JP4773709B2 - Crusher parts - Google Patents

Crusher parts Download PDF

Info

Publication number
JP4773709B2
JP4773709B2 JP2004331162A JP2004331162A JP4773709B2 JP 4773709 B2 JP4773709 B2 JP 4773709B2 JP 2004331162 A JP2004331162 A JP 2004331162A JP 2004331162 A JP2004331162 A JP 2004331162A JP 4773709 B2 JP4773709 B2 JP 4773709B2
Authority
JP
Japan
Prior art keywords
zirconia
less
powder
sintered body
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004331162A
Other languages
Japanese (ja)
Other versions
JP2006137652A (en
Inventor
徹郎 福原
宏司 大西
美由紀 佐久田
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2004331162A priority Critical patent/JP4773709B2/en
Publication of JP2006137652A publication Critical patent/JP2006137652A/en
Application granted granted Critical
Publication of JP4773709B2 publication Critical patent/JP4773709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Grinding (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明はすぐれた耐摩耗性と静電除去能力をもった粉砕機用部材に関する。本明細書において、「粉砕機用部材」とは固体を乾式または湿式で粉砕、分散、混合あるいは解砕処理するために使用する器具、治具、機械装置などにおける固体と接触する部材の総称であり、粉砕・分散メディアも包含するものである。具体的には粉砕機、分散機、解砕機、混合機、造粒機、整粒機、攪拌機、乾燥機、運搬機などが含まれる。   The present invention relates to a pulverizer member having excellent wear resistance and electrostatic removal capability. In this specification, “member for pulverizer” is a general term for members that come into contact with a solid in tools, jigs, mechanical devices, etc. used for pulverizing, dispersing, mixing or crushing solids in a dry or wet manner. Yes, including pulverized / dispersed media. Specifically, a pulverizer, a disperser, a pulverizer, a mixer, a granulator, a granulator, a stirrer, a dryer, a transporter, and the like are included.

近年、電子材料等の高機能材料の製造には、微粉化と高純度化が要求され、使用される粉砕機は、従来のボールミルから高速で粉砕・分散メディアを撹拌することにより高い粉砕・分散効率を有する媒体撹拌型粉砕機が主流となっている。このような粉砕機は粉砕機用部材に加わる負荷がかなり大きいことから、被処理物が帯電し、その結果、粉体に強力な凝集が起こる。粉砕・分散処理時に非極性有機溶媒を用いて処理している場合には静電気放電が着火源となって爆発等の原因となる。一方、従来から行われている乾式粉砕においても粉砕により粉体表面に帯電が起こり、静電気による付着・凝集現象により粉砕の進行を阻害し、生産性の大きな低下をきたす。静電気を消失除去するために水蒸気の添加や適当な除電剤の添加等が行われているが、粉体表面を変質してしまうことや防爆装置が必要となるなどの問題点を有している。   In recent years, high-performance materials such as electronic materials have been required to be finely divided and highly purified, and the pulverizer used is highly pulverized / dispersed by stirring the pulverizing / dispersing media at high speed from a conventional ball mill. An efficient medium agitating pulverizer has become mainstream. In such a pulverizer, since the load applied to the pulverizer member is considerably large, the object to be processed is charged, and as a result, strong aggregation occurs in the powder. When processing is performed using a nonpolar organic solvent during pulverization / dispersion processing, electrostatic discharge becomes an ignition source and causes explosion. On the other hand, in the conventional dry pulverization, the powder surface is charged by the pulverization, and the progress of pulverization is hindered by the phenomenon of adhesion / aggregation due to static electricity, resulting in a significant decrease in productivity. In order to eliminate static electricity, the addition of water vapor or the addition of a suitable static neutralizer has been performed, but it has problems such as changing the surface of the powder and requiring an explosion-proof device. .

特許文献1には炭化ホウ素を主成分とする粉砕機用部材が開示されているが、高価であり、湿式には不向きであり、体積固有抵抗が小さすぎて静電除去材料としては不適当である。また、使用条件によっては粉砕機用部材が金属に見られる電食に似た腐食が起こるので好ましくない。
さらに、特許文献2〜4にはアルミナ質およびジルコニア質に導電性を付与した焼結体が開示されているが、導電性を付与するために電気導電性を発現させる成分が多量に添加されており、さらに該成分を多く添加しても焼結体のち密さに悪影響を与えないために焼成温度を高くする必要があり、その結果、結晶粒径が大きくなって硬度、強度の低下が起こり、耐摩耗性が低下する問題点があった。従って、従来の導電性を付与したアルミナ質およびジルコニア質焼結体は導電性を付与するがために本来の母剤の高特性を犠牲にした材料となっており、粉砕機用部材等の耐摩耗材料としては十分に満足して使用できるものではなかった。
Patent Document 1 discloses a pulverizer member mainly composed of boron carbide, but is expensive, unsuitable for wet use, and has a volume resistivity that is too small to be suitable as an electrostatic removal material. is there. Further, depending on the use conditions, the pulverizer member is not preferable because corrosion similar to electric corrosion observed in metal occurs.
Furthermore, Patent Documents 2 to 4 disclose a sintered body in which conductivity is imparted to alumina and zirconia. However, in order to impart conductivity, a large amount of a component that develops electrical conductivity is added. In addition, even if a large amount of the above components are added, it is necessary to increase the firing temperature in order not to adversely affect the compactness of the sintered body. As a result, the crystal grain size increases and the hardness and strength decrease. There was a problem that the wear resistance was lowered. Therefore, the conventional alumina and zirconia sintered bodies imparted with electrical conductivity are materials that sacrifice the high characteristics of the original base material to impart electrical conductivity. It was not a satisfactory wear material.

