JPH0330582B2 - - Google Patents

Info

Publication number
JPH0330582B2
JPH0330582B2 JP57125150A JP12515082A JPH0330582B2 JP H0330582 B2 JPH0330582 B2 JP H0330582B2 JP 57125150 A JP57125150 A JP 57125150A JP 12515082 A JP12515082 A JP 12515082A JP H0330582 B2 JPH0330582 B2 JP H0330582B2
Authority
JP
Japan
Prior art keywords
aromatic
reaction
reactor
hydroperoxide
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57125150A
Other languages
Japanese (ja)
Other versions
JPS5916843A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57125150A priority Critical patent/JPS5916843A/en
Publication of JPS5916843A publication Critical patent/JPS5916843A/en
Publication of JPH0330582B2 publication Critical patent/JPH0330582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は芳香族ハイドロパーオキシドを原料と
して水素還元により相応する芳香族アルコールを
製造する方法に関するものである。 芳香族アルコールは各種有機薬品の中間体、溶
剤として有用である。芳香族ハイドロパーオキシ
ドを原料として相応する芳香族アルコールを製造
する方法としては亜硫酸塩類の水溶液で還元する
方法、水素添加触媒の存在下水素ガスにより還元
する方法等が知られており、特公昭39−26961号
では、ラネーニツケル、Pd含有触媒を用いてク
メンハイドロパーオキシドを水素添加する方法が
示されており、芳香族ハイドロパーオキシドを
Pd含有触媒の存在下で水素還元を行なう方法は
公知である。 芳香族ハイドロパーオキシドの接触水素添加法
における反応(以下、水添反応と略記)大きな発
熱を伴なうため副反応の防止、水素の溶解を助け
反応を円滑に進めるため飽和炭化水素あるいは飽
和側鎖を有する芳香族炭化水素等水と非混和性の
溶媒が用いられている。 しかしながら該方法では、触媒の活性低下が早
く起こるため、高価なPd含有触媒を少量の使用
量で長時間触媒活性の低下することなく繰り返し
使用する方法が必要となる。この目的に対して既
に特開昭55−69527号で低級脂肪族アルコール溶
媒を用いることによる活性低下防止法が提案され
ている。該方法はPd含有触媒の活性維持に対し
て有力な方法ではあるがかなり多量の低級脂肪族
アルコールの添加を要するため芳香族アルコール
を得るには蒸留等の操作により反応混合物からの
分離除去が必要となり操作が繁雑となる。 そこで、本発明者らはこうした従来法の欠点を
克服するため鋭意研究を行なつた所、従来有機過
酸化物の水素化反応に対して困難とされてきた固
定床式反応方法により意外にも芳香族ハイドロパ
ーオキシドの水素添加により容易に相応する芳香
族アルコールを得ることができることを見出し本
発明を完成するに至つた。 すなわち本発明は、芳香族ハイドロパーオキシ
ドをPd含有触媒の存在下水素ガスにより還元す
る際、固定床反応器を用いて芳香族ハイドロパー
オキシドを含有する液の流れを、下向き流れとす
ることを特徴とする芳香族アルコールの連続製造
法を提供するものである。 以下本発明をさらに詳細に説明する。本発明方
法において用いられる芳香族ヒドロパーオキシド
としては、α−フエニルエチルハイドロパーオキ
シド、クメンハイドロパーオキシド、シメンハイ
ドロパーオキシド、ジイソプロピルベンゼンモノ
ヒドロパーオキシド、ジイソプロピルベンゼンジ
ヒドロパーオキシドの如く炭素数8以上の芳香族
ハイドロパーオキシドが好ましい。 原料の芳香族ハイドロパーオキシドは適当な溶
媒に溶解させてもよい。該溶媒は芳香族ハイドロ
パーオキサイドを溶解するものであればよいが、
特に別途選定された溶媒を加える必要はない。 すなわち芳香族ハイドロパーオキシドは一般的
に相応する芳香族炭化水素を酸化することによつ
て得られ該酸化反応では安全的観点から1〜30%
の反応率で芳香族ハイドロパーオキシドを得、こ
れを濃縮することによつて高濃度の芳香族ハイド
ロパーオキシドを得ており酸化反応生成物をその
まま水添反応に供することにより芳香族炭化水素
に溶解された芳香族ハイドロパーオキシドを用い
ることができる。又、他の方法として芳香族ハイ
ドロパーオキシドの水添反応生成物を希釈剤とし
て用いることもできる。本発明の方法においては
生成した芳香族アルコールの循環使用においても
特に問題は生じない。 適当な溶媒に希釈された芳香族ハイドロパーオ
キシドの濃度は、芳香族ハイドロパーオキシドの
種類及び水添反応の反応条件の選定により適宜決
定されるが、一般的には1〜90wt%程度である。 本発明に用いるPd含有触媒は、活性炭、アル
ミナ、カーボランダム、チタン9、シリカ−アル
ミナシリカ等の不活性担体に担持されたものが好
ましく、固定床触媒として一般的に必要な強度、
粒径を有するものであればよい。 一般的には、Pd含有触媒として、平均粒径が
