JP5062942B2 - High strength conductive zirconia sintered body and method for producing the same - Google Patents

High strength conductive zirconia sintered body and method for producing the same Download PDF

Info

Publication number
JP5062942B2
JP5062942B2 JP2004014703A JP2004014703A JP5062942B2 JP 5062942 B2 JP5062942 B2 JP 5062942B2 JP 2004014703 A JP2004014703 A JP 2004014703A JP 2004014703 A JP2004014703 A JP 2004014703A JP 5062942 B2 JP5062942 B2 JP 5062942B2
Authority
JP
Japan
Prior art keywords
zirconia
sintered body
strength
zirconia sintered
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004014703A
Other languages
Japanese (ja)
Other versions
JP2005206421A (en
Inventor
宏司 大西
美由紀 佐久田
利夫 河波
▲晧▼一 新原
徹 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2004014703A priority Critical patent/JP5062942B2/en
Publication of JP2005206421A publication Critical patent/JP2005206421A/en
Application granted granted Critical
Publication of JP5062942B2 publication Critical patent/JP5062942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、機械的特性、耐食性に優れた高強度導電性ジルコニア焼結体およびその製造方法に関する。   The present invention relates to a high-strength conductive zirconia sintered body excellent in mechanical properties and corrosion resistance and a method for producing the same.

近年の急速な情報通信の発展に伴い、セラミックス材料は耐摩耗性をはじめとする優れた機械的特性に加え、耐食性、耐熱性を有することから、半導体・液晶デバイスの製造設備における搬送用トレイやプラズマエッチング用部材、ハードディスク軸受部品などへの利用が拡大している。一方でウェハーの大型化、微細加工化が進むに従って、製造工程で発生する静電気による不良などの発生が大きな問題となっている。また、ハードディスクは記録容量の高容量化が積極的に行われており、高容量化に伴いディスク回転数が高速化している。しかしながら、高速回転することによりベアリングに静電気が発生し、この静電気がベアリングボールに帯電し、異物の付着が起こり、その結果、異音や振動の発生だけでなく、場合によっては静電気がスパークし、磁気ディスクに記録しているデータをも破壊する恐れがある。   With the rapid development of information and communication in recent years, ceramic materials have corrosion resistance and heat resistance in addition to excellent mechanical properties such as wear resistance. Use for plasma etching members and hard disk bearing parts is expanding. On the other hand, the occurrence of defects due to static electricity generated in the manufacturing process has become a major problem as wafers become larger and finer. In addition, hard disks have been actively increased in recording capacity, and the disk rotation speed has increased with the increase in capacity. However, static electricity is generated in the bearing by rotating at high speed, and this static electricity is charged in the bearing ball, and foreign matter adheres, resulting in not only abnormal noise and vibration, but also static electricity in some cases, The data recorded on the magnetic disk may be destroyed.

このようなことから、導電性を有するセラミックスが求められており、この解決策として、特許文献1および2にはNbC、TiC、TaC、BC、SiC等の導電性粒子を10〜40vol%添加することによって帯電防止、静電気除去可能なジルコニアが開示されている。
また、Ti、TiO等の酸化チタンや窒化チタンは良導電性物質となることが知られている。特許文献3および4にはジルコニアに導電性付与剤としてTiO、Ti、TiO等の酸化チタンを10〜40wt%添加し、これらの導電性付与剤を焼結工程で水素含有雰囲気中、含水雰囲気中又は窒素含有雰囲気中で焼成することにより還元させて、良導電性物質であるTi、TiOや窒化チタンを、ジルコニア焼結体内に粒子として、またはジルコニア結晶粒界相中に存在させることにより、帯電防止、静電気除去が可能で、放電加工も可能なセラミックスが開示されている。
特許文献5には粒子径が0.2〜0.8μmのTiOを5〜20wt%添加させ、Ar等の不活性ガス雰囲気で還元焼成することで強度が580MPa以上で、固有抵抗が10〜1011Ω・cmの帯電防止、静電気除去の可能なジルコニア焼結体が開示されている。
For these reasons, there is a demand for ceramics having conductivity. As a solution to this problem, Patent Documents 1 and 2 contain 10 to 40 vol% of conductive particles such as NbC, TiC, TaC, B 4 C, and SiC. Zirconia that is antistatic and static-removable when added is disclosed.
Further, it is known that titanium oxide and titanium nitride such as Ti 2 O 3 and TiO are good conductive materials. Patent Documents 3 and 4 add 10 to 40 wt% of titanium oxide such as TiO 2 , Ti 2 O 3 , and TiO as a conductivity imparting agent to zirconia, and these conductivity imparting agents are added in a hydrogen-containing atmosphere in the sintering process. , Reduced by firing in a water-containing atmosphere or nitrogen-containing atmosphere, and Ti 2 O 3 , TiO, and titanium nitride, which are good conductive materials, as particles in the zirconia sintered body or in the zirconia grain boundary phase Ceramics that can be prevented from being charged, removed static electricity, and can be subjected to electric discharge machining are disclosed.
In Patent Document 5, TiO 2 having a particle diameter of 0.2 to 0.8 μm is added in an amount of 5 to 20 wt%, and reduced and fired in an inert gas atmosphere such as Ar, the strength is 580 MPa or more and the specific resistance is 10 6. A zirconia sintered body capable of preventing charge and removing static electricity of 10 to 10 11 Ω · cm is disclosed.