特開2000−167431号公報JP 2000-167431 A 特開2001−294479号公報JP 2001-294479 A 特開2001−294483号公報Japanese Patent Laid-Open No. 2001-294383 特開平9−221352号公報JP-A-9-221352

本発明の目的は、すぐれた耐摩耗性を有し、かつ湿式・乾式での粉砕・分散における粉体表面への帯電を抑制することを可能とする粉砕機用部材を提供する点にある。   An object of the present invention is to provide a member for a pulverizer that has excellent wear resistance and can suppress charging of the powder surface during pulverization / dispersion in a wet or dry manner.

本発明者は前記のような現状を鑑み鋭意研究を重ねてきた結果、ジルコニア質および/またはアルミナ質焼結体において、平均結晶粒径、気孔率及び固有抵抗を、さらにはジルコニア結晶相及びアルミナ含有量をある特定の範囲内に制御し、比摩耗量がある特定の範囲内にすることにより、乾式、湿式粉砕・分散においてすぐれた耐摩耗性と粉体表面に発生する静電気の除去が可能であることを見出し本発明を完成するに至った。   As a result of intensive studies in view of the above-mentioned present situation, the present inventor has found that in a zirconia and / or alumina sintered body, the average crystal grain size, the porosity and the specific resistance, and further the zirconia crystal phase and the alumina By controlling the content within a certain range and making the specific wear amount within a certain range, it has excellent wear resistance in dry and wet grinding / dispersion and can eliminate static electricity generated on the powder surface. As a result, the present invention has been completed.

即ち、本発明の第一は、炭化チタン、窒化チタン、炭化ケイ素のいずれかの一つを5〜25wt%、または酸化チタンを2〜8wt%含有し、Y/ZrOモル比が2/98〜5/95であるジルコニア質焼結体であり、平均結晶粒径が5μm以下、気孔率が1%以下、体積固有抵抗値が1×10〜1×1010Ω・cmであり、比摩耗量が10−5mm/N以下であることを特徴とする粉砕機用部材を関する。
本発明の第二は、正方晶系ジルコニア単相もしくは70容積%以上の正方晶系ジルコニアを含む正方晶系ジルコニアと立方晶系ジルコニアとの混合相であることを特徴とする請求項1記載の粉砕機用部材に関する。
以下に本発明の粉砕機用部材が充足すべき要件について詳細に説明する。
That is, the first aspect of the present invention, titanium carbide, titanium nitride, 5-25 wt% of one or silicon carbide, or titanium oxide containing 2~8wt%, Y 2 O 3 / ZrO 2 molar ratio Is a zirconia sintered body having an average crystal grain size of 5 μm or less, a porosity of 1% or less, and a volume resistivity of 1 × 10 5 to 1 × 10 10 Ω · cm. And the specific wear amount is 10 −5 mm 2 / N or less.
The second aspect of the present invention is a tetragonal zirconia single phase or a mixed phase of tetragonal zirconia containing 70% by volume or more of tetragonal zirconia and cubic zirconia. The present invention relates to a pulverizer member.
The requirements to be satisfied by the crusher member of the present invention will be described in detail below.

(1) アルミナを40重量%以下含有する点。
本発明においてはジルコニア質焼結体中にアルミナを40重量%以下、好ましくは30重量%以下含有することが必要である。ジルコニア質焼結体中にアルミナを含有させることにより硬度の向上だけでなく、熱伝導率が大きくなって粉砕機用部材の冷却能力を高めることができる優位性がある。アルミナ含有量が40重量%を越える場合にはジルコニアとアルミナの熱膨張差により焼結体内部に発生する歪みが大きくなり、衝撃等により微細クラックが発生し、耐摩耗性の低下をきたすので好ましくない。下限は0.1重量%程度である。
(1) The point which contains 40 weight% or less of alumina.
In the present invention, the zirconia sintered body must contain 40 wt% or less, preferably 30 wt% or less of alumina. By including alumina in the zirconia sintered body, there is an advantage that not only the hardness is improved, but also the thermal conductivity is increased and the cooling capacity of the pulverizer member can be increased. When the alumina content exceeds 40% by weight, the strain generated inside the sintered body increases due to the difference in thermal expansion between zirconia and alumina, and fine cracks are generated due to impacts, etc. Absent. The lower limit is about 0.1% by weight.