0.5ないし20mmの担体に、0.1ないし10wt%程度Pd
が担持されたものをあげることができる。又、助
触媒として他の貴金属化合物、例えば白金、ロジ
ウム、ルテニウム等を含有していてもよい。Pd
含有触媒を充填する反応器は多管式反応器、単管
式反応器等公知の固定床反応器を用いることがで
きる。 本発明方法において、反応は気−液−固の三相
反応となるため原料の流れ方向は重要な因子であ
る。水素ガスの流れ方向は上向き流れ、下向き流
れで特に水添反応に影響を与えないが、芳香族ハ
イドロパーオキシドを含有する液の流れ方向は、
下向き流れとしなければならない。即ち上向き流
れとすると、初期の芳香族ハイドロパーオキシド
の転化率は、下向き流れと同等ではあるが、経時
的に該転化率が低下するとともに反応温度も不安
定であり安定な運転が不可能であつたのに対し、
下向き流れとすると長時間Pd含有触媒の活性が
維持され、安定な運転が可能となつた。 反応温度は芳香族ハイドロパーオキシドの種類
によつて最適な反応温度範囲が決定されるが、0
ないし120℃が好ましい。0℃以下では反応の進
行が遅くなるとともに工業的には不必要な冷却装
置が必要となり、120℃以上では芳香族ハイドロ
パーオキシドの自己分解反応による副生成物の増
加が認められる場合があり好ましくない。 他の反応条件についても芳香族ハイドロパーオ
キシドの種類及び量等から適宜決定されればよい
が、反応圧力は0ないし50Kg/cm2−G、反応液量
は触媒に対する液基準空間速度(LHSV)で、
0.1ないし20 1/hV、又水素の供給量は芳香族
ハイドロオパーオキシドに対して化学量論量の1
ないし10倍量程度が一般的である。 本発明の実施態様は、特に限定されないがその
フローの1例を図面に示す。芳香族炭化水素の酸
化反応で得られた芳香族ハイドロパーオキシドの
相応する芳香族炭化水素溶液を配管1を通じて固
定床反応器9の上部に供給する。又配管2を通じ
て水素ガスを固定床反応器9の上部に供給する。
反応器9にはPd含有触媒が充填されており、気
液は下向き流れの並流でPd含有触媒と接触する。 反応熱は配管3を通じて水を流すことにより除
熱する。反応生成物は反応器9の排出口から配管
4を通じて気液混相で、分離器10に送られる。
分離器10の上部より配管5を通じて未反応の水
素ガスを排出する。必要ならば水素ガスは原料水
素ガスとして再使用される。 分離器10で液は2層を形成し、配管8を通じ
て水を排出し、水と分離された芳香族アルコール
は配管6を通じて精装工程へ送られるとともに必
要ならば一部を希釈剤として配管7を通じて原料
のクメンハイドロパーオキシドのクメン溶液と混
合し反応器9へ送られる。 水素ガスの供給を反応器9の下部から適切な分
散方法により分散供給し、気液向流接触を行なつ
てもよい。この時は、反応器9の上部から未反応
の水素ガスを排出する他は上記と同一方法をとれ
ばよい。 又除熱方法は、反応器9とは別に熱交換器を設
け反応生成物から除熱してもよい。この時は反応
器9では断熱反応となるため反応温度を120℃以
下に保つよう反応器9へ供給される芳香族ハイド
ロパーオキシド濃度を調整すればよい。 本発明の固定床反応器を用いたPd含有触媒を
用いる芳香族ハイドロパーオキシドの水添反応に
より殆んど定量的に相応する芳香族アルコールが
得られるとともに触媒は長時間の反応によつて活
性を失なわない。又従来行なわれてきた懸濁法の
欠点であつた触媒の摩耗による損失もなく、かつ
静置分離又は過などの触媒分離の必要性がなく
長時間安定して連続的に芳香族アルコールの製造
が可能となつた。 以下、実施例にて本発明の特徴を例示するが、
これらの例における%は、特に断らない限りモル
%を示す。更に組成分析は、芳香族ハイドロパー
オキシドは、ヨードメトリー法により、芳香族ア
ルコール他は液クロマト分析によるものである。 実施例 1 反応器は、内径4mmの液流導入口及びガス流出
口を最上部に、又内径4mmのガス導入口を最下部
に備え、下部にガスの分散をはかるため金属の焼
結板を設け、その直上部に液流出口を備えた内径
25mm、長さ600mmのステンレス製円筒型反応器で
あり、温度計及び圧力計から成る。反応筒部はジ
ヤケツトを備えており冷却水が通せるようになつ
ており液流出口には100メツシユのステンレス製
金網により触媒の流出を防ぐようにした。 上記反応器に、1%のPdを担持した1mm径の
アルミナ球を180ml充填した。ガス導入口より窒
素ガスを液流導入口よりクメンを供給し、圧力を
4Kg/cm2−Gに一定に保つた後、窒素ガスを水素
ガスに切換え標準状態で36Nl/hrの速度で供給
し次いでクメンを26.7wt%のクメンハイドロパー
オキシド(以下CHPと略記)のクメン溶液に切
換え液基準で350ml/hr(LHSV=2.0 1/hr)の
速度で連続的に供給した。反応温度はホツトスポ
ツト部(以下THSと略記する)で50℃以下とな
るよう冷却水量を調節し、反応の安定化をはかつ
た。5時間後にTHS49゜で、液流出口より試料を
採取し、分析した所、CHPは全く検出されず、
ほぼ定量的に、ジメチルフエニルカルビノール
(以下DMPCと略記)が生成していた。(CHP転
化率100%、DMPC選択率99.5%) 実施例 2 ガス導入口を最上部に液ガス混相流出口を最下
部に、又ガス液分散板を上部に設け下部には100
メツシユのステンレス製金網を触媒のサポートと
してとりつけた以外は実施例−1と同一反応器を
用いた。 該反応器に0.5wt%Pdを担持した活性炭(平均
径2.4mm破砕品)触媒を200ml充填した。 CHP濃度8.0wt%のCHP−クメン溶液を500
ml/hrの速度又で水素を12.6Nl/hrの速度
