed that a distribution occurred.

これを、模式的に示すと、第1図の如くである。This is schematically shown in FIG. 1.

導体1外周に被覆され九絶縁体層2にS?いて、冷却〒
程に入ってからの各経過時間における温度分布を表わす
と t/、 −t/、の直線および曲線で表わされる。
The outer circumference of the conductor 1 is coated with S? and cool it down
The temperature distribution at each elapsed time after entering the temperature range is represented by straight lines and curves of t/ and -t/.

即ち、加熱架橋後で冷却工程へ入る直前では、絶縁体層
2の外層の温度は、架橋温度aと岡じであるが、最終的
には水温すと同じ温度lで冷却される。このとき、各線
l′1〜4の変化から見ると、絶縁体層2の外lり側が
内層側に比べて先に冷却される傾向をとる。このことは
、絶縁体層2の外周が最初に固化し初めるため、絶縁体
層2の内部に応力が生じることを意味し、製品ぶなった
後には、電線争ケーブル中に残留応力として内蔵された
筐\となる。
That is, immediately before entering the cooling process after heating crosslinking, the temperature of the outer layer of the insulator layer 2 is about the same as the crosslinking temperature a, but it is finally cooled to the same temperature l as the water temperature. At this time, when looking at the changes in the lines l'1 to l'4, there is a tendency that the outer side of the insulating layer 2 is cooled earlier than the inner layer side. This means that the outer periphery of the insulating layer 2 begins to solidify first, so stress is generated inside the insulating layer 2, and after the product breaks, residual stress is built up in the cable. It becomes Takyō\.

こOような電線・ケーブルを使用すると、通電の際の温
度上昇によって、内蔵の残留応力が解放される。このた
め、絶縁体層は長さ方向に収縮する。
When such wires and cables are used, the built-in residual stress is released due to the temperature rise during energization. Therefore, the insulator layer contracts in the length direction.

〈発明の目的〉 本発明は、このような従来技術による絶縁体の収縮現象
に鑑みてなされたものである。即ち、本発明の目的とす
るとζ為は、加熱架橋後、常法による冷却工程に入る前
に1絶縁体に従来にない特殊な熱処理を施して、絶縁体
層内に残留応力が内蔵されな込ようKし、絶縁体の長さ
方向への収縮をなくし九電線・クープルの製造方法を提
供せんとするKある。
<Object of the Invention> The present invention has been made in view of the shrinkage phenomenon of insulators according to the prior art. That is, according to the purpose of the present invention, ζ is achieved by subjecting an insulator to an unprecedented special heat treatment after thermal crosslinking and before entering a cooling process by a conventional method, so that no residual stress is built up in the insulator layer. An attempt is made to provide a method for manufacturing nine electric wires/couples that eliminates shrinkage of the insulator in the longitudinal direction.

′〈発明の概要〉 本発明は、要約すると、導体外周に絶縁体を押出被機し
、加熱架橋した後、絶縁体層の半径方向(厚さ方向)に
訃いて、導体側と外層の温度に対し、内層中央部の温度
が低くい形をとる凹状の温度分布を持つ熱地理を施し、
しかる後、常法によル冷却させる方法である。
′<Summary of the Invention> To summarize, the present invention involves extruding an insulator around the outer periphery of a conductor, cross-linking it by heating, and then expanding the insulator layer in the radial direction (thickness direction) to adjust the temperature of the conductor side and the outer layer. In contrast, we applied thermogeography with a concave temperature distribution in which the temperature in the central part of the inner layer is low, and
After that, it is cooled by a conventional method.

こAJ7具体具体的式模式化示すと、第2図C如くであ
る。即ち、導体1外周に被覆された絶縁体層2において
、上記凹状の゛温度分布を示すと、曲線、t、I/c表
わされる。この温度分布を持つ熱処理は、例えば、加熱
架橋後、短時間冷却した後、穫び短時間ではあるが加熱
することにより得られる。この特殊熱処理により、一度
外層から冷却された絶縁体は、衿加熱により軟化するた
め、・絶縁体層2内に内蔵されようとした応力が開放さ
れ、残留するととはなくなる、と思われる。したがって
、でき九電線0クープルにおりて、絶縁体層2の長さ方
向での収縮が極めて小さくなる。
A concrete example of this AJ7 is as shown in FIG. 2C. That is, in the insulating layer 2 covering the outer periphery of the conductor 1, the concave temperature distribution is represented by a curve, t, I/c. A heat treatment having this temperature distribution can be obtained, for example, by heating crosslinking, cooling for a short time, harvesting, and then heating for a short time. Due to this special heat treatment, the insulator, once cooled from the outer layer, is softened by collar heating, so that the stress that was intended to be built into the insulator layer 2 is released and no longer remains. Therefore, the number of wires can be reduced to 0, and the shrinkage in the length direction of the insulating layer 2 is extremely small.