(2)Y/ZrOモル比が2/98〜5/95である点。
本発明における、Y/ZrOモル比は2/98〜5/95、好ましくは2.5/97.5〜4/96であることが必要である。
通常ZrO原料中に少量含有することのあるHfOが混入していても良く、このHfO量を含めたZrOとHfOの合量をZrO量とする。
/ZrOモル比が2/98未満の場合には焼結体中の単斜晶系ZrO量が増加し、焼結体内部にクラックが発生して、粉砕機用部材として負荷のかかる状態ではクラックが進展し、割れや欠けが発生し、その結果、耐摩耗性の低下をきたすので好ましくない。一方、Y/ZrOモル比が5/95を越えると正方晶系ZrO量が低下し、立方晶系ZrO量が増加し、機械的特性が低下するので好ましくない。
なお、Y添加量の30モル%まで他の稀土類酸化物の1種または2種以上で置換したものも用いることができる。このような稀土類酸化物としては、CeO、Nd、Yb、Dy等が安価な点で好ましい。
(2) The point that Y 2 O 3 / ZrO 2 molar ratio is 2/98 to 5/95.
In the present invention, the Y 2 O 3 / ZrO 2 molar ratio needs to be 2/98 to 5/95, preferably 2.5 / 97.5 to 4/96.
Usually, HfO 2 that may be contained in a small amount in the ZrO 2 raw material may be mixed, and the total amount of ZrO 2 and HfO 2 including the amount of HfO 2 is defined as the amount of ZrO 2 .
When the Y 2 O 3 / ZrO 2 molar ratio is less than 2/98, the amount of monoclinic ZrO 2 in the sintered body increases, cracks are generated inside the sintered body, In a state where a load is applied, cracks develop, cracks and chips occur, and as a result, wear resistance is lowered, which is not preferable. On the other hand, if the molar ratio of Y 2 O 3 / ZrO 2 exceeds 5/95, the amount of tetragonal ZrO 2 decreases, the amount of cubic ZrO 2 increases, and the mechanical properties decrease, which is not preferable.
Also it is possible to use those substituted with one or more other rare earth oxides up to 30 mol% of Y 2 O 3 amount. As such rare earth oxides, CeO 2 , Nd 2 O 3 , Yb 2 O 3 , Dy 2 O 3 and the like are preferable from the viewpoint of inexpensiveness.

(3)平均結晶粒径が5μm以下である点。
本発明における焼結体の平均結晶粒径は5μm以下、好ましくは3μm以下であることが必要である。平均結晶粒径が5μmを越えると硬度の低下が起こり、耐摩耗性が低下するので好ましくない。下限では0.3μm程度である。なお、本発明において平均結晶粒径は焼結体を鏡面仕上げし、熱エッチングを施し、走査電子顕微鏡にて観察し、インターセプト法により10点平均から求める。算出式としては、

Figure 0004773709
[D:平均結晶粒径(μm)、L:測定長さ(μm)、n:長さL当たりの結晶数]を用いる。 (3) The average crystal grain size is 5 μm or less.
The average crystal grain size of the sintered body in the present invention is required to be 5 μm or less, preferably 3 μm or less. When the average crystal grain size exceeds 5 μm, the hardness is lowered and the wear resistance is lowered, which is not preferable. The lower limit is about 0.3 μm. In the present invention, the average grain size is obtained from an average of 10 points by the intercept method after mirror-finishing the sintered body, applying thermal etching, and observing with a scanning electron microscope. As a formula,
Figure 0004773709
[D: average crystal grain size (μm), L: measurement length (μm), n: number of crystals per length L] are used.

(4)気孔率が1%以下である点。
本発明において気孔率は1%以下、好ましくは0.5%以下である。気孔率が1%を越える場合には、曲げ強さ等の機械的特性の低下が起こり、耐摩耗性が低下するので好ましくない。下限は0%である。
なお、本発明の気孔率はアルキメデス法により測定する。
(4) The porosity is 1% or less.
In the present invention, the porosity is 1% or less, preferably 0.5% or less. When the porosity exceeds 1%, mechanical properties such as bending strength are deteriorated, and wear resistance is deteriorated. The lower limit is 0%.
In addition, the porosity of this invention is measured by the Archimedes method.

