JPH0316934B2 - - Google Patents

Info

Publication number
JPH0316934B2
JPH0316934B2 JP57220224A JP22022482A JPH0316934B2 JP H0316934 B2 JPH0316934 B2 JP H0316934B2 JP 57220224 A JP57220224 A JP 57220224A JP 22022482 A JP22022482 A JP 22022482A JP H0316934 B2 JPH0316934 B2 JP H0316934B2
Authority
JP
Japan
Prior art keywords
palladium
catalyst
aromatic
reaction
hydroperoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57220224A
Other languages
Japanese (ja)
Other versions
JPS59110639A (en
Inventor
Harushige Sugawara
Yoshi Koshibe
Takashi Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57220224A priority Critical patent/JPS59110639A/en
Publication of JPS59110639A publication Critical patent/JPS59110639A/en
Publication of JPH0316934B2 publication Critical patent/JPH0316934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は芳香族ヒドロペルオキシドを水素還元
して対応する芳香族アルコールを製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrogen reduction of aromatic hydroperoxides to produce the corresponding aromatic alcohols.

芳香族ヒドロペルオキシドから芳香族アルコー
ルを製造する方法としては、亜硫酸塩類の水溶液
で還元する方法、水素添加触媒の存在下水素還元
する方法などが知られており、特公昭39−26961
号では、ラネーニツケル、パラジウムなどを担体
に担持させた触媒を用いてクメンヒドロペルオキ
シドを水素還元してα−クミルアルコールを製造
する方法が示されており、パラジウム含有触媒存
在下水素還元により、芳香族ヒドロペルオキシド
から芳香族アルコールを製造する方法は公知であ
る。
Known methods for producing aromatic alcohols from aromatic hydroperoxides include reduction with an aqueous solution of sulfites and hydrogen reduction in the presence of a hydrogenation catalyst.
In this issue, a method for producing α-cumyl alcohol by hydrogen reduction of cumene hydroperoxide using a catalyst supported on a carrier such as Raney nickel or palladium is presented. Methods for producing aromatic alcohols from group hydroperoxides are known.

この芳香族ヒドロペルオキシドの水素還元反応
は大きな発熱を伴うので、副反応を防止し、水素
の溶解を助長して反応を円滑に進めるため飽和炭
化水素あるいは飽和側鎖を有する芳香族炭化水素
など水と非混和性の溶媒が使用されている。
This hydrogen reduction reaction of aromatic hydroperoxides is accompanied by a large amount of heat, so in order to prevent side reactions and promote the dissolution of hydrogen so that the reaction proceeds smoothly, we use water such as saturated hydrocarbons or aromatic hydrocarbons with saturated side chains. A solvent that is immiscible with is used.

しかしながら溶媒を使用するこのような方法で
は触媒の活性低下が早く起こるという欠点があ
り、そのため工業的にはパラジウム含有触媒の使
用量が少なくて、長時間触媒活性が低下せず、触
媒の繰り返し使用ができる方法の開発が要望され
ている。
However, this method of using a solvent has the disadvantage that the activity of the catalyst quickly decreases. Therefore, industrially, the amount of palladium-containing catalyst used is small, the catalyst activity does not decrease for a long time, and the catalyst can be used repeatedly. There is a need for the development of a method that can do this.

この要求に応える方法としては、これまで、パ
ラジウム表面積10ないし200m2/g・Pdのパラジ
ウム触媒の共存下に第三級芳香族ヒドロペルオキ
シドの水素還元を行い担体に担持されたパラジウ
ム金属の溶出による触媒の劣化を防止する方法が
提案されている(特開昭55−167238号)。しかし、
この方法においては、パラジウム表面積は200
m2/g・Pd以下であることが必要不可欠であり、
表面積がこの値以上のパラジウム触媒を用いると
パラジウム溶出率が著しく高くなり経時的活性低
下も大きくなつてしまう。
The method to meet this demand has so far been to reduce the tertiary aromatic hydroperoxide with hydrogen in the presence of a palladium catalyst with a palladium surface area of 10 to 200 m 2 /g Pd, and to elute the palladium metal supported on the carrier. A method for preventing catalyst deterioration has been proposed (Japanese Patent Application Laid-open No. 167238/1983). but,
In this method, the palladium surface area is 200
It is essential that it is less than m 2 /g・Pd,
If a palladium catalyst with a surface area greater than this value is used, the palladium elution rate will be significantly high and the activity will decline significantly over time.

