JPS59107967A - Zirconia ceramics - Google Patents
Zirconia ceramicsInfo
- Publication number
- JPS59107967A JPS59107967A JP57213595A JP21359582A JPS59107967A JP S59107967 A JPS59107967 A JP S59107967A JP 57213595 A JP57213595 A JP 57213595A JP 21359582 A JP21359582 A JP 21359582A JP S59107967 A JPS59107967 A JP S59107967A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- strength
- porcelain
- monoclinic
- tetragonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は機械部品、耐摩耗材、切削工具等の構造材料と
して使用される高強度・高靭性のジルコニア磁器に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to high-strength and high-toughness zirconia porcelain used as structural materials for machine parts, wear-resistant materials, cutting tools, and the like.
従来、ジルコニア磁器は安定化剤としてY2O6、Mg
O、CaQ等を固溶した立方晶のみによる完全安定化ジ
ルコニアとして知られている。これ等は特に酸素センサ
等の固体電解質として王に使用されてきた。Conventionally, zirconia porcelain has been stabilized by Y2O6 and Mg.
It is known as completely stabilized zirconia consisting only of cubic crystals in which O, CaQ, etc. are dissolved. These have been particularly used as solid electrolytes in oxygen sensors and the like.
しかし、これら立方晶ジルコニア磁器は強度的に弱く、
特に耐熱衝撃性に劣シ、センサとしての寿命が問題とな
っている。However, these cubic zirconia porcelains are weak in strength,
In particular, it has poor thermal shock resistance, and its service life as a sensor has become a problem.
一方、その後、ジルコニアを部分安定化することによシ
、強度特性、耐熱衝撃性等の基本物性が向上することが
見出され、センサ等に使用されるようになった。更にこ
の考えを発展させ、部分安定化ジルコニアの強度特性、
靭性を向上させて、機械材料として使用することが研究
されてきた。On the other hand, it was subsequently discovered that by partially stabilizing zirconia, its basic physical properties such as strength and thermal shock resistance were improved, and it came to be used in sensors and the like. Further developing this idea, the strength properties of partially stabilized zirconia,
Research has been conducted to improve its toughness and use it as a mechanical material.
従来、このような高強度ジルコニアにおいては、安定化
剤として一般的にイツトリアが使用されており、その含
有率は実質上3モルチ以上であシ、これが低モル化の限
界であると考えられていた。つまり、イツトリアが3モ
ルチ以下になると通常の製造方法では強度を左右する因
子である結晶相の存在比をコントロールすることが困難
となり、工業的見地から望ましい結果が得られなかった
。Conventionally, itria has been generally used as a stabilizer in such high-strength zirconia, and its content has been substantially 3 mol. Ta. In other words, when the amount of ittria is less than 3 molt, it becomes difficult to control the abundance ratio of the crystalline phase, which is a factor that affects strength, by the usual manufacturing method, and desirable results cannot be obtained from an industrial standpoint.
ところで、ジルコニアの安定化剤としてはY2O3、C
aO、MgO等が知られているが、Y2O3で部分安定
化されたジルコニア磁器が強度、靭性等に優れている。By the way, as stabilizers for zirconia, Y2O3, C
Although aO, MgO, etc. are known, zirconia porcelain partially stabilized with Y2O3 is superior in strength, toughness, etc.
こうしたY2O3によシ部分安定化されたジルコニア磁
器は相転移強化型ジルコニアといわれるものであ夛、残
留している正方晶が単斜晶へと転移することによシ応力
(破壊エネルギー)を吸収し、強度特性を向上させると
いわれている。Zirconia porcelain partially stabilized by Y2O3 is called phase transition strengthened zirconia, and absorbs stress (fracture energy) by transitioning the remaining tetragonal crystals to monoclinic crystals. It is said to improve strength properties.
本発明者らはこうした知見に加えて更に鋭意検討を重ね
た結果、ジルコニア磁器中の立方晶、正方晶及び単斜晶
の存在比がある範囲内にあるならば、強度及び靭性が著
しく高くなることを見出した。In addition to these findings, the present inventors conducted further intensive studies and found that if the abundance ratio of cubic, tetragonal, and monoclinic crystals in zirconia porcelain is within a certain range, strength and toughness are significantly increased. I discovered that.