このとき、絶縁体層2の外層の軟化がスムーズに行なわ
れるように、上記凹状温度分布忙おいて、導体側と外層
の温度が絶縁体の融点以上であることが好ましい。
At this time, in order to smoothly soften the outer layer of the insulator layer 2, it is preferable that the temperature of the conductor side and the outer layer be equal to or higher than the melting point of the insulator in the concave temperature distribution.

なお、第2図の直線筒えは曲線l!〜i6において、i
lは加熱架橋後の温度分布、12は短時間冷却した後の
温度分布、ちは上記したように衿加熱によシ形成された
凹状の温度分布、iζ〜i6は通常による冷却に入った
後の各温度分布である。
In addition, the straight tube in Figure 2 is a curve l! ~i6, i
l is the temperature distribution after thermal crosslinking, 12 is the temperature distribution after short-time cooling, is the concave temperature distribution formed by collar heating as described above, and iζ to i6 are after normal cooling. These are the respective temperature distributions.

〈実施例〉 実施例夏 3251o12軟銅撚線導体に内部半導電層、ポリエチ
レン絶縁体層、外部半導電層を夫−4111%12■、
0.5關厚に押出被覆し、連続加硫機で、圧力6 ”g
/an2、・200℃、30分間加熱架橋させる。
<Example> Example Summer 3251o12 annealed copper stranded wire conductor with an inner semiconducting layer, a polyethylene insulating layer, and an outer semiconducting layer -4111%12,
Coated by extrusion to a thickness of 0.5 mm, using a continuous vulcanizer at a pressure of 6 ”g.
/an2, - Heat crosslinking at 200°C for 30 minutes.

次いで、10分間25℃で冷却し、その後再び110分
間200℃で加熱する。との後、通常の冷却方式によシ
冷却して、ケーブルを作つえ。
It is then cooled at 25° C. for 10 minutes and then heated again at 200° C. for 110 minutes. After that, cool it using the normal cooling method and make the cable.

実施例■ 100■2軟銅撚線導体に内部半導電層、ポリエチレン
絶縁体層、外部半導電層を夫々1m。
Example 1 100 2 Annealed copper stranded wire conductor with 1 m each of an inner semiconducting layer, a polyethylene insulating layer, and an outer semiconducting layer.

12m、0.5m厚く押出被覆し、連続加硫機、で、圧
力6 K g/cm2.200℃、20分間加熱架橋さ
せる。次いで、7分間25℃で冷却し、その4&搏び7
分間200℃で加熱する。この後、通常の冷却方式によ
シ冷却してケーブルを作った。
Extrusion coating was carried out to a thickness of 12 m and 0.5 m, and heat crosslinked in a continuous vulcanizer at a pressure of 6 K g/cm at 200° C. for 20 minutes. Then, cool at 25°C for 7 minutes,
Heat at 200°C for minutes. After this, the cable was cooled using the usual cooling method.

実施例■ 100 wx”軟銅撚線導体に内部半導電層、ポリエチ
レン絶縁体層、外部半導電層を夫々lB18龍、0.5
B厚に押出被覆し、連続加硫機で、圧力6Kg/an2
,200℃、20分間加熱架橋させる。次いで、7分間
25℃で冷却し、その後再び7分間200℃で加熱する
。この後、通常の冷却方式によ々冷却して、ケーブルを
作った。
Example ■ A 100 wx” annealed copper stranded wire conductor with an inner semiconducting layer, a polyethylene insulating layer, and an outer semiconducting layer each having a thickness of 1B18, 0.5
Extrusion coated to B thickness, continuous vulcanizer, pressure 6Kg/an2
, 200°C for 20 minutes. It is then cooled at 25° C. for 7 minutes and then heated again at 200° C. for 7 minutes. After this, the cable was made by cooling it using a normal cooling method.

比較例■ 325 m2軟銅撚線導体に内部半導電層、ポリエチレ
ン絶縁体層、外部半導電層を夫々1mm、12IE1%
 0.5sm厚に押出被覆し、連続加硫機で、圧力6K
g/cm2s 200℃、40分間加熱架橋させる。
Comparative example ■ 325 m2 annealed copper stranded wire conductor with an inner semiconducting layer, a polyethylene insulating layer, and an outer semiconducting layer of 1 mm each, 12IE 1%
Extrusion coated to a thickness of 0.5 sm, continuous vulcanizer, pressure 6K
g/cm2s Heat crosslinking at 200°C for 40 minutes.