本発明者らは、こうした、パラジウム触媒の存
在下、水素還元により芳香族ヒドロペルオキシド
から芳香族アルコールを製造する方法の上記欠点
を克服するため鋭意研究を重ねた結果、パラジウ
ム表面積200m2/g・Pd以上のパラジウム触媒を
用いて、反応方法を固定床固液接触反応とすれ
ば、意外にもパラジウムの溶出がほとんど認めら
れず、むしろ効率良く目的の芳香族アルコールを
得ることができことを見出し、この知見に基づき
本発明を完成するに至つた。
The present inventors have conducted intensive research to overcome the above-mentioned drawbacks of the method for producing aromatic alcohols from aromatic hydroperoxides by hydrogen reduction in the presence of a palladium catalyst. As a result, the palladium surface area is 200 m 2 /g. It was discovered that by using a palladium catalyst of Pd or higher and using a fixed bed solid-liquid contact reaction, surprisingly little elution of palladium was observed, and the desired aromatic alcohol could be obtained more efficiently. Based on this knowledge, we have completed the present invention.

すなわち本発明は、芳香族ヒドロペルオキシド
を水素還元するに当り、パラジウム表面積200
m2/g・Pd以上のパラジウム含有触媒を、固定
床として用いて反応を行わせることを特徴とする
芳香族アルコールの製造方法を提供するものであ
る。本発明方法は、各種有機薬品の中間体、溶剤
として有用な芳香族アルコールを工業的に効率良
く製造できる方法を提供することを目的としてい
る。
That is, in the present invention, when reducing aromatic hydroperoxide with hydrogen, palladium has a surface area of 200
The present invention provides a method for producing an aromatic alcohol, characterized in that the reaction is carried out using a palladium-containing catalyst of m 2 /g·Pd or more as a fixed bed. The purpose of the method of the present invention is to provide a method for industrially and efficiently producing aromatic alcohols useful as intermediates and solvents for various organic chemicals.

以下本発明をさらに詳細に説明する。 The present invention will be explained in more detail below.

本発明方法を適用する芳香族ヒドロペルオキシ
ドの具体例としては、α−フエニルエチルヒドロ
ペルオキシド、クメンヒドロペルオキシド、シメ
ンヒドロペルオキシド、ジイソプロピルベンゼン
モノヒドロペルオキシド、ジイソプロピルベンゼ
ンジヒドロペルオキシドなどがあげられ、炭素原
子数8以上の芳香族ヒドロペルオキシドが好まし
い。芳香族ヒドロペルオキシドは適当な溶媒に溶
解させてもよく、この溶媒は芳香族ヒドロペルオ
キシドを溶解するものであれば特に制限はない。
また、芳香族ヒドロペルオキシドは他の物質との
混合物でもよく、例えば、通常、クメンを酸化し
て相当するヒドロペルオキシドを製造するときに
得られる未反応クメンと第三級ヒドロペルオキシ
ドの混合物でもよい。
Specific examples of aromatic hydroperoxides to which the method of the present invention is applied include α-phenylethyl hydroperoxide, cumene hydroperoxide, cymene hydroperoxide, diisopropylbenzene monohydroperoxide, diisopropylbenzene dihydroperoxide, etc. Aromatic hydroperoxides of 8 or more are preferred. The aromatic hydroperoxide may be dissolved in a suitable solvent, and this solvent is not particularly limited as long as it dissolves the aromatic hydroperoxide.
The aromatic hydroperoxide may also be a mixture with other substances, such as a mixture of unreacted cumene and tertiary hydroperoxide, which is usually obtained when cumene is oxidized to produce the corresponding hydroperoxide.