(H2/CHP=2.5モル比)で連続的に供給した。
反応圧力は3Kg/cm2−Gに保持し冷却水は通さず
に運転をつづけた。 5時間後THS71℃で液流出口より試料を採取
し、分析した所、CHP転化率99.3%、DMPC選
択率99.5%の結果が得られた。同一条件で運転を
継続し、24時間後CHP転化率は99.9%、720時間
後においても、CHP転化率は99.9%と全く活性の
低下は認められなかつた。 実施例 3 触媒を2.0mm径のアルミナに0.5wt%Pdを担持さ
せたものに変えた以外は、実施例−2と同一の方
法で水添反応を行なつた。THSは65〜80℃の範囲
で720時間運転を行ない、CHP転化率は99.2〜
99.9%と全く活性の低下は認められず、DMPC選
択率も99.3〜99.9%の結果が得られた。同一条件
で運転を継続し、24時間後液流出口より試料を採
取し、分析した結果、CHP転化率100%、DMPC
選択率99.4%と反応初期と全く変わらない結果を
得た。 比較例 1 液導入口を最下部に液流出口をガス流出口と共
通とした以外は、実施例−1と同一の反応器を用
い実施例−1と同様の反応条件で、液の流れ方向
の差違の及ぼす影響をみた。 原料液中のCHP濃度は26.5wt%であり5時間
後THS50℃で液流出口より試料を採取し分析した
結果CHPは0.12wt%検出された。(CHP転化率
99.6%DMPC選択率99.5%) 同一条件で運転を継続し、24時間後THS47℃で
液流出口より試料を採取し分析した所、CHPは
3.8wt%検出された。(CHP転化率86.1%、
DMPC選択率99.0%)。 実施例4〜10及び比較例2〜3 実施例−1,2及び比較例−1と同じ反応器を
用いて、触媒、流れ方向、冷却方法その他反応条
件を変えて連続水添反応を行なつた。 表−1に24時間の連続運転後の反応結果を示
す。 実施例 11 実施例−2の反応器を用いて、流出した反応液
をポンプにより液導入口に循環供給できるように
した。 該反応器に0.5wt%Pdを担持したアルミナ(平
均径2mm球)触媒を200ml充填し実施例−2と同
様の方法で反応を開始し安定化運転を5時間行な
つた後、供給するCHP溶液を、CHP濃度26.7wt
%のものに切り換え、150ml/hrの速度で供給す
るとともに、循環ラインより反応液(CHP濃度
0.05wt%)を350ml/hrの速度で連続的に供給し
た。液流出口からの試料採取により分析、時間経
過とともに次第にDMPC濃度が増加し安定化を
確認した。48時間後、反応器前后のCHP及び
DMPCを分析した結果、CHP転化率99.7%、
DMPC選択率99.2%と実施例−3と同等の結果が
得られた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a corresponding aromatic alcohol by hydrogen reduction using an aromatic hydroperoxide as a raw material. Aromatic alcohols are useful as intermediates and solvents for various organic chemicals. Known methods for producing aromatic alcohols from aromatic hydroperoxides as raw materials include reduction with an aqueous solution of sulfites and reduction with hydrogen gas in the presence of a hydrogenation catalyst. -26961, a method for hydrogenating cumene hydroperoxide using a Raney nickel, Pd-containing catalyst is presented, in which aromatic hydroperoxides are
Methods for carrying out hydrogen reduction in the presence of Pd-containing catalysts are known. The reaction in the catalytic hydrogenation method of aromatic hydroperoxides (hereinafter abbreviated as hydrogenation reaction) is accompanied by a large amount of heat, so in order to prevent side reactions, to help dissolve hydrogen, and to proceed smoothly with the reaction, saturated hydrocarbons or saturated side A water-immiscible solvent such as an aromatic hydrocarbon having a chain is used. However, in this method, the catalyst activity decreases quickly, so a method is required in which an expensive Pd-containing catalyst can be repeatedly used in a small amount for a long period of time without