JPS59110639A - Production of aromatic alcohol - Google Patents

Production of aromatic alcohol

Info

Publication number
JPS59110639A
JPS59110639A JP57220224A JP22022482A JPS59110639A JP S59110639 A JPS59110639 A JP S59110639A JP 57220224 A JP57220224 A JP 57220224A JP 22022482 A JP22022482 A JP 22022482A JP S59110639 A JPS59110639 A JP S59110639A
Authority
JP
Japan
Prior art keywords
palladium
catalyst
aromatic
reaction
fixed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57220224A
Other languages
Japanese (ja)
Other versions
JPH0316934B2 (en
Inventor
Harushige Sugawara
菅原 晴茂
Yoshi Koshibe
越部 美
Takashi Okawa
尚 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57220224A priority Critical patent/JPS59110639A/en
Publication of JPS59110639A publication Critical patent/JPS59110639A/en
Publication of JPH0316934B2 publication Critical patent/JPH0316934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:The hydrogenation of aromatic hydroperoxide is conducted using a fixed bed of a palladium catalyst of more than 200m<2>/g. Pd surface area to enable stabilized production of the titled substance for a long period of time without palladium leaching away. CONSTITUTION:A catalyst containing palladium with a surface area ranging from 200m<2>/g. Pd, preferably to 350m<2>/g. Pd is used as a fixed bed to carry out the hydrogenation of aromatic peroxides to give the titled compound. The temperature of the hydrogenation reaction is 0-120 deg.C, liquid space velocity is 0.1- 20hr<-1> and the feed of hydrogen is 1-10 times the stoichiometric amount based on the peroxide. The palladium-containing catalyst means any catalyst containing palladium only or additionally carrier that has a strength and particle sizes enough to be used as a fixed bed catalyst.

Description

【発明の詳細な説明】 本発明は芳香族ヒドロペルオキシドを水素還元して対応
する芳香族アルコールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrogen reduction of aromatic hydroperoxides to produce the corresponding aromatic alcohols.

芳香族ヒドロペルオキシドから芳香族アルコールを製造
する方法としては、亜硫酸塩類の水溶液で還元する方法
、水素添加触媒の存在下水素還元する方法などが知られ
ており、特公昭39−26961号では、ラネーニッケ
ル、パラジウムなどを担体に担持させた触媒を用いてク
メンヒドロペルオキシドを水素還元してα−クミルアル
コールを製造する方法が示されており、パラジウム含有
触媒存在下水素還元により、芳香族ヒドロペルオキシド
から芳香族アルコールを製造する方法は公知である。
Known methods for producing aromatic alcohols from aromatic hydroperoxides include reduction with an aqueous solution of sulfites and hydrogen reduction in the presence of a hydrogenation catalyst. A method for producing α-cumyl alcohol by hydrogen reduction of cumene hydroperoxide using a catalyst supported on a carrier such as palladium has been shown. Methods for producing aromatic alcohols are known.

この芳香族ヒドロペルオキシドの水素還元反応は大きな
発熱を伴うので、副反応を防止し、水素の溶解を助長し
て反応を円滑に進めるため飽和炭化水素あるいは飽和側
鎖を有する芳香族炭化水素など水と非混和性の溶媒が使
用されている。
This hydrogen reduction reaction of aromatic hydroperoxides is accompanied by a large amount of heat, so in order to prevent side reactions and promote the dissolution of hydrogen so that the reaction proceeds smoothly, we use water such as saturated hydrocarbons or aromatic hydrocarbons with saturated side chains. A solvent that is immiscible with is used.

しかしながら溶媒を使用するこのような方法では触媒の
活性低下が早く起こるという欠点があり、そのため工業
的にはパラジウム含有触媒の使用量が少なくて、長時間
触媒活性が低下せず、触媒の繰り返し使用ができる方法
の開発が要望されている。
However, this method of using a solvent has the disadvantage that the activity of the catalyst quickly decreases. Therefore, industrially, the amount of palladium-containing catalyst used is small, the catalyst activity does not decrease for a long time, and the catalyst can be used repeatedly. There is a need for the development of a method that can do this.