本発明方法において溶媒又は混合物中の芳香族
ヒドロペルオキシドの濃度は、芳香族ヒドロペル
オキシドの種類及び水素還元反応の反応条件に応
じて適宜決定されるが、一般的には約1〜90重量
%の範囲で定められる。
In the method of the present invention, the concentration of aromatic hydroperoxide in the solvent or mixture is appropriately determined depending on the type of aromatic hydroperoxide and the reaction conditions of the hydrogen reduction reaction, but is generally about 1 to 90% by weight. Defined by range.

本発明において用いられるパラジウム含有触媒
とは、パラジウム自体の他、活性炭、アルミナ、
カーボランダム、チタニア、シリカーアルミナ、
シリカなどの担体にパラジウムを担持させたもの
で固定床触媒として一般的に必要な強度、粒径を
有するものであればよい。このようなパラジウム
含有触媒はパラジウム表面積が200m2/g・Pdで
あることが必要である。これにより触媒を極めて
高活性でかつ寿命の長いものにできる。また、操
作条件の変動による負荷増加に対しても十分対応
が可能となる。さらに、長時間連続運転してもパ
ラジウムの溶出が少なくなる。すなわち、転化
率、選択率共に良好で効率良い還元が可能とな
る。なお、ここで言うパラジウムの表面積(以下
MSAと略記する)は一酸化炭素吸着法により測
定したものである。
The palladium-containing catalyst used in the present invention includes, in addition to palladium itself, activated carbon, alumina,
Carborundum, titania, silica alumina,
Any material may be used as long as it has palladium supported on a carrier such as silica and has the strength and particle size generally required for a fixed bed catalyst. Such a palladium-containing catalyst must have a palladium surface area of 200 m 2 /g·Pd. This allows the catalyst to have extremely high activity and a long life. Furthermore, it is possible to sufficiently deal with increases in load due to changes in operating conditions. Furthermore, palladium elution is reduced even during long-term continuous operation. That is, efficient reduction with good conversion rate and selectivity is possible. In addition, the surface area of palladium (hereinafter referred to as
(abbreviated as MSA) was measured by carbon monoxide adsorption method.

MSAが200m2/g・Pd未満では操作条件の変
動による負荷変動への対応が不可能となり、転化
率が低下する。また、パラジウム溶出量が高くな
り経時的活性低下が大きくなる。一方、MSAの
上限は特に制限はないが350m2/g・Pdまでの範
囲が好ましい。
When the MSA is less than 200 m 2 /g·Pd, it becomes impossible to respond to load fluctuations due to fluctuations in operating conditions, and the conversion rate decreases. In addition, the amount of palladium eluted increases and the activity decreases over time. On the other hand, the upper limit of MSA is not particularly limited, but is preferably within a range of 350 m 2 /g·Pd.

このようなMSAが200m2/g・Pd以上のパラ
ジウム含有触媒としては、例えば平均粒径0.5mm
から20mmの担体に0.1ないし2重量%程度のパラ
ジウムが担持されたものをあげることができる。
また、このパラジウム含有触媒は助触媒として他
の貴金属化合物、例えば白金、ロジウム、ルテニ
ウムなどを含有していてもよい。なお、パラジウ
ムの表面積の調整は常法に従つて行なうことがで
きる。
Such a palladium-containing catalyst with an MSA of 200 m 2 /g・Pd or more is, for example, a catalyst with an average particle size of 0.5 mm.
A carrier having a diameter of 20 mm to 20 mm and carrying about 0.1 to 2% by weight of palladium can be mentioned.
The palladium-containing catalyst may also contain other noble metal compounds such as platinum, rhodium, ruthenium, etc. as co-catalysts. Note that the surface area of palladium can be adjusted according to a conventional method.

このパラジウム含有触媒の固定床を形成する反
応器としては、多管式反応器、単管式反応器など
公知の固定床反応器を用いることができる。
As a reactor for forming the fixed bed of the palladium-containing catalyst, a known fixed bed reactor such as a multi-tubular reactor or a single-tubular reactor can be used.