(5)体積固有抵抗値が1×10〜1×1010Ω・cmである点。
本発明においては、体積固有抵抗値は1×10〜1×1010Ω・cm、好ましくは1×10〜1×10Ω・cmである。体積固有抵抗値が1×10Ω・cm未満の場合は、静電気が流れすぎ、電食が発生し、粉砕機用部材の損傷が大きくなるので好ましくなく、1×1010Ω・cmを越える場合には静電気除去能力が低下し、粉体表面の帯電を抑えることができなくなる。また、使用条件によっては粉砕機用部材が金属に見られる電食に似た腐食が発生するので好ましくない。
なお、本発明における体積固有抵抗値の測定はφ20×2mm(直径20mm、肉厚2mmのこと)に加工した焼結体の両面に電極を施し、測定サンプルとする。測定は高抵抗計を用いて極性反転法により、バイアス電圧50V、バイアス電圧印可時間15秒/サイクル(プラス方向に電圧を15秒間、マイナス方向に電圧を15秒間かける操作を1サイクルとする)、極性反転サイクル4回/測定の条件で測定する。抵抗値の読み取りは、電圧をかけて15秒後の抵抗の絶対値を読み取り、1サイクル当たりプラス方向とマイナス方向に2回抵抗の絶対値が読み取れるので2回×4サイクル=8回で、8個の抵抗の絶対値を平均してその平均値から体積固有抵抗を算出する。
(5) The volume resistivity value is 1 × 10 5 to 1 × 10 10 Ω · cm.
In the present invention, the volume resistivity value is 1 × 10 5 to 1 × 10 10 Ω · cm, preferably 1 × 10 6 to 1 × 10 9 Ω · cm. When the volume resistivity is less than 1 × 10 5 Ω · cm, it is not preferable because static electricity flows too much, galvanic corrosion occurs, and damage to the pulverizer member increases, which exceeds 1 × 10 10 Ω · cm. In such a case, the ability to remove static electricity is lowered, and charging of the powder surface cannot be suppressed. Further, depending on the use conditions, the pulverizer member is not preferable because corrosion similar to the electric corrosion observed in metal occurs.
The measurement of volume resistivity in the present invention is an electrode applied on both surfaces of the sintered body was processed into a φ20 × 2 t mm (diameter 20 mm, that the wall thickness of 2 mm), a measurement sample. Measurement is performed by polarity reversal using a high resistance meter, bias voltage 50V, bias voltage application time 15 seconds / cycle (the operation in which the voltage is applied for 15 seconds in the positive direction and the voltage is applied for 15 seconds in the negative direction is one cycle), Measured under conditions of 4 polarity reversal cycles / measurement. The resistance value can be read by reading the absolute value of the resistance 15 seconds after applying the voltage, and the absolute value of the resistance can be read twice in the positive and negative directions per cycle. The absolute value of each resistance is averaged, and the volume specific resistance is calculated from the average value.

(6)比摩耗量が10−5mm/N以下である点。
本発明における比摩耗量は10−5mm/N以下、好ましくは10−6mm/N以下であることが必要である。比摩耗量が10−5mm/Nを超える場合には粉砕機用部材とした場合の摩耗が大きくなり、被処理粉体中への摩耗粉の混入量が多くなり好ましくない。
なお、本発明における比摩耗量の測定はボールオンディスク式摩耗試験機により、ボールは(株)ニッカトー製YTZφ10mmボールを用い、応力24.5N、摺動半径φ25mm、摺動距離108m、摺動速度0.18m/sec、温度20〜25℃、湿度30〜40%の条件で行う。なお、試験サンプルは30×10mm(一辺30mmの正方形で、肉厚10mmのもの)で摩耗試験面は鏡面仕上げとした。比摩耗量の算出は下式により行う。

Figure 0004773709
(6) The specific wear amount is 10 −5 mm 2 / N or less.
The specific wear amount in the present invention is required to be 10 −5 mm 2 / N or less, preferably 10 −6 mm 2 / N or less. When the specific wear amount exceeds 10 −5 mm 2 / N, wear in the case of a pulverizer member increases, and the amount of wear powder mixed into the powder to be treated increases, which is not preferable.
In the present invention, the specific wear amount was measured by a ball-on-disk type wear tester. The ball used was a YTZ φ10 mm ball manufactured by Nikkato Co., Ltd., a stress of 24.5 N, a sliding radius of φ25 mm, a sliding distance of 108 m, and a sliding speed. It is performed under the conditions of 0.18 m / sec, temperature 20 to 25 ° C., and humidity 30 to 40%. The test sample was 30 × 10 t mm (a square with a side of 30 mm and a thickness of 10 mm), and the abrasion test surface was mirror finished. The specific wear amount is calculated by the following formula.
Figure 0004773709

(7)正方晶系ジルコニア単相もしくは70容積%以上の正方晶系ジルコニアを含む正方晶系ジルコニアと立方晶系ジルコニアとの混合相である点。
本発明においては、正方晶系ジルコニア量が70容積%以上、好ましくは80容積%以上であることが必要である。正方晶系ジルコニアの含有量が70容積%未満の場合は、正方晶から単斜晶への応力誘起相変態効果が少なくなり、靭性の低下を生じ、負荷応力によってクラックが生成しやすくなり、耐摩耗性の低下をきたすので好ましくない。
本発明においては、正方晶系ジルコニア70容積%以上を含む正方晶系ジルコニアと立方晶系ジルコニアとの混合相であってもよい。従って、X線回折から求まる立方晶系ジルコニアは30容積%を上限としてその存在が許容され、また、単斜晶系ジルコニアは正方晶系ジルコニアが70容積%以上を含むことを前提とした場合5容積%までは許容することができる。
(7) A tetragonal zirconia single phase or a mixed phase of tetragonal zirconia containing 70% by volume or more of tetragonal zirconia and cubic zirconia.
In the present invention, the tetragonal zirconia amount needs to be 70% by volume or more, preferably 80% by volume or more. When the content of tetragonal zirconia is less than 70% by volume, the effect of stress-induced phase transformation from tetragonal to monoclinic crystal is reduced, resulting in a decrease in toughness, and cracks are likely to be generated due to load stress. This is not preferable because it causes a decrease in wear.
In the present invention, a mixed phase of tetragonal zirconia and cubic zirconia containing 70% by volume or more of tetragonal zirconia may be used. Therefore, cubic zirconia obtained from X-ray diffraction is allowed to exist up to 30% by volume, and monoclinic zirconia is premised on the assumption that tetragonal zirconia contains 70% by volume or more. Up to volume percent is acceptable.