decreasing the catalyst activity. For this purpose, a method for preventing a decrease in activity by using a lower aliphatic alcohol solvent has already been proposed in JP-A-55-69527. Although this method is an effective method for maintaining the activity of Pd-containing catalysts, it requires the addition of a fairly large amount of lower aliphatic alcohol, so it is necessary to separate and remove it from the reaction mixture by operations such as distillation to obtain the aromatic alcohol. This makes the operation complicated. Therefore, the present inventors conducted intensive research to overcome these drawbacks of conventional methods, and found that a fixed-bed reaction method, which has traditionally been considered difficult for hydrogenation reactions of organic peroxides, was surprisingly effective. The present inventors have discovered that the corresponding aromatic alcohol can be easily obtained by hydrogenating aromatic hydroperoxides, and have completed the present invention. That is, the present invention provides a method for reducing the aromatic hydroperoxide with hydrogen gas in the presence of a Pd-containing catalyst by using a fixed bed reactor to cause the flow of the liquid containing the aromatic hydroperoxide to flow downward. The present invention provides a continuous production method for aromatic alcohols. The present invention will be explained in more detail below. The aromatic hydroperoxide used in the method of the present invention has 8 carbon atoms such as α-phenylethyl hydroperoxide, cumene hydroperoxide, cymene hydroperoxide, diisopropylbenzene monohydroperoxide, and diisopropylbenzene dihydroperoxide. The above aromatic hydroperoxides are preferred. The aromatic hydroperoxide as a raw material may be dissolved in a suitable solvent. The solvent may be any solvent as long as it dissolves the aromatic hydroperoxide, but
There is no need to add a specially selected solvent. That is, aromatic hydroperoxides are generally obtained by oxidizing the corresponding aromatic hydrocarbons, and from a safety standpoint, 1 to 30%
Aromatic hydroperoxide is obtained at a reaction rate of Dissolved aromatic hydroperoxides can be used. Alternatively, a hydrogenation reaction product of aromatic hydroperoxide can be used as a diluent. In the method of the present invention, no particular problem arises in recycling the aromatic alcohol produced. The concentration of aromatic hydroperoxide diluted in a suitable solvent is determined