本発明において、水素還元の反応条件は、芳香
族ヒドロペルオキシドの種類によつて適宜最適な
条件範囲が決定されるが、反応温度については、
0ないし120℃が好ましい。0℃未満では反応の
進行が遅くなると共に、工業的に、工業用水以外
の冷却手段が必要となり、120℃を越えると芳香
族ヒドロペルオキシドの自己分解反応が促進され
やすく、副生成物の増加を招くことになる。他の
反応条件については、反応温度は0ないし50Kg/
cm2G、反応液量は触媒に対する液基準空間速度
(LHSV)で0.1ないし20hr-1、または水素ガスの
供給量は、芳香族ヒドロペルオキシドに対して化
学量論量の1ないし10倍量程度が好ましい。
In the present invention, the optimum range of reaction conditions for hydrogen reduction is determined depending on the type of aromatic hydroperoxide, but the reaction temperature is as follows:
0 to 120°C is preferred. If the temperature is below 0°C, the progress of the reaction will be slow and a cooling means other than industrial water will be required.If the temperature exceeds 120°C, the self-decomposition reaction of aromatic hydroperoxides will be likely to be accelerated, resulting in an increase in by-products. I will invite you. For other reaction conditions, the reaction temperature ranges from 0 to 50Kg/
cm 2 G, the amount of reaction liquid is 0.1 to 20 hr -1 in liquid standard hourly space velocity (LHSV) relative to the catalyst, or the amount of hydrogen gas supplied is about 1 to 10 times the stoichiometric amount of aromatic hydroperoxide. is preferred.

このように本発明は、パラジウム表面積200
m2/g・Pd以上のパラジウム含有触媒を充填し
た固定床反応器を用いるものであつて、これによ
り芳香族ヒドロペルオキシドの水素還元反応によ
りほとんど定量的に、対応する芳香族アルコール
が得られ、しかも触媒は長時間の反応によつても
活性を失なわない、というすぐれた作用効果を奏
する。また、従来行われてきた懸濁法の欠点があ
つたパラジウムの溶出、触媒の摩耗によると損
失、劣化も長時間にわたつて認められず、静置分
離、ろ過などの触媒分離、回収の必要性がなく、
長時間安定して連続的に芳香族アルコールの製造
が実施できる。
Thus, the present invention has a palladium surface area of 200
A fixed bed reactor packed with a palladium-containing catalyst of m 2 /g·Pd or more is used, whereby the corresponding aromatic alcohol can be obtained almost quantitatively by the hydrogen reduction reaction of the aromatic hydroperoxide, Furthermore, the catalyst exhibits an excellent effect in that it does not lose its activity even during long-term reactions. In addition, palladium elution, loss and deterioration due to catalyst wear, which had disadvantages in the conventional suspension method, were not observed over a long period of time, and catalyst separation and recovery such as static separation and filtration were not required. There is no gender,
Aromatic alcohol can be produced stably and continuously for a long period of time.

次に本発明を実施例に基づきさらに詳細に説明
する。なお例中の組成分析は、芳香族ヒドロペル
オキシドについはヨードメトリー法により、それ
以外の芳香族アルコールなどについては液クロマ
ト分析により行つた。
Next, the present invention will be explained in more detail based on examples. In the compositional analysis in the examples, aromatic hydroperoxides were analyzed by iodometry, and other aromatic alcohols were analyzed by liquid chromatography.

実施例 1 反応器として、内径4mmの液流導入口及びガス
流出口を最上部に、内径4mmのガス導入口を最下
部に、それぞれ備え、筒内下部にガス分散用金属
製焼結板を設け、その直上部に液流出口を形成し
た内径25mm、長さ600mmのステンレス製円筒型反
応器であつて、温度計及び圧力計を具備するもの
を用いた。この反応器の反応筒部はジヤケツトを
備えており、冷却水を通せるようになつている。
た、液流出口には100メツシユのステンレス製金
網を設けて触媒の流出を防止する。
Example 1 The reactor was equipped with a liquid flow inlet and a gas outlet with an inner diameter of 4 mm at the top, a gas inlet with an inner diameter of 4 mm at the bottom, and a metal sintered plate for gas dispersion at the bottom of the cylinder. A stainless steel cylindrical reactor with an inner diameter of 25 mm and a length of 600 mm, with a liquid outlet formed just above the reactor, and equipped with a thermometer and a pressure gauge was used. The reaction cylinder portion of this reactor is equipped with a jacket to allow cooling water to pass therethrough.
In addition, a 100-mesh stainless steel wire mesh was installed at the liquid outlet to prevent the catalyst from flowing out.