尚、本発明ではジルコニアの結晶相である単斜晶系ジルコニア(M)の存在の有無及び含有量、正方晶系ジルコニア(T)及び立方晶系ジルコニア(C)の量については以下の方法でX線回折により求める。
即ち、焼結体及び加工した焼結体製品の表面は応力誘起相変態により正方晶から単斜晶に変態しており、真の結晶相を同定することができないので、焼結体表面を鏡面にまで研磨し、X線回折により回折角27〜34度の範囲で測定し、単斜晶系ジルコニアの有無及び含有量を次式から求める。

Figure 0004773709
また、正方晶系ジルコニア及び立方晶系ジルコニアは、単斜晶系ジルコニアの有無を確認した方法と同様にして、X線回折により、回折角70〜77度の範囲で測定し、次式により求める。
Figure 0004773709
Figure 0004773709
In the present invention, the presence and content of monoclinic zirconia (M), which is a crystalline phase of zirconia, and the amounts of tetragonal zirconia (T) and cubic zirconia (C) are as follows. Obtained by X-ray diffraction.
That is, the surface of the sintered body and the processed sintered body product are transformed from tetragonal to monoclinic by stress-induced phase transformation, and the true crystalline phase cannot be identified. And the presence and content of monoclinic zirconia are determined from the following equation by X-ray diffraction and measuring within a diffraction angle range of 27 to 34 degrees.
Figure 0004773709
In addition, tetragonal zirconia and cubic zirconia are measured in the diffraction angle range of 70 to 77 degrees by X-ray diffraction in the same manner as the method for confirming the presence or absence of monoclinic zirconia, and obtained by the following formula. .
Figure 0004773709
Figure 0004773709

X線回折条件はX線源:CuKα、出力:40kV/40mA、発散スリット:1/2゜、散乱スリット:1/2゜、受光スリット:0.15mm、モノクロメータ受光スリット:0.8mm、カウンタ:シンチレーションカウンタ、モノクロメータ:湾曲型モノクロメータにより行う。   X-ray diffraction conditions are as follows: X-ray source: CuKα, output: 40 kV / 40 mA, divergence slit: 1/2 °, scattering slit: 1/2 °, light receiving slit: 0.15 mm, monochromator light receiving slit: 0.8 mm, counter : Scintillation counter, monochromator: Curved monochromator.

本発明において絶縁体であるジルコニア質焼結体に導電性を付与するためには、炭化チタン、窒化チタン、酸化チタン、炭化ケイ素を体積固有抵抗値が1×10〜1×1010Ω・cmになるように所定量添加する必要がある。なお、本発明においては炭化チタン、窒化チタン、炭化ケイ素を添加する場合は5〜25wt%を、酸化チタンを添加する場合は2〜8wt%を添加することが必要であるIn order to impart conductivity to the zirconia sintered body is an insulator in the present invention, titanium carbide, titanium nitride, titanium oxide, the volume resistivity of the silicon carbide is 1 × 10 5 ~1 × 10 10 Ω It is necessary to add a predetermined amount so that it becomes cm. In the present invention the titanium carbide, titanium nitride, and 5 to 25 wt% when the addition of silicon carbide, when adding titanium oxide it is necessary to added pressure to 2 to 8 wt%.

以下に本発明の粉砕機用部材は種々の方法で製造できる。下記にその一例を示すが、この方法に限定されるものでない。
本発明では、ジルコニア質粉体は液相法により精製した粉体を使用することが必要である。即ち、ZrOとYの含有量が所定のモル比となるようにジルコニウム化合物(例えばオキシ塩化ジルコニウム)の水溶液とイットリウム化合物(例えば塩化イットリウム)の水溶液を均一に混合し、加水分解し、水和物を得、脱水し、乾燥後、400〜1250℃で仮焼し、Y、Al以外の不純物の少ないジルコニア質粉体を得る方法が採用される。
Below, the member for crushers of this invention can be manufactured by various methods. One example is shown below, but is not limited to this method.
In the present invention, it is necessary to use a powder purified by a liquid phase method as the zirconia powder. That is, an aqueous solution of a zirconium compound (for example, zirconium oxychloride) and an aqueous solution of an yttrium compound (for example, yttrium chloride) are uniformly mixed and hydrolyzed so that the content of ZrO 2 and Y 2 O 3 is a predetermined molar ratio. Thus, a method is employed in which a hydrate is obtained, dehydrated, dried, and calcined at 400 to 1250 ° C. to obtain a zirconia powder with less impurities other than Y 2 O 3 and Al 2 O 3 .

SiOは3重量%まで許容でき、SiOが含有していることにより焼結性の向上に効果がある。 SiO 2 can be tolerated up to 3% by weight, and the inclusion of SiO 2 is effective in improving the sinterability.