appropriately depending on the type of aromatic hydroperoxide and the reaction conditions of the hydrogenation reaction, but is generally about 1 to 90 wt%. . The Pd-containing catalyst used in the present invention is preferably supported on an inert carrier such as activated carbon, alumina, carborundum, titanium 9, silica-alumina-silica, etc., and has the strength generally required as a fixed bed catalyst.
Any material having a particle size may be used. Generally, as a Pd-containing catalyst, the average particle size is
Approximately 0.1 to 10wt% Pd on a 0.5 to 20mm carrier
I can give you something that is supported. Further, other noble metal compounds such as platinum, rhodium, ruthenium, etc. may be contained as a promoter. Pd
As the reactor filled with the catalyst, a known fixed bed reactor such as a multi-tubular reactor or a single-tubular reactor can be used. In the method of the present invention, the reaction is a three-phase reaction of gas-liquid-solid, so the flow direction of the raw materials is an important factor. The flow direction of hydrogen gas is upward and downward and does not particularly affect the hydrogenation reaction, but the flow direction of the liquid containing aromatic hydroperoxide is
It must flow downward. That is, in the case of upward flow, the initial conversion rate of aromatic hydroperoxide is equivalent to that of downward flow, but as time passes, the conversion rate decreases and the reaction temperature becomes unstable, making stable operation impossible. In contrast to Atsuta,
When the flow was downward, the activity of the Pd-containing catalyst was maintained for a long time, making stable operation possible. The optimum reaction temperature range is determined depending on the type of aromatic hydroperoxide, but
The temperature is preferably between 120°C and 120°C. Below 0°C, the reaction progresses slowly and an industrially unnecessary cooling device is required, and above 120°C, an increase in by-products due to the self-decomposition reaction of aromatic hydroperoxides may be observed, so it is preferable. do not have. Other reaction conditions may be appropriately determined based on the type and amount of aromatic hydroperoxide, etc., but the reaction pressure is 0 to 50 Kg/cm 2 -G, and the reaction liquid volume is the liquid standard hourly space velocity (LHSV) relative to the catalyst. in,
0.1 to 20 1/hV, and the amount of hydrogen supplied is 1 stoichiometric amount to the aromatic hydroperoxide.