上記反応器に0.5重量%のパラジウムを担持し
た2mm径のアルミナ球でパラジウムの表面積
(MSA)295m2/g・Pdのものを180ml充填した。
ガス導入口より窒素ガスを、液導入口よりクメン
を、それぞれ反応器内に導入し、圧力を3Kg/cm2
Gに一定に保つたのち、窒素ガスを水素ガスに切
換え、またクメンをクメンヒドロペルオキシド
(25.5重量%クメン溶液)に切換えた。定常状態
でH2/クメンヒドロペルオキシドのフイードモ
ル比が2.5、クメンヒドロペルオキシド(以下
CHPと略記する)のクメン溶液は、
LHSV2.0hr-1の速度になるよう連続的に供給し
た。
The reactor was filled with 180 ml of 2 mm diameter alumina spheres carrying 0.5% by weight of palladium and having a palladium surface area (MSA) of 295 m 2 /g·Pd.
Nitrogen gas was introduced into the reactor through the gas inlet, and cumene was introduced through the liquid inlet into the reactor, and the pressure was adjusted to 3Kg/cm 2
After keeping the temperature constant at G, the nitrogen gas was changed to hydrogen gas, and the cumene was changed to cumene hydroperoxide (25.5% by weight cumene solution). At steady state, the feed molar ratio of H 2 /cumene hydroperoxide is 2.5, and cumene hydroperoxide (hereinafter
Cumene solution (abbreviated as CHP) is
It was continuously supplied at a rate of LHSV2.0hr -1 .

反応温度はホツトスポツト部(以下THSと略
記する)で65℃以下となるようジヤケツトの冷却
水量を調節し、反応の安定化をはかつた。反応開
始後5時間後にTHS63℃で、液流出口より試料
を採取し、分析した結果CHPはほとんど検出さ
れず、ほぼ定量的にジメチルフエニルカルビノー
ル(以下DMPCと略記する)が生成していた。
CHP転化率99.8モル%、DMPC選択率100モル%
であつた。
The amount of cooling water in the jacket was adjusted so that the reaction temperature was 65°C or less at the hot spot (hereinafter abbreviated as THS) to stabilize the reaction. 5 hours after the start of the reaction, a sample was collected from the liquid outlet at THS 63℃ and analyzed. As a result, almost no CHP was detected, and dimethylphenyl carbinol (hereinafter abbreviated as DMPC) was produced almost quantitatively. .
CHP conversion rate 99.8 mol%, DMPC selectivity 100 mol%
It was hot.

実施例 2 ガス導入口を最上部に、液ガス混相流出口を最
下部に、それぞれ設け、またガス液分散板を筒内
上部に設け、下部には100メツシユのステンレス
製金網を触媒のサポートとして取り付けた以外は
実施例1と同様の円筒型反応器を用いた。この反
応器に0.5重量%パラジウムを担持した活性炭成
形品(1mmφ・1mm)で、パラジウムのMSA307
m2/g・Pdである触媒を200ml充填した。
Example 2 A gas inlet is provided at the top, a liquid-gas mixed phase outlet is provided at the bottom, a gas-liquid dispersion plate is provided at the top of the cylinder, and a 100-mesh stainless steel wire mesh is installed at the bottom to support the catalyst. A cylindrical reactor similar to that in Example 1 was used except for the attachment. In this reactor, an activated carbon molded product (1 mmφ, 1 mm) supporting 0.5% by weight of palladium was prepared using palladium MSA307.
200 ml of catalyst having m 2 /g·Pd was charged.