Al成分の添加はジルコニウム化合物とイットリウム化合物の水溶液の混合物に塩の水溶液として所定量添加しても良いし、後記する仮焼粉体の粉砕・分散時に水酸化物、炭酸化物、酸化物等の形態で添加しても良く、導電性成分としてTiOを添加する場合はAl成分の添加と同方法で添加する。 The Al 2 O 3 component may be added in a predetermined amount as an aqueous salt solution to a mixture of an aqueous solution of a zirconium compound and an yttrium compound, or during the pulverization / dispersion of the calcined powder described later, hydroxide, carbonate, oxidation It may be added in the form of a product or the like. When TiO 2 is added as a conductive component, it is added in the same manner as the addition of the Al 2 O 3 component.

また、導電性成分として炭化チタン、窒化チタン、炭化ケイ素、炭化タングステン粉体等を添加する場合はジルコニア仮焼粉体の粉砕・分散時に所定量添加する方法が採用されるが、ジルコニア粉体中にこれらの導電性成分を均一に分散させることが重要で媒体撹拌型粉砕機等の高分散機を用いた処理をすることが好ましい。   In addition, when adding titanium carbide, titanium nitride, silicon carbide, tungsten carbide powder or the like as a conductive component, a method of adding a predetermined amount at the time of pulverizing / dispersing zirconia calcined powder is adopted. In addition, it is important to uniformly disperse these conductive components, and it is preferable to perform treatment using a high disperser such as a medium agitating pulverizer.

なお、用いるAl及び導電性成分となる粉体はそれぞれ平均粒子径が0.5μm、好ましくは0.3μm以下であることが必要である。特に導電性成分の平均粒子径が0.5μmを超える場合には導電性が発現できても耐摩耗性が低下するので好ましくない。 The Al 2 O 3 and the powder serving as the conductive component to be used must each have an average particle size of 0.5 μm, preferably 0.3 μm or less. In particular, when the average particle size of the conductive component exceeds 0.5 μm, even if the conductivity can be exhibited, the wear resistance is lowered, which is not preferable.

得られた仮焼粉体を湿式により粉砕、分散し、必要により公知の成形助剤(ワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形粉体を得る。得られた成形粉体粒度は平均粒子径0.5μm以下、より好ましくは0.4μm以下であることが必要である。平均粒子径が0.5μmを越える場合には焼結性の低下や焼結体に耐久性および機械的性質の低下を招く欠陥が多く含有するので好ましくない。   The obtained calcined powder is pulverized and dispersed by a wet process, and if necessary, a known molding aid (wax emulsion, PVA, acrylic resin, etc.) is added and dried by a known method such as a spray dryer to form a molded powder. Get. The obtained molded powder particle size needs to have an average particle size of 0.5 μm or less, more preferably 0.4 μm or less. When the average particle diameter exceeds 0.5 μm, it is not preferable because many defects that cause a decrease in sinterability and a decrease in durability and mechanical properties are contained in the sintered body.

得られた成形粉体は、公知の成形方法、例えばプレス成形、ラバープレス成形等の方法による成形方法で本発明の焼結体を得ることができる。また、鋳込成形法を採用する場合には、粉砕・分散スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を加え、石膏型あるいは樹脂型を用いて排泥鋳込、充填鋳込、加圧鋳込法により成形する。さらに、押出成形法を採用する場合には、粉砕・分散したスラリーを乾燥させ、整粒し、混合機を用いて水、バインダー(例えばメチルセルロース等)、可塑剤(例えばポリエチレングリコール等)、滑剤(例えばステアリン酸等)を混合して坏土を作製し、押出成形する。
次いで得られた成形体を不活性ガス雰囲気下、真空下、N雰囲気下等の雰囲気下において1300〜1700℃、好ましくは1350〜1650℃で焼成することによって焼結体を得、所望の形状に加工して粉砕機用部材が得られる。さらに、必要に応じて加工前にHIP処理を施すことにより摩擦、衝撃等に対する抵抗性を高くすることができ、機械的性質の向上、さらには耐久性の向上ができる。HIP処理は常圧焼結後、Arなどの不活性雰囲気、またはNもしくはO雰囲気下で1300〜1700℃で行うことが好ましい。
From the obtained molded powder, the sintered body of the present invention can be obtained by a known molding method, for example, a molding method such as press molding or rubber press molding. In addition, when adopting the casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / dispersed slurry as required, and the waste mud is cast and filled using a gypsum mold or a resin mold. Molded by casting or pressure casting. Furthermore, when adopting an extrusion molding method, the pulverized / dispersed slurry is dried, sized, and mixed with water, a binder (for example, methylcellulose), a plasticizer (for example, polyethylene glycol), a lubricant (for example). For example, stearic acid or the like is mixed to prepare a clay, and extrusion molding is performed.
Next, the obtained compact is fired at 1300 to 1700 ° C., preferably 1350 to 1650 ° C. in an atmosphere such as an inert gas atmosphere, a vacuum, or an N 2 atmosphere to obtain a sintered body having a desired shape. To obtain a pulverizer member. Furthermore, by performing HIP treatment before processing as required, resistance to friction, impact, etc. can be increased, and mechanical properties and durability can be improved. The HIP treatment is preferably performed at 1300 to 1700 ° C. in an inert atmosphere such as Ar, or an N 2 or O 2 atmosphere after atmospheric pressure sintering.