この要求に応える方法として、これまで、パラジウム表
面積10ないし200n?/g−Pdのパラジウム触媒
の存在下に第三級芳香族ヒドロペルオキシドの水素還元
を行い担体に担持されたパラジウム金属の溶出による触
媒の劣化を防止する方法が提案されている(特開昭55
−167238号)。しかし、この方法においては、パ
ラジウム表面積は200In/g−Pd以下であること
が必要不可欠であり、表面積がこの値以上のパラジウム
触媒を用いるとパラジウム溶出率が著しく高くなり経時
的活性低下も大きくなってしまう。
As a method to meet this requirement, palladium surface area of 10 to 200n? A method has been proposed in which a tertiary aromatic hydroperoxide is hydrogen-reduced in the presence of a palladium catalyst of /g-Pd to prevent deterioration of the catalyst due to elution of palladium metal supported on a carrier (Japanese Unexamined Patent Application Publication No. 1983-1972).
-167238). However, in this method, it is essential that the palladium surface area is 200 In/g-Pd or less, and if a palladium catalyst with a surface area greater than this value is used, the palladium elution rate will be significantly high and the activity will decline significantly over time. It ends up.

本発明者らは、こうした、パラジウム触媒の存在下、水
素還元により芳香族ヒドロペルオキシドから芳香族アル
コールを製造する方法の上記欠点を克服するため鋭意研
究を重ねた結果、パラジウム表面積20On?/g−P
d以上のパラジウム触媒を用いて、反応方法を固定床固
液接触反応とすれば、意外にもパラジウムの溶出がほと
んど認められず、むしろ効率良く目的の芳香族アルコー
ルを得ることができることを見出し、この知見に基づき
本発明を完成するに至った。
The present inventors have conducted extensive research to overcome the above-mentioned drawbacks of the method for producing aromatic alcohols from aromatic hydroperoxides by hydrogen reduction in the presence of a palladium catalyst, and have found that palladium has a surface area of 20 On? /g-P
We discovered that when a fixed-bed solid-liquid contact reaction is used as a reaction method using a palladium catalyst of d or more, there is surprisingly little elution of palladium, and the desired aromatic alcohol can be obtained more efficiently. Based on this knowledge, we have completed the present invention.

すなわち本発明は、芳香族ヒドロペルオキシドを水素還
元するに当り、パラジウム表面積200nl’/g−P
d以上のパラジウム含有触媒を、固定床として用いて反
応を行わせることを特徴とする芳香族アルコールの製造
方法を提供するものである。
That is, in the present invention, when reducing aromatic hydroperoxide with hydrogen, the palladium surface area is 200 nl'/g-P.
The present invention provides a method for producing an aromatic alcohol, characterized in that the reaction is carried out using a palladium-containing catalyst of d or more as a fixed bed.

本発明方法は、各種有機薬品の中間体、溶剤として有用
な芳香族アルコールを工業的に効率良く製造できる方法
を提供することを目的としている。
The purpose of the method of the present invention is to provide a method for industrially and efficiently producing aromatic alcohols useful as intermediates and solvents for various organic chemicals.

以下本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明方法を適用する芳香族ヒドロペルオキシドの具体
例としては、α−フェニルエチルヒドロベルオキシト、
クメンヒドロペルオキシド、シメンヒドロペルオキシド
、ジイソプロピルベンゼンモノヒドロペルオキシド、ジ
イソプロピルベンゼンジヒドロペルオキシドなどがあげ
られ、炭素原子数8以上の芳香族ヒドロペルオキシドが
好ましい。芳香族ヒドロペルオキシドは適尚な溶媒に溶
解させてもよく、この溶媒は芳香族ヒドロペルオキシド
を溶解するものであれば特に制限はない。
Specific examples of aromatic hydroperoxides to which the method of the present invention is applied include α-phenylethyl hydroperoxide,
Examples include cumene hydroperoxide, cymene hydroperoxide, diisopropylbenzene monohydroperoxide, diisopropylbenzene dihydroperoxide, and aromatic hydroperoxides having 8 or more carbon atoms are preferred. The aromatic hydroperoxide may be dissolved in a suitable solvent, and this solvent is not particularly limited as long as it dissolves the aromatic hydroperoxide.