この反応器に、CHP濃度8.0重量%のCHP−ク
メン溶液を500ml/hr(LHSV2.5hr-1)の速度で、
また水素を12.6Nl/hr(H2/CHPモル比、2.5)
の速度で連続的に供給した。反応圧力は3Kg/cm2
Gに保持し、ジヤケツトに冷却水を通さず運転を
つづけた。
A CHP-cumene solution with a CHP concentration of 8.0% by weight was added to this reactor at a rate of 500ml/hr (LHSV2.5hr -1 ).
Also hydrogen at 12.6Nl/hr (H 2 /CHP molar ratio, 2.5)
was fed continuously at a rate of Reaction pressure is 3Kg/cm 2
G and continued operation without passing cooling water through the jacket.

反応開始5時間後THSは74℃で、液流出口よ
り試料を採取し分析したところ、CHP転化率99.6
モル%、DMPC選択率99.7モル%の結果が得られ
た。同一条件で運転を継続し24時間後において、
CHP転化率99.9モル%、DMPC選択率99.9モル
%、720時間後においてもCHP転化率99.9モル%、
DMPC選択率99.9モル%となり活性の低下は全く
認められなかつた。
5 hours after the start of the reaction, the THS was 74°C, and a sample was taken from the liquid outlet and analyzed, and the CHP conversion rate was 99.6.
A result of 99.7 mol% of DMPC selectivity was obtained. After 24 hours of continued operation under the same conditions,
CHP conversion rate 99.9 mol%, DMPC selectivity 99.9 mol%, CHP conversion rate 99.9 mol% even after 720 hours,
The DMPC selectivity was 99.9 mol%, and no decrease in activity was observed.

720時間運転を行つた触媒上のパラジウム担持
量を分析した結果、0.47重量%、ほとんど初期状
態のものと差異のないことが判明した。
Analysis of the amount of palladium supported on the catalyst after 720 hours of operation revealed that it was 0.47% by weight, almost the same as the initial state.

実施例 3 触媒を、2.0mm径のアルミナに0.5重量%パラジ
ウムを担持させた、パラジウムのMSAが296m2
g・Pdのものに変えた以外は、実施例2と同一
の反応器を用い同様の方法で反応を行つた。
THSの温度65−78℃の範囲で720時間運転を行
い、CHP転化率99.5〜99.9モル%、DMPC選択率
99.6〜99.9モル%の結果が得られ、この間活性の
低下は全く認められなかつた。
Example 3 The catalyst was made by supporting 0.5 wt% palladium on alumina with a diameter of 2.0 mm, and the MSA of palladium was 296 m 2 /
The reaction was carried out in the same manner as in Example 2 using the same reactor as in Example 2, except that the reactor was changed to one containing g.Pd.
Operation was carried out for 720 hours at THS temperature range of 65-78℃, CHP conversion rate 99.5-99.9 mol%, DMPC selectivity
A result of 99.6 to 99.9 mol% was obtained, and no decrease in activity was observed during this period.

また実施例2と同様使用後の触媒のパラジウム
担持量を分析した結果、0.46重量%とこれもほと
んど初期状態のものと差異のないことが判明し
た。
Further, as in Example 2, the amount of palladium supported on the catalyst after use was analyzed, and it was found to be 0.46% by weight, which was almost the same as that in the initial state.

比較例 触媒として2.0mm径のアルミナに0.5重量%パラ
ジウムを担持させたMSAが114m2/g・Pdのも
のを用いた以外は実施例2と全く同様にして反応
を行わせたところTHSは50〜60℃の範囲となつ
た。
Comparative Example The reaction was carried out in exactly the same manner as in Example 2, except that 2.0 mm diameter alumina supported with 0.5 wt% palladium and MSA of 114 m 2 /g・Pd was used as a catalyst, and the THS was 50. The temperature ranged from ~60℃.