本発明の粉砕機用部材は、優れた耐摩耗性を有するだけでなく、湿式・乾式での粉砕・分散における粉体表面への帯電を抑制することが可能であり、粉体を扱う機器類の部品としても有効である。   The pulverizer member of the present invention not only has excellent wear resistance, but also can suppress charging of the powder surface during pulverization / dispersion in wet and dry processes, and equipment for handling powder. It is also effective as a part.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものでない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1〜5、比較例1〜5
純度99.6%のオキシ塩化ジルコニウムと純度99.9%の硝酸イットリウムを表のY/ZrOモル比の組成となるように水溶液にして混合した。次に、この水溶液を加熱環流下で加水分解し、Yが固溶した水和ジルコニウムの沈殿物を生成させ、脱水、乾燥し、400〜1000℃で1時間仮焼し、得られたジルコニア粉体を湿式にて粉砕した。なお、Al及び導電性成分については、平均粒子径0.3μmの粉体を用い、粉砕・分散時に所定量添加混合した。得られた粉砕スラリーにバインダーを添加しスプレードライヤーで乾燥させ成形用粉体とした。この成形用粉体を用いてCIP成形(冷間等方圧縮成形)により成形し、Ar雰囲気下1300〜1850℃で焼成して焼結体を得た。また、一部の焼結体についてはAr雰囲気下でHIP処理した。得られた焼結体特性を表に示す。
Examples 1-5, Comparative Examples 1-5
Zirconium oxychloride having a purity of 99.6% and yttrium nitrate having a purity of 99.9% were mixed in an aqueous solution so as to have a composition having a molar ratio of Y 2 O 3 / ZrO 2 in the table. Next, this aqueous solution is hydrolyzed under heating reflux to produce a precipitate of hydrated zirconium in which Y 2 O 3 is dissolved, dehydrated and dried, and calcined at 400 to 1000 ° C. for 1 hour. The zirconia powder was pulverized wet. Note that the Al 2 O 3 and the conductive component, using a powder having an average particle diameter of 0.3 [mu] m, was mixed predetermined amounts added during pulverization and dispersion. A binder was added to the obtained pulverized slurry and dried with a spray dryer to obtain a powder for molding. Using this molding powder, molding was performed by CIP molding (cold isotropic compression molding) and fired at 1300 to 1850 ° C. in an Ar atmosphere to obtain a sintered body. Some sintered bodies were HIP-treated in an Ar atmosphere. The obtained sintered body characteristics are shown in the table.

また、同時にシンマルエンタープライゼス社製ダイノーミル:KDL−PILOT用ディスク(φ80×4mm)を作製し、図1に示す装置を用いて下記に示す条件でBaTiO粉体を粉砕したときの耐摩耗性のテストを行った。
ボールミル:KDL−PILOT(シンマルエンタープライゼス製)
セラミックベッセル:YTZ(株式会社ニッカトー)
ディスク:5枚装着
メディア:YTZφ1mm(株式会社ニッカトー製) 1200cc
ディスク周速:8m/sec
被粉砕物:BaTiO(比表面積:1.5m/g、平均粒子径:1.5μm)
粉砕スラリー濃度:20wt%〔粉末20wt%、水80wt%〕
スラリー温度:20℃
粉砕時間:2h×2サイクル
At the same time, Dynomill manufactured by Shinmaru Enterprises Co., Ltd .: KDL-PILOT disk (φ80 × 4 t mm) was prepared, and the BaTiO 3 powder was crushed under the conditions shown below using the apparatus shown in FIG. Abrasion test was performed.
Ball mill: KDL-PILOT (Shinmaru Enterprises)
Ceramic vessel: YTZ (Nikkato Corporation)
Disc: 5 sheets mounted Media: YTZφ1mm (made by Nikkato Corporation) 1200cc
Disk peripheral speed: 8m / sec
Object to be crushed: BaTiO 3 (specific surface area: 1.5 m 2 / g, average particle size: 1.5 μm)
Grinding slurry concentration: 20 wt% [powder 20 wt%, water 80 wt%]
Slurry temperature: 20 ° C
Grinding time: 2h x 2 cycles

摩耗率は下式により算出した。

Figure 0004773709
結果を表1に示す。
以上の結果から明らかなように本発明の粉砕機用部材は静電気除去が可能なレベルの体積固有抵抗を有し、かつ耐摩耗性に優れることが明らかである。 The wear rate was calculated by the following formula.
Figure 0004773709
The results are shown in Table 1.
As is clear from the above results, it is clear that the pulverizer member of the present invention has a volume specific resistance capable of removing static electricity and is excellent in wear resistance.

Figure 0004773709
Figure 0004773709

本発明の耐摩耗性テストに使用した装置を示す。The apparatus used for the abrasion resistance test of this invention is shown.