次いで、通常の冷却方式により冷却して、ケーブルを作
った。
The cable was then cooled using a conventional cooling method.

比較例■ 100m”軟銅撚線導体に内部半導電層、ポリエチレン
絶縁体層、外部半導電層を夫々1 m512m%0.5
℃厚に押出被覆し、連続加硫機で電圧力θKgメー2,
200℃、40分間加熱架橋させる。次いで、通常の冷
却方式によ)冷却して、ケーブルを作った。
Comparative example ■ 100m” annealed copper stranded wire conductor with inner semiconducting layer, polyethylene insulating layer, and outer semiconducting layer each 1 m512m%0.5
Extrusion coated to a thickness of ℃, and applied with a continuous vulcanizer to a voltage of θKg.
Heat crosslinking at 200°C for 40 minutes. The cable was then cooled (using a conventional cooling method) to form a cable.

以上の各実施例および比較例において530cmのケー
ブル試料を取)田し、180℃で24時間放置した後、
押出被覆層の寸法変化を測定したとζろ、下記の第1表
の結果を得た。
In each of the above Examples and Comparative Examples, a 530 cm cable sample was taken and left at 180°C for 24 hours.
The dimensional changes of the extruded coating layer were measured and the results shown in Table 1 below were obtained.

第1表 収縮特性 この第1表から、本発明方法により製造されたクープル
の絶縁体層を生体とする押出被覆層の収縮率が、比較例
の従来方法忙よるケーブルのそれど比較して著しく小さ
−ことがわかる。
Table 1 Shrinkage Properties From Table 1, it can be seen that the shrinkage rate of the extruded coating layer made of the insulating layer of the couple produced by the method of the present invention is significantly higher than that of the comparative cable made by the conventional method. I understand that it is small.

なお、上記実施例では、絶縁体層の内外に半導電層をR
けた被覆層についてであったが、本発明は、絶縁体層の
み、あるいは半導電層の一方を省略し良場合にも同様の
結果を得ることがで春る。
In the above embodiment, semiconducting layers are placed inside and outside the insulating layer.
Although the above-mentioned explanation was about a multi-layer coating layer, the present invention makes it possible to obtain similar results even when only the insulating layer or one of the semiconducting layers is omitted.

また、電線についても同様である。The same applies to electric wires.

〈発明の効果〉 本発明によると、以上の説明から明らかなように、ゴム
、プラスチック電線・ケーブルの製造方法において、導
体外周に絶縁体を押出被覆し、加熱架橋した後、絶縁体
層の半径方向において、導体側と外層の温度に対し、内
層中央部の温度が低い形をとる凹状の温度分布を持つ熱
処理を施し、しかる後、常法により冷却させるものであ
るため、応力が絶縁体層内に残留することがなく、使用
中の通電により温度上昇しても、長さ方向での収縮が殆
どなくなる。したが2て、寸法安定性がよく、電線・ケ
ーブルの接続部や終端部において、封止用のモールド樹
脂と、電線・ケーブルの絶縁体との間の界面の密着力が
低下したり、あるいは界面に剥離が生じたシすることが
なく、破壊電圧の著し一向上効果を得ることができる。
<Effects of the Invention> According to the present invention, as is clear from the above description, in the method for manufacturing rubber or plastic electric wires/cables, an insulator is extruded and coated around the outer periphery of a conductor, and after cross-linking by heating, the radius of the insulator layer is Heat treatment is performed to create a concave temperature distribution in which the temperature in the center of the inner layer is lower than that of the conductor side and the outer layer, and then cooled by a conventional method. The material does not remain inside the material, and there is almost no shrinkage in the length direction even if the temperature rises due to energization during use. However, the dimensional stability is good, and the adhesion of the interface between the sealing mold resin and the wire/cable insulator may decrease at the connection or termination portion of the wire/cable. No peeling occurs at the interface, and the effect of significantly improving breakdown voltage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1r1!!Jは従来方法による電線−ケーブルの絶縁
体層における各時間経過時の温度分布を模式的に示した
説明図、第2図は本発明方法による電線−ケーブルの絶
縁体層における各時間経過時の温度分布を模式的に示し
た説明図である。 図中 1・・・導体、2・・Φ絶縁体層、 ’1〜i6拳・・
温度分布の各直線および曲線。
1st r1! ! J is an explanatory diagram schematically showing the temperature distribution over time in the insulating layer of an electric wire-cable according to the conventional method, and FIG. FIG. 2 is an explanatory diagram schematically showing temperature distribution. In the diagram, 1...conductor, 2...Φ insulator layer, '1~i6 fist...
Each straight line and curve of the temperature distribution.