Generally, it is about 10 to 10 times the amount. Although the embodiment of the present invention is not particularly limited, an example of the flow is shown in the drawings. A corresponding aromatic hydrocarbon solution of an aromatic hydroperoxide obtained by an oxidation reaction of an aromatic hydrocarbon is fed through a pipe 1 to the upper part of a fixed bed reactor 9. Further, hydrogen gas is supplied to the upper part of the fixed bed reactor 9 through the pipe 2.
The reactor 9 is filled with a Pd-containing catalyst, and the gas and liquid contact the Pd-containing catalyst in a cocurrent downward flow. The reaction heat is removed by flowing water through the pipe 3. The reaction product is sent from the outlet of the reactor 9 through the pipe 4 to the separator 10 in a gas-liquid mixed phase.
Unreacted hydrogen gas is discharged from the upper part of the separator 10 through the pipe 5. If necessary, the hydrogen gas is reused as raw hydrogen gas. The liquid forms two layers in the separator 10, and the water is discharged through piping 8. The aromatic alcohol separated from the water is sent to the refining process through piping 6, and if necessary, a portion is used as a diluent through piping 7. The raw material cumene hydroperoxide is mixed with the cumene solution and sent to the reactor 9. Hydrogen gas may be supplied in a distributed manner from the lower part of the reactor 9 using an appropriate dispersion method to effect gas-liquid countercurrent contact. At this time, the same method as above may be used except that unreacted hydrogen gas is discharged from the upper part of the reactor 9. Further, as a heat removal method, a heat exchanger may be provided separately from the reactor 9 to remove heat from the reaction product. At this time, since an adiabatic reaction occurs in the reactor 9, the concentration of aromatic hydroperoxide supplied to the reactor 9 may be adjusted to maintain the reaction temperature at 120° C. or lower. The hydrogenation reaction of aromatic hydroperoxides using Pd-containing catalysts using the fixed bed reactor of the present invention yields the corresponding aromatic alcohols almost quantitatively, and the catalysts become active due to the long reaction time. Don't lose it. Furthermore, there is no loss due to catalyst abrasion, which was a disadvantage of the conventional suspension method, and there is no need for catalyst separation such as static separation or filtration, making it possible to produce aromatic alcohols stably and continuously for a long time. became possible. The features of the present invention will be illustrated in Examples below.
% in these examples indicates mol% unless otherwise specified. Furthermore, the compositional analysis was performed by iodometry for aromatic hydroperoxides, and by liquid chromatography for aromatic alcohols and the like. Example 1 The reactor was equipped with a liquid flow inlet and a gas outlet with an inner diameter of 4 mm at the top, a gas inlet with an inner diameter of 4 mm at the bottom, and a metal sintered plate at the bottom to disperse the gas. An inner diameter with a liquid outlet just above it.
It is a stainless steel cylindrical reactor with a length of 25 mm and a length of 600 mm, and consists of a thermometer and a pressure gauge. The reaction cylinder was equipped with a jacket to allow cooling water to pass through, and a 100 mesh stainless steel wire gauze was placed at the liquid outlet to prevent the catalyst from flowing out. The reactor was filled with 180 ml of 1 mm diameter alumina spheres carrying 1% Pd. Nitrogen gas was supplied from the gas inlet and cumene was supplied from the liquid flow inlet, and after keeping the pressure constant at 4 Kg/cm 2 -G, the nitrogen gas was switched to hydrogen gas and supplied at a rate of 36 Nl/hr under standard conditions. Next, cumene was continuously supplied to a cumene solution of 26.7 wt% cumene hydroperoxide (hereinafter abbreviated as CHP) at a rate of 350 ml/hr (LHSV=2.0 1/hr) based on the switching liquid. The amount of cooling water was adjusted so that the reaction temperature was 50°C or less at the hot spot (hereinafter abbreviated as THS) to stabilize the reaction. After 5 hours, a sample was taken from the liquid outlet at THS49° and analyzed, and no CHP was detected.