また、芳香族ヒドロペルオキシドは他の物質との混合物
でもよく、例えば、通常、クメンを酸化して相当するヒ
ドロペルオキシドを製造するときに得られる未反応クメ
ンと第三級ヒドロペルオキシドの混合物でもよい、。
The aromatic hydroperoxide may also be a mixture with other substances, for example, a mixture of unreacted cumene and tertiary hydroperoxide, which is usually obtained when cumene is oxidized to produce the corresponding hydroperoxide. .

本発明方法において溶媒又は混合物中の芳香族ヒドロペ
ルオキシドの濃度は、芳香族ヒドロペルオキシドの種類
及び水素還元反応の反応条件に応じて適宜決定されるが
、一般的には約1〜90重量%の範囲で定められる。
In the method of the present invention, the concentration of aromatic hydroperoxide in the solvent or mixture is appropriately determined depending on the type of aromatic hydroperoxide and the reaction conditions of the hydrogen reduction reaction, but is generally about 1 to 90% by weight. Defined by range.

本発明において用いられるパラジウム含有触媒とは、パ
ラジウム自体の他、活性炭、アルミナ、カーボランダム
、チタニア、シリカ−アルミナ、シリカなどの担体にパ
ラジウムを担持させたもので固定床触媒として一般的に
必要な強度、粒径を有するものであればよい。このよう
なパラジウム含有触媒はパラジウム表面積が200m/
g−Pdであることが必要である。これにより触媒を極
めて高活性でかつ寿命の長いものにできる。また、操作
条件の変動による負荷増加に対しても十分対応が可能と
なる。さらに、長時間連続運転してもパラジウムの溶出
が少なくなる。すなわち、転化率、選択率共に良好で効
率良い還元が可能となる。なお、ここで言うパラジウム
の表面積(以下MSAと略記する)は−酸化炭素吸着法
により測定したものである。
The palladium-containing catalyst used in the present invention is one in which palladium is supported on a carrier such as activated carbon, alumina, carborundum, titania, silica-alumina, or silica, in addition to palladium itself, and is generally required as a fixed bed catalyst. Any material may be used as long as it has strength and particle size. Such a palladium-containing catalyst has a palladium surface area of 200 m/
It is necessary to be g-Pd. This allows the catalyst to have extremely high activity and a long life. Furthermore, it is possible to sufficiently deal with increases in load due to changes in operating conditions. Furthermore, palladium elution is reduced even during long-term continuous operation. That is, efficient reduction with good conversion rate and selectivity is possible. Note that the surface area of palladium (hereinafter abbreviated as MSA) mentioned here is measured by a -carbon oxide adsorption method.

MSAが200♂/g−Pd未満では操作条件の変動に
よる負荷変動への対応が不可能となり、転化率が低下す
る。また、パラジウム溶出量が高くなり経時的活性低下
が大きくなる。一方、MSAの上限は特に制限はないが
350 rrl/g−Pdまでの範囲が好ましい。
When the MSA is less than 200♂/g-Pd, it becomes impossible to cope with load fluctuations due to fluctuations in operating conditions, and the conversion rate decreases. In addition, the amount of palladium eluted increases and the activity decreases over time. On the other hand, the upper limit of MSA is not particularly limited, but is preferably up to 350 rrl/g-Pd.

このようなMSAが200d/g−Pd以上のノくラジ
ウム含有触媒としては、例えば平均粒径0.5皿から2
0龍の担体に0.1ないし2重量%程度のノ(ラジウム
が担持されたものをあげることができる。
Such a radium-containing catalyst with an MSA of 200 d/g-Pd or more may have an average particle size of 0.5 to 2.
An example is a carrier in which approximately 0.1 to 2% by weight of radium is supported.

また、このパラジウム含有触媒は助触媒として他の貴金
属化合物、例えば白金、ロジウム、ルテニウムなどを含
有していてもよい。なお、パラジウムの表面積の調整は
常法に従って行うことができる。
The palladium-containing catalyst may also contain other noble metal compounds such as platinum, rhodium, ruthenium, etc. as co-catalysts. Note that the surface area of palladium can be adjusted according to a conventional method.