Claims (2)

【特許請求の範囲】[Claims] (1)、導体の外周にゴムまたはプラスチックの絶縁体
層を押出被覆し、該絶線体)Mを加熱架橋させた後、冷
却せしめるゴム、プラスチック電線−ケーブルの製造方
法においで、加熱架橋後、絶縁体層の半径方向にお騒て
、導体側と外層の温度に対し、内層中央部の温度が低く
い凹状の温度分布を持つ熱処理を施すことを特徴とする
ゴム、プラスチック電線・クープルの製造方法。
(1) In a method of manufacturing a rubber or plastic electric wire-cable, in which a rubber or plastic insulating layer is extruded and coated on the outer periphery of a conductor, the disconnected wire member (M) is heated and crosslinked, and then cooled. , a rubber or plastic electric wire/couple characterized by applying heat treatment in the radial direction of the insulating layer and having a concave temperature distribution where the temperature in the center of the inner layer is lower than that of the conductor side and the outer layer. Production method.
(2)、上記凹状温度分布のうち、導体側および外層の
温度が上記絶縁体の融点以上であることを特徴とする特
許請求の範囲□第1項記載のゴム、プラスチック電線吻
ケーブルの製造方法。
(2) In the concave temperature distribution, the temperature of the conductor side and the outer layer is higher than the melting point of the insulator □ The method for manufacturing a rubber or plastic electric wire snout cable according to claim 1 .
JP59075359A 1984-04-14 1984-04-14 Method of producing rubber, plastic wire and cable Pending JPS60218714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075359A JPS60218714A (en) 1984-04-14 1984-04-14 Method of producing rubber, plastic wire and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075359A JPS60218714A (en) 1984-04-14 1984-04-14 Method of producing rubber, plastic wire and cable

Publications (1)

Publication Number Publication Date
JPS60218714A true JPS60218714A (en) 1985-11-01

Family

ID=13573948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075359A Pending JPS60218714A (en) 1984-04-14 1984-04-14 Method of producing rubber, plastic wire and cable

Country Status (1)

Country Link
JP (1) JPS60218714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168920A (en) * 1986-12-30 1988-07-12 株式会社フジクラ Manufacture of wire cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712485A (en) * 1980-06-26 1982-01-22 Mitsubishi Electric Corp Semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712485A (en) * 1980-06-26 1982-01-22 Mitsubishi Electric Corp Semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168920A (en) * 1986-12-30 1988-07-12 株式会社フジクラ Manufacture of wire cable

Similar Documents

Publication Publication Date Title
JPS60218714A (en) Method of producing rubber, plastic wire and cable
KR100271880B1 (en) Heat treatment of cable
JP2002298673A (en) Manufacturing method of crosslinked polyethylene insulation power cable
JPS63131409A (en) Extrusion drawn insulated wire
JP2637547B2 (en) Insulated wire
JPH10223071A (en) Manufacture of cross-linked polyethylene insulation power cable
JPH052936A (en) Manufacture of power cable
JPH0646845B2 (en) Method for forming insulator of power cable connection
JPS5880212A (en) Method of producing high foamable coaxial cable
JPS5810254Y2 (en) Continuous cable crosslinking equipment
JPS63168920A (en) Manufacture of wire cable
JPH0568075B2 (en)
JP2598850B2 (en) Method of manufacturing power cable connection
JPS60128815A (en) Method of producing molding type connection unit for power cable
JPS59171483A (en) Method of heating polyolefin insulated cable at time of producing connector
JPH07236216A (en) Mold joint for crosslinked polyethylene cable with sheath separation and jointing method
JPS5849377B2 (en) Rubber plastic cable set up
JPH0467420B2 (en)
JPS6114639B2 (en)
JPH02237394A (en) Voice coil for speaker
JPS59184406A (en) Cabtire cable and method of producing same
JPS5942409B2 (en) electric cable
JPH07101965B2 (en) Cross-linked polyethylene insulation cable connection method
JPS5857278A (en) Method of producing plastic insulated power cable connector
JPS58212013A (en) Method of producing insulating wire