反応開始後720時間連続運転を行ない定期的に
液流出口より試料を採取し分析したところ、
CHP転化率88.5〜92.0モル%、DMPC選択率99.6
〜99.8モル%となり、CHP転化率が低くなつてい
る。また使用後の触媒のパラジウム担持量を分析
したところ、0.41重量%と9%の減量がみられ
た。
After continuous operation for 720 hours after the start of the reaction, samples were periodically taken from the liquid outlet and analyzed.
CHP conversion rate 88.5-92.0 mol%, DMPC selectivity 99.6
~99.8 mol%, indicating a low CHP conversion rate. Further, when the amount of palladium supported on the catalyst after use was analyzed, a weight loss of 0.41% by weight was observed, which was 9%.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族ヒドロペルオキシドを水素還元するに
当り、パラジウム表面積200m2/g・Pd以上のパ
ラジウム含有触媒を、固定床として用いることを
特徴とする芳香族アルコールの製造方法。
1. A method for producing an aromatic alcohol, which comprises using a palladium-containing catalyst having a palladium surface area of 200 m 2 /g·Pd or more as a fixed bed in hydrogen reduction of an aromatic hydroperoxide.
JP57220224A 1982-12-17 1982-12-17 Production of aromatic alcohol Granted JPS59110639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220224A JPS59110639A (en) 1982-12-17 1982-12-17 Production of aromatic alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220224A JPS59110639A (en) 1982-12-17 1982-12-17 Production of aromatic alcohol

Publications (2)

Publication Number Publication Date
JPS59110639A JPS59110639A (en) 1984-06-26
JPH0316934B2 true JPH0316934B2 (en) 1991-03-06

Family

ID=16747820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220224A Granted JPS59110639A (en) 1982-12-17 1982-12-17 Production of aromatic alcohol

Country Status (1)

Country Link
JP (1) JPS59110639A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533908B2 (en) * 1988-03-22 1996-09-11 三菱化学株式会社 Method for producing aromatic alcohols
US5023383A (en) * 1989-01-13 1991-06-11 Mitsubishi Petrochemical Co., Ltd. Method for producing aromatic alcohol
CN1051541C (en) * 1993-03-31 2000-04-19 兰州大学 Prepn. method for 2-phenyl-2-propanol

Also Published As

Publication number Publication date
JPS59110639A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
US6005143A (en) Use of a monolith catalyst for the hydrogenation of dinitrotoluene to toluenediamine
RU2239626C2 (en) Method for preparing vinyl acetate
KR900006441B1 (en) Purification of crude terephthalic acid
US5495055A (en) Acetone hydrogenation using a supported ruthenium catalyst
KR100588178B1 (en) Process for the hydrogenation of phenyl acetylene in a styrene-containing medium with the aid of a catalyst
US7253329B2 (en) Selective hydrogenation of cyclododecatriene to cyclododecene
HU208301B (en) Process for the continuous production of aniline
Hiyoshi et al. Biphenyl hydrogenation over supported transition metal catalysts under supercritical carbon dioxide solvent
JP2001064213A (en) Alkylation of aromatic compound in vapor phase
KR100796823B1 (en) Method for the hydrogenation of aromatics by means of reactive distillation
US20100010278A1 (en) Process for selective hydrogenation on a gold-containing catalyst
JPH0316934B2 (en)
US4163025A (en) Process for the production of benzylamine and dibenzylamine
JP2819171B2 (en) Method for producing aromatic alcohol
US4940829A (en) Hydrodemethylation of neohexane
JP6963050B2 (en) Method for producing 2-cyclohexylcyclohexanol
JPH0330582B2 (en)
JP4312334B2 (en) Indan manufacturing method
US5646085A (en) Material based on tungsten carbide(s), catalyst and process useful for the hydrogenation of an aromatic nitro or nitroso derivative employing this catalyst
US4322567A (en) Process for production of aromatic alcohols
JPH10508008A (en) Method for producing 3-phenylpropionaldehyde
US3769358A (en) Hydrogenation process start-up method
RU2335486C2 (en) Method of alkylarylketon hydration
US5023383A (en) Method for producing aromatic alcohol
US3851001A (en) Hydrogenation of aromatic hydrocarbons to the corresponding saturated hydrocarbon