Dimethylphenyl carbinol (hereinafter abbreviated as DMPC) was produced almost quantitatively. (CHP conversion rate 100%, DMPC selectivity 99.5%) Example 2 A gas inlet is placed at the top, a liquid-gas mixed phase outlet is placed at the bottom, and a gas-liquid dispersion plate is placed at the top, and a 100%
The same reactor as in Example 1 was used except that a mesh stainless steel wire gauze was attached as a support for the catalyst. The reactor was filled with 200 ml of activated carbon (crushed product with an average diameter of 2.4 mm) supporting 0.5 wt% Pd. 500% CHP-cumene solution with CHP concentration 8.0wt%
Hydrogen was continuously fed at a rate of 12.6 Nl/hr (H 2 /CHP=2.5 molar ratio) at a rate of ml/hr.
The reaction pressure was maintained at 3 Kg/cm 2 -G and operation was continued without passing cooling water. After 5 hours, a sample was taken from the liquid outlet at T HS 71°C and analyzed, resulting in a CHP conversion rate of 99.3% and a DMPC selectivity of 99.5%. Continuing to operate under the same conditions, the CHP conversion rate was 99.9% after 24 hours, and the CHP conversion rate was 99.9% even after 720 hours, with no decrease in activity observed. Example 3 A hydrogenation reaction was carried out in the same manner as in Example 2, except that the catalyst was changed to one in which 0.5 wt% Pd was supported on alumina having a diameter of 2.0 mm. T HS was operated for 720 hours in the range of 65-80℃, and the CHP conversion rate was 99.2~
No decrease in activity was observed at 99.9%, and DMPC selectivity was 99.3-99.9%. The operation continued under the same conditions, and after 24 hours, a sample was taken from the liquid outlet and analyzed. As a result, the CHP conversion rate was 100%, and the DMPC
A selectivity of 99.4% was obtained, which was completely unchanged from the initial stage of the reaction. Comparative Example 1 The same reactor as Example-1 was used, except that the liquid inlet was placed at the bottom and the liquid outlet was shared with the gas outlet. We looked at the effect of the difference in The CHP concentration in the raw material liquid was 26.5 wt%, and after 5 hours, a sample was taken from the liquid outlet at T HS 50°C and analyzed. As a result, 0.12 wt% CHP was detected. (CHP conversion rate
(99.6% DMPC selectivity 99.5%) Operation continued under the same conditions, and after 24 hours, a sample was taken from the liquid outlet at 47℃ and analyzed.
3.8wt% was detected. (CHP conversion rate 86.1%,
DMPC selection rate 99.0%). Examples 4 to 10 and Comparative Examples 2 to 3 Using the same reactor as Examples 1 and 2 and Comparative Example 1, a continuous hydrogenation reaction was performed by changing the catalyst, flow direction, cooling method, and other reaction conditions. Ta. Table 1 shows the reaction results after 24 hours of continuous operation. Example 11 Using the reactor of Example-2, the reaction liquid that flowed out was made to be able to be circulated and supplied to the liquid inlet by a pump. The reactor was filled with 200 ml of alumina (average diameter 2 mm spheres) catalyst supporting 0.5 wt% Pd, and the reaction was started in the same manner as in Example 2. After stabilizing operation for 5 hours, CHP was supplied. Solution, CHP concentration 26.7wt
% and supplied at a rate of 150 ml/hr, and the reaction liquid (CHP concentration
0.05 wt%) was continuously supplied at a rate of 350 ml/hr. Analysis was performed by collecting samples from the liquid outlet, and it was confirmed that the DMPC concentration gradually increased over time and stabilized. After 48 hours, CHP and
As a result of analyzing DMPC, the CHP conversion rate was 99.7%,
A DMPC selectivity of 99.2%, a result equivalent to Example-3, was obtained. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明実施のフローシートの1例であ
る。各符号はそれぞれ次のものを示す。 1〜8;配管、9;反応器、10;分離器、
A;原料芳香族ハイドロパーオキシド、B;水
素、C;反応生成水、D;排ガス、E;芳香族ア
ルコール。
The drawing is an example of a flow sheet for implementing the present invention. Each symbol indicates the following. 1-8; Piping, 9; Reactor, 10; Separator,
A: Raw material aromatic hydroperoxide, B: Hydrogen, C: Reaction product water, D: Exhaust gas, E: Aromatic alcohol.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族ハイドロパーオキシドをPd−含有触
媒の存在下水素ガスにより還元する際、固定床反
応器を用いて芳香族ハイドロパーオキシドを含有
する液の流れを、下向き流れとすることを特徴と
する芳香族アルコールの連続製造法。
1. When aromatic hydroperoxide is reduced with hydrogen gas in the presence of a Pd-containing catalyst, a fixed bed reactor is used to cause the flow of the liquid containing aromatic hydroperoxide to flow downward. Continuous production method for aromatic alcohols.