このパラジウム含有触媒の固定床を形成する反応器とし
ては、多管式反応器、単管式反応器など公知の固定床反
応器を用いることができる。
As a reactor for forming the fixed bed of the palladium-containing catalyst, a known fixed bed reactor such as a multi-tubular reactor or a single-tubular reactor can be used.

本発明において、水素還元の反応条件は、芳香族ヒドロ
ペルオキシドの種類によって適宜最適な条件範囲が決定
されるが、反応温度については、0ないし120℃が好
ましい。0℃未満では反応の進行が遅くなると共に、工
業的に、工業用水以外の冷却手段が必要となり、120
℃を越えると芳香族ヒドロペルオキシドの自己分解反応
が促進されやすく、副生成物の増加を招くことになる。
In the present invention, the optimal range of reaction conditions for hydrogen reduction is determined depending on the type of aromatic hydroperoxide, but the reaction temperature is preferably 0 to 120°C. Below 0°C, the reaction progresses slowly and industrially requires cooling means other than industrial water.
If the temperature exceeds .degree. C., the self-decomposition reaction of the aromatic hydroperoxide is likely to be accelerated, resulting in an increase in by-products.

他の反応条件については、反応温度は0ないし5゜’f
/cat G、反応液量は触媒に対する液基準空間速度
(LH3V)で0.1ないし20hr−1、また水氷ガ
スの供給量は、芳香族ヒドロペルオキシドに対して化学
量論量の1ないし10倍量程度が好ましい。
For other reaction conditions, the reaction temperature is between 0 and 5°F.
/cat G, the amount of reaction liquid is 0.1 to 20 hr-1 in liquid standard hourly space velocity (LH3V) to the catalyst, and the amount of water ice gas supplied is 1 to 10 stoichiometric amount to aromatic hydroperoxide. About double the amount is preferable.

このように本発明は、パラジウム表面積200nI/g
−Pd以上のパラジウム含有触媒を充填した固定床反応
器を用いるものであって、これにより芳香族ヒドロペル
オキシドの水素還元反応によりほとんど定量的に、対応
する芳香族アルコールが得られ、しかも触媒は長時間の
反応によっても活性を失なわない、というすぐれた作用
効果を奏する。
Thus, the present invention provides palladium with a surface area of 200 nI/g.
- A fixed bed reactor packed with a palladium-containing catalyst of Pd or higher is used, whereby the corresponding aromatic alcohol can be obtained almost quantitatively by the hydrogen reduction reaction of the aromatic hydroperoxide, and the catalyst can be used for a long time. It has an excellent effect of not losing its activity even with time reactions.

また、従来性われてきた懸濁法の欠点であったパラジウ
ムの溶出、触媒の摩耗による損失、劣化も長時間にわた
って認められず、静置分離、ろ過などの触媒分離、回収
の必要性がなく、長時間安定して連続的に芳香族アルコ
ールの製造が実施できる。
In addition, palladium elution, loss due to catalyst abrasion, and deterioration, which were disadvantages of conventional suspension methods, are not observed over a long period of time, and there is no need for catalyst separation or recovery such as static separation or filtration. , aromatic alcohol can be produced stably and continuously for a long period of time.

次に本発明を実施例に基づきさらに詳細に説明する。な
お例中の組成分析は、芳香族ヒドロペルオキシドについ
てはヨードメトリー法により、それ以外の芳香族アルコ
ールなどについては液クロマト分析により行った。
Next, the present invention will be explained in more detail based on examples. In addition, the compositional analysis in the examples was carried out by iodometry for aromatic hydroperoxides, and by liquid chromatography for other aromatic alcohols.

実施例1 反応器として、内径4間の液流導入口及びガス流出口を
最上部に、内径4mmのガス導入口を最下部に、それぞ
れ備え、筒内下部にガス分散用金属製焼結板を設け、そ
の直上部に液流出口を形成した内径25m、長さ600
mのステンレス製円筒型反応器であって、温度計及び圧
力計を具備するものを用いた。この反応器の反応筒部は
ジャケットを備えており、冷却水を通せるようになって
いる。また、液流出口には100メツシユのステンレス
製金銅を設けて触媒の流出を防止する。
Example 1 The reactor was equipped with a liquid flow inlet and a gas outlet with an inner diameter of 4 mm at the top and a gas inlet with an inner diameter of 4 mm at the bottom, and a metal sintered plate for gas dispersion at the bottom of the cylinder. with an inner diameter of 25 m and a length of 600 mm with a liquid outlet formed just above it.
A stainless steel cylindrical reactor equipped with a thermometer and a pressure gauge was used. The reaction cylinder of this reactor is equipped with a jacket, allowing cooling water to pass therethrough. In addition, a 100-mesh stainless steel gilt copper plate is provided at the liquid outlet to prevent the catalyst from flowing out.