すなわち、本発明のジルコニア磁器は立方晶、正方晶及
び単斜晶の3相からなシ、かつ立方晶が30〜55重量
%、正方晶が30〜60重量%、単斜晶が5〜20重量
%であることを特徴とするものである。That is, the zirconia porcelain of the present invention has three phases: cubic, tetragonal, and monoclinic, and contains 30 to 55% by weight of cubic, 30 to 60% by weight of tetragonal, and 5 to 20% by weight of monoclinic. It is characterized by being % by weight.
本発明において、ジルコニア磁器中の立方晶、正方晶及
び単斜晶の存在比を上記範囲に限定したのは、上記範囲
を逸脱すると高強度・高靭性のジルコニア磁器が得られ
ないためである。In the present invention, the abundance ratio of cubic crystals, tetragonal crystals, and monoclinic crystals in the zirconia porcelain is limited to the above range because if it deviates from the above range, a zirconia porcelain with high strength and high toughness cannot be obtained.
また、本発明のノルフェア磁器において、高強度・高靭
性を維持し、更に耐熱性等を考慮した場合、不純物総量
が0.85重量多以下であることが望ましい。Further, in the Norphea porcelain of the present invention, in order to maintain high strength and high toughness, and further consider heat resistance, it is desirable that the total amount of impurities is 0.85% by weight or less.
また、本発明のジルコニア磁器においては、高温で安定
な正方晶を常温で残留させているため内部応力が著しく
増加しておシ、この内部応力に耐え、高強度を維持する
ためには磁器そのものが非常に微細な結晶組織を有する
ことが望ましい。このためには磁器のマトリックス部の
平均結晶粒径が2μm以下であることが望ましい。In addition, in the zirconia porcelain of the present invention, internal stress increases significantly because tetragonal crystals, which are stable at high temperatures, remain at room temperature.In order to withstand this internal stress and maintain high strength, the porcelain itself must It is desirable that the crystal structure be extremely fine. For this purpose, it is desirable that the average crystal grain size of the matrix portion of the ceramic is 2 μm or less.
また、同様な理由によシ磁器内部で粗粒の占める面積は
5チ以下であることが望ましい。Furthermore, for the same reason, it is desirable that the area occupied by the coarse grains within the porcelain is 5 inches or less.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
下記表は実施例1〜11及び比較例1〜4からなる。The table below consists of Examples 1-11 and Comparative Examples 1-4.
平均粒径0.9μmで純度99.8%の単斜晶ノルコニ
ア粉末と、共沈法によシ得られた平均粒径0.9μm、
Ni29.9 %のソルコニア化合物(nY2O5(
100n)ZrO2で表わされ、n=10)粉末とを最
終的なイツトリア含有率がモルチで下記表に示す値とな
るように混合した。次に、これら混合粉に結合剤として
ポリビニルアルコールを混合し、造粒した後、2.0t
on、会2の条件で加圧成形した。つづいて、これら成
形体を大気中において同表に示す各温度で2時間焼成し
た後冷却し、ジルコニア磁器を得た。Monoclinic norconia powder with an average particle size of 0.9 μm and a purity of 99.8%, an average particle size of 0.9 μm obtained by coprecipitation method,
Sorconia compound (nY2O5(
100n) ZrO2, n=10) powder were mixed in a mortar so that the final ittria content was as shown in the table below. Next, polyvinyl alcohol was mixed with these mixed powders as a binder, and after granulation, 2.0t
On, pressure molding was performed under the conditions of 2. Subsequently, these molded bodies were fired in the atmosphere for 2 hours at each temperature shown in the same table, and then cooled to obtain zirconia porcelain.
得られた各ジルコニア磁器についてその結晶相の存在比
、平均結晶粒径、粗粒面積、不純物含有率、曲げ強さ、
破壊靭性値(KIC値)及び評価結果を同表に併記する
。For each obtained zirconia porcelain, the abundance ratio of its crystal phase, average crystal grain size, coarse grain area, impurity content, bending strength,
Fracture toughness values (KIC values) and evaluation results are also listed in the same table.
なお、結晶相の定量、結晶゛粒径の測定、曲げ強度の測
定、KIc値の測定は夫々以下のようにして行なった。Incidentally, the quantitative determination of the crystal phase, the measurement of the crystal grain size, the measurement of bending strength, and the measurement of KIc value were performed as follows.
(1)結晶相の定量
単斜晶は焼結体のラップ面のX線回折強度にもとづき、
次式によシ求めた。(1) Quantification of crystal phase Monoclinic is determined based on the X-ray diffraction intensity of the lapped surface of the sintered body.
It was calculated using the following formula.