Claims (2)

アルミナを40重量%以下と炭化チタン、窒化チタン、炭化ケイ素のいずれかの一つを5〜25wt%、または酸化チタンを2〜8wt%含有し、Y/ZrOモル比が2/98〜5/95であるジルコニア質焼結体であり、平均結晶粒径が5μm以下、気孔率が1%以下、体積固有抵抗値が1×10〜1×1010Ω・cmであり、比摩耗量が10−5mm/N以下であることを特徴とする粉砕機用部材。 Alumina 40 weight percent titanium carbide, titanium nitride, 5-25 wt% of one or silicon carbide, or titanium oxide containing 2~8wt%, Y 2 O 3 / ZrO 2 molar ratio of 2 / 98-5 / 95 zirconia sintered body having an average crystal grain size of 5 μm or less, a porosity of 1% or less, and a volume resistivity of 1 × 10 5 to 1 × 10 10 Ω · cm. And a specific wear amount of 10 −5 mm 2 / N or less. 正方晶系ジルコニア単相もしくは70容積%以上の正方晶系ジルコニアを含む正方晶系ジルコニアと立方晶系ジルコニアとの混合相であることを特徴とする請求項1記載の粉砕機用部材。   The member for a pulverizer according to claim 1, wherein the member is a single phase of tetragonal zirconia or a mixed phase of tetragonal zirconia containing 70% by volume or more of tetragonal zirconia and cubic zirconia.
JP2004331162A 2004-11-15 2004-11-15 Crusher parts Active JP4773709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331162A JP4773709B2 (en) 2004-11-15 2004-11-15 Crusher parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331162A JP4773709B2 (en) 2004-11-15 2004-11-15 Crusher parts

Publications (2)

Publication Number Publication Date
JP2006137652A JP2006137652A (en) 2006-06-01
JP4773709B2 true JP4773709B2 (en) 2011-09-14

Family

ID=36618703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331162A Active JP4773709B2 (en) 2004-11-15 2004-11-15 Crusher parts

Country Status (1)

Country Link
JP (1) JP4773709B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040471B2 (en) * 2006-07-14 2012-10-03 東レ株式会社 Method for producing dispersion of inorganic particles, paste composition using the production method, and method for producing resin composition
JP5036271B2 (en) * 2006-10-16 2012-09-26 株式会社ニッカトー Zirconia conductive sintered body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825798B2 (en) * 1991-03-29 1996-03-13 株式会社 ニッカトー Abrasion resistant zirconia sintered body
JP2532024B2 (en) * 1993-07-09 1996-09-11 株式会社ニッカトー Abrasion resistant zirconia sintered body
JP2860953B2 (en) * 1995-06-12 1999-02-24 株式会社ニッカトー Components for zirconia dispersing and crushing machines
JP2000167431A (en) * 1998-11-30 2000-06-20 Kyocera Corp Member for pulverizer
JP2002029822A (en) * 2000-07-07 2002-01-29 Toshiba Corp Hollow ceramics sintered compact, sliding member using the same and ceramics bearing ball
JP2003261376A (en) * 2002-03-06 2003-09-16 Toto Ltd Zirconia sintered compact and method of producing the same
JP2004189509A (en) * 2002-12-09 2004-07-08 Nitsukatoo:Kk Conductive zirconia sintered compact

Also Published As

Publication number Publication date
JP2006137652A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP5189786B2 (en) Conductive alumina sintered body
JP4871567B2 (en) Porous conductive zirconia sintered body and vacuum chuck member comprising the same
JP5303345B2 (en) Conductive zirconia sintered body
WO2021049530A1 (en) Wear-resistant alumina sintered body
JP4773709B2 (en) Crusher parts
JP2006298711A (en) ZrO2 SINTERED COMPACT AND ITS MANUFACTURING METHOD, MEMBER OF CRUSHER, AND CRUSHER
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JP3316872B2 (en) Dry grinding of alumina
JP6632287B2 (en) Zirconia micro media
WO2003033433A1 (en) Zirconia based sintered product excellent in durability and abrasion-resistant member using the same
JP5062942B2 (en) High strength conductive zirconia sintered body and method for producing the same
JP5036271B2 (en) Zirconia conductive sintered body
JP2008213240A (en) Manufacturing method of alumina ceramic sintered compact and alumina ceramic sintered compact
JP2587767B2 (en) Crusher components
JP2900118B2 (en) Abrasion resistant alumina ceramics
JP4443806B2 (en) Zirconia sintered body excellent in durability and pulverizer / disperser member using the same
JP4634755B2 (en) Scraper made of sintered zirconia
JP5172076B2 (en) Highly conductive zirconia sintered body
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
JP2007223842A (en) Alumina sintered compact and magnetic head machining and assembling tool using the same
JP2008150220A (en) Alumina-zirconia composite powder and method for manufacturing the same
JP2014205586A (en) Zirconia sintered body, medium for pulverization and dispersion composed of zirconia sintered body
JP4708153B2 (en) Conductive alumina sintered body
JP3237965B2 (en) Method for producing aluminum nitride powder
JPH05301775A (en) Member for pulverizer composed of silicon nitride-based sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4773709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250