上記反応器に0.5重量%のパラジウムを担持した2N
径のアルミナ球でパラジウムの表面積(MSA)295
m7g−Pdのものを180mt充填した。ガス導入口
より窒素ガスを、液導入口よりクメンを、それぞれ反応
器内に導入し、圧力を3 ”/a+t aに一定に保っ
たのち、窒素ガスを水素ガスに切換え、またクメンをク
メンヒドロペルオキシド(25,5重量%クメン溶液)
に切換えた。定常状態でH2/クメンヒドロペルオキシ
ドのフィードモル比力2.5、クメンヒドロペルオキシ
ド(以下CHPと略記する)のクメン溶液は、LH8V
 2.Ohr  の速度になるよう連続的に供給した。
2N loaded with 0.5% by weight of palladium in the above reactor
Palladium surface area (MSA) in an alumina sphere with a diameter of 295
180m of m7g-Pd was filled. Nitrogen gas was introduced into the reactor through the gas inlet, and cumene was introduced into the reactor through the liquid inlet. After keeping the pressure constant at 3"/a+t a, the nitrogen gas was switched to hydrogen gas, and the cumene was replaced with cumene hydrochloride. Peroxide (25.5% by weight cumene solution)
I switched to In a steady state, the feed molar specific force of H2/cumene hydroperoxide is 2.5, and the cumene solution of cumene hydroperoxide (hereinafter abbreviated as CHP) is LH8V.
2. It was continuously fed at a rate of Ohr.

反応温度はホットスポット部(以下TH8と略記する)
で65℃以下となるようジャケットの冷却水量を調節し
、反応の安定化をはかった。反応開始後5時間後にTH
863℃で、液流出口より試料を採取し、分析した結果
CHPはほとんど検出されず、はぼ定量的にジメチルフ
ェニルカルビノール(以下D MP Cと略記する)が
生成していた。CHP転化率99.8モル%、DMPC
選択率選択率1層0実施例2 ガス導入口を最上部に、液ガス混相流出口を最下部に、
それぞれ設け、またガス液分散板を筒内上部に設け、下
部には100メツシユのステンレス製金網を触媒のサポ
ートとして取り付けた以外は実施例1と同様の円筒型反
応器を用いた。この反応器に0.5重量%パラジウムを
担持した活性炭成形品(1mmφ×4關)で、パラジウ
ムのMSA307m7g−Pdである触媒を200mt
充填した。
The reaction temperature is the hot spot part (hereinafter abbreviated as TH8)
The amount of cooling water in the jacket was adjusted so that the temperature was 65°C or less to stabilize the reaction. 5 hours after the start of the reaction, TH
A sample was taken from the liquid outlet at 863° C., and as a result of analysis, almost no CHP was detected, and dimethylphenyl carbinol (hereinafter abbreviated as DMP C) was produced almost quantitatively. CHP conversion rate 99.8 mol%, DMPC
Selectivity selectivity 1 layer 0 Example 2 Gas inlet at the top, liquid gas mixed phase outlet at the bottom,
A cylindrical reactor similar to that of Example 1 was used, except that a gas-liquid dispersion plate was provided in the upper part of the cylinder, and a 100-mesh stainless wire mesh was attached to the lower part as a support for the catalyst. In this reactor, 200 mt of a palladium MSA307m7g-Pd catalyst was placed in an activated carbon molded article (1 mmφ x 4 pieces) supporting 0.5% by weight of palladium.
Filled.