正方晶は上記測定試料を5μm以下に粉砕し、この粉砕
によって正方晶が相転移してすべて単斜晶に転移したと
みなし、この粉末のX線回折強度にもとづき、上式によ
シ単斜晶を算出し、上述したラップ面における単斜晶と
の差を正方晶とした。Tetragonal crystals are obtained by pulverizing the above measurement sample to a size of 5 μm or less, and assuming that the tetragonal crystals undergo a phase transition and are all converted to monoclinic crystals due to this pulverization. Based on the X-ray diffraction intensity of this powder, the above formula The crystal was calculated, and the difference from the monoclinic crystal in the lapped plane mentioned above was defined as the tetragonal crystal.
立方晶は上記5μm以下の粉砕粉末のX線回折強度にも
とづき、次式により求めた。The cubic crystal was determined by the following formula based on the X-ray diffraction intensity of the above-mentioned pulverized powder having a size of 5 μm or less.
(11)結晶粒径
走査型電子顕微鏡を用い、試料を8000〜1万倍の倍
率で観察し、その顕微鏡写真について無作為に10箇所
において面積換算して算出した。(11) Crystal Grain Size Using a scanning electron microscope, the sample was observed at a magnification of 8,000 to 10,000 times, and the area of the micrograph was calculated at 10 random locations.
(Iii)曲げ強度
矩形状焼結体を研摩仕上げして得た5X5X60−の寸
法の試験片について3点曲げ試験によって測定した。(Iiii) Bending strength The bending strength was measured by a three-point bending test on a test piece with dimensions of 5 x 5 x 60- obtained by polishing a rectangular sintered body.
(切破壊靭性値(KIC値)
ビッカース法により試験片に荷重30 kgで圧痕を形
成してこの圧痕末端から伸びるクラック長を測定し、E
Vanaらによシ提案された計算法によシ算出した。(Cut fracture toughness value (KIC value)) An indentation was formed on the test piece using the Vickers method under a load of 30 kg, and the length of the crack extending from the end of the indentation was measured.
It was calculated using the calculation method proposed by Vana et al.
上記表から明らかなように比較例1〜4のジルコニア磁
器は単斜晶、正方晶、立方晶の結晶相のうちいずれかが
本発明の範囲外であるので、高い曲げ強度と高い破壊靭
性値を得ることができなかった。これに対して実施例1
〜11のジルコニア磁器はいずれも高強度・高靭性を示
した。As is clear from the above table, the zirconia porcelains of Comparative Examples 1 to 4 have monoclinic, tetragonal, and cubic crystal phases outside the scope of the present invention, so they have high bending strength and high fracture toughness. I couldn't get it. In contrast, Example 1
All of the zirconia porcelains No. 1 to 11 exhibited high strength and high toughness.
事実、本発明のジルコニア磁器は?−ルミル用あるいは
ベアリング用のポール、ゴムタイヤ用スパイク、ボルト
、ナツト等の止め具、ミル内張用タイルとして高性能な
ものであった。In fact, what about the zirconia porcelain of the present invention? - It was a high-performance product that could be used as a pole for remills or bearings, spikes for rubber tires, fasteners such as bolts and nuts, and tiles for lining mills.
例えば、本発明のジルコニア磁器を直径約10閣のシリ
ンダ形状とし、容積2ノのアルミナポット中において、
直径8聾のアルミナボール約1ki9、粒径5μmのア
ルミナ粉500gとともに水800m7を加えて湿式粉
砕を行ない磨耗減量を測定したところ、200時間後の
減量率が1.1〜1.4Cあった。この値を従来のジル
コニア磁器と比較すると耐磨耗性は非常に良好なもので
あった。For example, the zirconia porcelain of the present invention is shaped into a cylinder with a diameter of about 10 cm, and placed in an alumina pot with a volume of 2 cm.
Approximately 1ki9 alumina balls with a diameter of 8 mm, 500 g of alumina powder with a particle size of 5 μm, and 800 m7 of water were added and subjected to wet pulverization to measure the abrasion loss, and the weight loss rate after 200 hours was 1.1 to 1.4 C. Comparing this value with conventional zirconia porcelain, it was found that the wear resistance was very good.