JP57125150A 1982-07-20 1982-07-20 Continuous preparation of aromatic alcohol Granted JPS5916843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125150A JPS5916843A (en) 1982-07-20 1982-07-20 Continuous preparation of aromatic alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125150A JPS5916843A (en) 1982-07-20 1982-07-20 Continuous preparation of aromatic alcohol

Publications (2)

Publication Number Publication Date
JPS5916843A JPS5916843A (en) 1984-01-28
JPH0330582B2 true JPH0330582B2 (en) 1991-04-30

Family

ID=14903102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125150A Granted JPS5916843A (en) 1982-07-20 1982-07-20 Continuous preparation of aromatic alcohol

Country Status (1)

Country Link
JP (1) JPS5916843A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533908B2 (en) * 1988-03-22 1996-09-11 三菱化学株式会社 Method for producing aromatic alcohols
JP2819171B2 (en) * 1989-01-13 1998-10-30 三菱化学株式会社 Method for producing aromatic alcohol
US5023383A (en) * 1989-01-13 1991-06-11 Mitsubishi Petrochemical Co., Ltd. Method for producing aromatic alcohol
CN1051541C (en) * 1993-03-31 2000-04-19 兰州大学 Prepn. method for 2-phenyl-2-propanol
US6984761B2 (en) 2002-12-16 2006-01-10 Exxonmobil Chemical Patents Inc. Co-production of phenol, acetone, α-methylstyrene and propylene oxide, and catalyst therefor

Also Published As

Publication number Publication date
JPS5916843A (en) 1984-01-28

Similar Documents

Publication Publication Date Title
EP0978505B1 (en) Process for the hydrogenation of dinitrotoluene to toluenediamine using a monolith catalyst
Mills et al. Multiphase catalytic reactor engineering and design for pharmaceuticals and fine chemicals
RU1839668C (en) Method of phenol synthesis
JPS6346752B2 (en)
EP3257831B1 (en) Circular economy methods of preparing unsaturated compounds
EP0906253A1 (en) Supercritical hydrogenation
US5495055A (en) Acetone hydrogenation using a supported ruthenium catalyst
JP3980366B2 (en) Continuous process and reactor for hydroformylation of olefins
US5292960A (en) Process for purification of cyclohexanone
US7253329B2 (en) Selective hydrogenation of cyclododecatriene to cyclododecene
JP2001064213A (en) Alkylation of aromatic compound in vapor phase
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JP4581078B2 (en) Method for hydrogenating phenols
JPH0330582B2 (en)
EP2398754B1 (en) Continuous process to produce hexafluoroisopropanol
EP1174414B1 (en) Process for producing hydrogenated ester
JP2819171B2 (en) Method for producing aromatic alcohol
US6303826B1 (en) Method for purification of acetone
WO2004060838A1 (en) Method of hydrogenating aromatic compound
JPS61130249A (en) Production of aromatic alcohol
RU2356884C2 (en) Oxidation method of producing carboxylic acids and alkenes and optionally alkenylcarboxylate or alkylcarboxylate
JP2004501891A (en) Method for producing aromatic amine
US6620965B1 (en) Process for vinyl acetate
JPH0316934B2 (en)
US6566558B1 (en) Hydroformylation reactions