この反応器に、CHP濃度8.0重量%のCHP−クメ
ン溶液を5 0 0mt/hr ( LH8V 2.5
 hr ’ )の速度で、また水素を1 2.6 Nl
−/hr( Hz/CHp モル比、2.5)の速度で
連続的に供給した。反応圧力は3 ”9/crti G
に保持し、ジャケットに冷却水を通さず運転をつづけた
A CHP-cumene solution with a CHP concentration of 8.0% by weight was added to this reactor at a rate of 500 mt/hr (LH8V 2.5
hr') and hydrogen at a rate of 1 2.6 Nl
-/hr (Hz/CHp molar ratio, 2.5). The reaction pressure is 3”9/crti G
operation was continued without cooling water being passed through the jacket.

反応開始5時間後TH8は74℃で、液流出口より試料
を採取し分析したところ、CHP転化率99.6モル%
、DMPC選択率99.7モル%の結果が得られた。同
一条件で運転を継続し24時間後において、CHP転化
率99.9モルチ、DMPC選択率99.9モルチ、7
20時間後においてもCHP転化率99.9モルチ、D
MPC選択率99.9モルチとなり活性の低下は全く認
められなかった。
5 hours after the start of the reaction, TH8 was at 74°C, and a sample was taken from the liquid outlet and analyzed, and the CHP conversion rate was 99.6 mol%.
, a DMPC selectivity of 99.7 mol% was obtained. After 24 hours of continued operation under the same conditions, the CHP conversion rate was 99.9 mol, the DMPC selectivity was 99.9 mol, and the
Even after 20 hours, the CHP conversion rate was 99.9 mol/D.
The MPC selectivity was 99.9 molti, and no decrease in activity was observed.

720時間運転を行った触媒上のパラジウム担持量を分
析した結果、0.47重量%と、はとんど初期状態のも
のと差異のないことが判明した。
As a result of analyzing the amount of palladium supported on the catalyst after 720 hours of operation, it was found that the amount was 0.47% by weight, which was almost the same as that in the initial state.

実施例3 触媒を、2.0朋径のアルミナに0.5重量%パラジウ
ムを担持させた、パラジウムのMSAが296ni/g
−Pdのものに変えた以外は、実施例2と同一の反応器
を用い同様の方法で反応を行った。TH8の温度65〜
78℃の範囲で720時間運転を行い、CHP転化率9
9.5〜99.9モルチ、DMPC選択率99.6〜9
9.9モルチの結果が得られ、この間活性の低下は全く
認められなかった。
Example 3 The catalyst was made by supporting 0.5 wt% palladium on alumina having a diameter of 2.0 mm, and the MSA of palladium was 296 ni/g.
The reaction was carried out in the same manner as in Example 2, except that the reactor was changed to -Pd. TH8 temperature 65~
It was operated for 720 hours at 78°C, and the CHP conversion rate was 9.
9.5-99.9 molti, DMPC selectivity 99.6-9
A result of 9.9 molti was obtained, and no decrease in activity was observed during this period.

また実施例2と同様使用後の触媒のパラジウム担持量を
分析した結果、0.46重量%とこれもほとんど初期状
態のものと差異のないことが判明した。
Further, as in Example 2, the amount of palladium supported on the catalyst after use was analyzed, and it was found to be 0.46% by weight, which was almost the same as that in the initial state.

比較例 触媒として2.0朋径のアルミナに0.5重量%パラジ
ウムを担持させたMSAが114 d/g−Pdのもの
を用いた以外は実施例2と全く同様にして反応を行わせ
たところTH8は50〜60℃の範囲となった。
Comparative Example A reaction was carried out in exactly the same manner as in Example 2, except that as a catalyst, a 2.0 mm diameter alumina supported with 0.5 wt% palladium and an MSA of 114 d/g-Pd was used. However, TH8 was in the range of 50 to 60°C.

反応開始後720時間連続運転を行ない定期的に液流出
口より試料を採取し分析したところ、CHP転化率88
.5〜92.0モルチ、DMPC選択率99.6〜99
.8モルチとなり、CHP転化率が低くなっている。ま
た使用後の触媒のパラジウム担持量を分析したところ、
0.41重量%と9%の減量がみられた。
After continuous operation for 720 hours after the start of the reaction, samples were periodically collected from the liquid outlet and analyzed, and the CHP conversion rate was 88.
.. 5-92.0 molti, DMPC selectivity 99.6-99
.. 8 molti, indicating a low CHP conversion rate. Furthermore, when we analyzed the amount of palladium supported on the catalyst after use, we found that
A weight loss of 0.41% by weight and 9% was observed.