更に、本発明のジルコニア磁器中のイツトリア含有率は
3mo1%未満であっても高強度・高靭性でアシ、従来
のジルコニア磁器と比較して、高価なイツトリアの使用
量が少なくてすむので低コストで製造することができる
。Furthermore, even if the ittria content in the zirconia porcelain of the present invention is less than 3 mo1%, it has high strength and high toughness, and compared to conventional zirconia porcelain, the amount of expensive ittria used is small, so the cost is low. It can be manufactured in
以上詳述した如く、本発明によれば高強度・高靭性でし
かも低コストなジルコニア磁器を提供できるものである
。As detailed above, according to the present invention, it is possible to provide zirconia porcelain that has high strength and high toughness and is low in cost.
Claims (1)
かつ立方晶が30〜55重量%、正方晶が30〜60重
量%、単斜晶が5〜20重量%であることを特徴とする
ジルコニア磁器。The crystal grains are composed of three phases of cubic, tetragonal and monoclinic,
A zirconia porcelain characterized in that the cubic crystal content is 30 to 55 weight %, the tetragonal crystal content is 30 to 60 weight %, and the monoclinic crystal content is 5 to 20 weight %.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57213595A JPS59107967A (en) | 1982-12-06 | 1982-12-06 | Zirconia ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57213595A JPS59107967A (en) | 1982-12-06 | 1982-12-06 | Zirconia ceramics |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59107967A true JPS59107967A (en) | 1984-06-22 |
Family
ID=16641789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57213595A Pending JPS59107967A (en) | 1982-12-06 | 1982-12-06 | Zirconia ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59107967A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5336646A (en) * | 1992-11-14 | 1994-08-09 | Korea Advanced Institute Of Science And Technology | Method of surface strengthening alumina-zirconia composites using MoO2 |
DE102014204238A1 (en) | 2013-03-13 | 2014-09-18 | Toyota Boshoku K.K. | AIR CLEANING DEVICE |
JP2015199666A (en) * | 2010-03-31 | 2015-11-12 | ストラウマン ホールディング アーゲー | Body made of ceramic material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57111278A (en) * | 1980-12-25 | 1982-07-10 | Toray Industries | Zirconia sintered body |
-
1982
- 1982-12-06 JP JP57213595A patent/JPS59107967A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57111278A (en) * | 1980-12-25 | 1982-07-10 | Toray Industries | Zirconia sintered body |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5336646A (en) * | 1992-11-14 | 1994-08-09 | Korea Advanced Institute Of Science And Technology | Method of surface strengthening alumina-zirconia composites using MoO2 |
JP2015199666A (en) * | 2010-03-31 | 2015-11-12 | ストラウマン ホールディング アーゲー | Body made of ceramic material |
DE102014204238A1 (en) | 2013-03-13 | 2014-09-18 | Toyota Boshoku K.K. | AIR CLEANING DEVICE |
US9180396B2 (en) | 2013-03-13 | 2015-11-10 | Toyota Boshoku Kabushiki Kaisha | Air cleaner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4977114A (en) | Zirconia ceramics and method for producing same | |
EP0151335B2 (en) | Zirconia Porcelain and method of manufacturing the same | |
JPS6140621B2 (en) | ||
JPH0352425B2 (en) | ||
JPS59107967A (en) | Zirconia ceramics | |
JPH0553751B2 (en) | ||
JP2002154873A (en) | Zirconia sintered compact excellent in durability | |
JPS5939367B2 (en) | Manufacturing method of zirconium oxide fine powder | |
JP2001302345A (en) | Zirconia sintered body excellent in durability and manufacturing method thereof | |
JP3076682B2 (en) | Alumina-based sintered body and method for producing the same | |
JPH0258232B2 (en) | ||
JPS6031795B2 (en) | Zirconia sintered body | |
JP2517253B2 (en) | Manufacturing method of high strength zirconia sintered body | |
JPS605067A (en) | Manufacture of zirconia sintered body | |
JP3176143B2 (en) | Partially stabilized zirconia sintered body | |
EP0567136A1 (en) | Mill parts | |
JPH03223159A (en) | Alumina-zirconia compounded sintered material | |
JPS647030B2 (en) | ||
US20090081101A1 (en) | Yttria-stabilized zirconia sintered body and method for producing the same | |
JPH0615191A (en) | Member for crushing machine | |
JP4773709B2 (en) | Crusher parts | |
JPH0696471B2 (en) | Method for manufacturing zirconia ceramics | |
JPH0797254A (en) | High-strength sintered alumina | |
JPH05301775A (en) | Member for pulverizer composed of silicon nitride-based sintered compact | |
JP2003314556A (en) | Bearing of zirconia sinter |