特許出願人 三井東圧化学株式会社 代理人 弁理士 飯 1)敏 三Patent applicant Mitsui Toatsu Chemical Co., Ltd. Agent Patent Attorney Ii 1) Toshizo

Claims (1)

【特許請求の範囲】[Claims] 芳香族ヒドロペルオキシドを水素還元するに当り、パラ
ジウム表面積200 d/g−Pd以上のパラジウム含
有触媒を、固定床として用いることを特徴とする芳香族
アルコールの製造方法。
A method for producing an aromatic alcohol, which comprises using a palladium-containing catalyst having a palladium surface area of 200 d/g-Pd or more as a fixed bed in hydrogen reduction of an aromatic hydroperoxide.
JP57220224A 1982-12-17 1982-12-17 Production of aromatic alcohol Granted JPS59110639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220224A JPS59110639A (en) 1982-12-17 1982-12-17 Production of aromatic alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220224A JPS59110639A (en) 1982-12-17 1982-12-17 Production of aromatic alcohol

Publications (2)

Publication Number Publication Date
JPS59110639A true JPS59110639A (en) 1984-06-26
JPH0316934B2 JPH0316934B2 (en) 1991-03-06

Family

ID=16747820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220224A Granted JPS59110639A (en) 1982-12-17 1982-12-17 Production of aromatic alcohol

Country Status (1)

Country Link
JP (1) JPS59110639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242538A (en) * 1988-03-22 1989-09-27 Mitsubishi Petrochem Co Ltd Production of aromatic alcohols
US5023383A (en) * 1989-01-13 1991-06-11 Mitsubishi Petrochemical Co., Ltd. Method for producing aromatic alcohol
CN1051541C (en) * 1993-03-31 2000-04-19 兰州大学 Prepn. method for 2-phenyl-2-propanol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242538A (en) * 1988-03-22 1989-09-27 Mitsubishi Petrochem Co Ltd Production of aromatic alcohols
US5023383A (en) * 1989-01-13 1991-06-11 Mitsubishi Petrochemical Co., Ltd. Method for producing aromatic alcohol
CN1051541C (en) * 1993-03-31 2000-04-19 兰州大学 Prepn. method for 2-phenyl-2-propanol

Also Published As

Publication number Publication date
JPH0316934B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US6005143A (en) Use of a monolith catalyst for the hydrogenation of dinitrotoluene to toluenediamine
KR20130080434A (en) Process for the selective oxidation of carbon monoxide
JP2001064213A (en) Alkylation of aromatic compound in vapor phase
CN1104173A (en) Process for the preparation of carbon monoxide and hydrogen
JPS59110639A (en) Production of aromatic alcohol
WO2004094352A1 (en) Method of hydrogenating phenol
JP2819171B2 (en) Method for producing aromatic alcohol
JPH0330582B2 (en)
US4940829A (en) Hydrodemethylation of neohexane
US4322567A (en) Process for production of aromatic alcohols
EP0040414B1 (en) Process for producing acetaldehyde
JPS61130249A (en) Production of aromatic alcohol
US3769358A (en) Hydrogenation process start-up method
RU2335486C2 (en) Method of alkylarylketon hydration
JP4933047B2 (en) Process for producing alkenyl carboxylate
JP3089779B2 (en) Method for producing phenol and methyl ethyl ketone
US3737460A (en) Production of secondary alkyl primary amines
US5023383A (en) Method for producing aromatic alcohol
US5171910A (en) Stationary aqueous acid phase transition metal catalysts for reduction of aromatics (C-2503)
JPS6221789B2 (en)
Rode et al. Phenol hydrogenation over supported metal catalysts under supercritical carbon dioxide
JP2512067B2 (en) Manufacturing method of cumyl alcohol
JP2533908B2 (en) Method for producing aromatic alcohols
Fukushi et al. Catalytic hydroxylation of benzene on telluric acid dispersed on silica
KR100474061B1 (en) Supercritical Hydrogenation