しかしながら、これらの開示されているセラミックスは導電性を発現させるために導電性粒子のサイズがミクロンオーダーの多量の導電性物質が添加しているため、マトリックス本来の優れた耐摩耗性や強度等を低下させるだけでなく、耐食性に劣るなどの問題があった。また、導電性は導電性粒子がマトリックス内でつながらないことには導電性が発現しないため、マトリックスの導電性を制御しにくく、不均一性が生じるという欠点があった。   However, since these disclosed ceramics are added with a large amount of conductive material whose size of conductive particles is on the order of microns in order to develop conductivity, the matrix has excellent wear resistance and strength. In addition to lowering, there were problems such as poor corrosion resistance. Moreover, since the conductivity does not appear when the conductive particles are not connected in the matrix, there is a drawback that the conductivity of the matrix is difficult to control and non-uniformity occurs.

特開2002−53371号公報JP 2002-53371 A 特開2002−53372号公報JP 2002-53372 A 特開2003−212651号公報JP 2003-212651 A 特開2003−212652号公報Japanese Patent Laid-Open No. 2003-212552 特開2003−261376号公報JP 2003-261376 A

本発明の目的は、従来の導電性セラミックスとは全く異なり、ジルコニア焼結体に極少量の導電性物質を添加し、かつ導電性物質をナノレベル、分子レベルまたは原子レベルで制御することにより導電性を発現させ、マトリックス本来の機械的特性及び耐食性を犠牲にすることなく、本来の特性をより改善した曲げ強度700MPa以上の高強度導電性ジルコニア焼結体およびその製造方法を提供することにある。 The object of the present invention is completely different from that of conventional conductive ceramics, in which a very small amount of a conductive substance is added to a zirconia sintered body, and the conductive substance is controlled at the nano level, molecular level or atomic level. It is to provide a high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more and a method for producing the same, in which the original properties are further improved without sacrificing the original mechanical properties and corrosion resistance of the matrix. .

本発明者らは鋭意研究を重ねてきた結果、ジルコニア焼結体の製造において、Y/ZrOモル比、Ti/Zr原子数比、炭素含有量、SiO含有量、Al含有量、結晶粒径、結晶相、気孔率などを制御することにより、帯電防止、静電気除去が可能でありながら、優れた機械的特性、高い耐食性を有するジルコニア焼結体が得られることを見いだし、ここに本発明を完成したものである。 As a result of intensive studies, the present inventors have made Y 2 O 3 / ZrO 2 molar ratio, Ti / Zr atom number ratio, carbon content, SiO 2 content, Al 2 O in the production of zirconia sintered bodies. 3. By controlling the content, crystal grain size, crystal phase, porosity, etc., it is possible to obtain a zirconia sintered body having excellent mechanical characteristics and high corrosion resistance while being capable of preventing static electricity and removing static electricity. As a result, the present invention has been completed.

本発明の第1は、(a)ZrOの結晶相が主として正方晶系ジルコニアからなるZrO−Y系ジルコニア焼結体であって、(b)Y/ZrOモル比が1.5/98.5〜4/96の範囲にあり、(c)Ti/Zr原子数比が0.3/99.7〜16/84の範囲にあり、(d)ジルコニアの平均結晶粒径が2μm以下であり、(e)焼結体の気孔率が2%以下であり、Tiは粒子として存在するのではなく、ジルコニア結晶粒界にナノレベル、分子レベルまたは原子レベルで存在するか、あるいはジルコニア結晶粒内の粒界近傍のTi濃度が高い形態で固溶しているか、あるいはジルコニア結晶粒界にナノレベル、分子レベルまたは原子レベルで存在する状態とジルコニア結晶粒内の粒界近傍のTi濃度が高い形態で固溶している状態が混在している状態で存在し、かつ粒子径が200nm以下の酸化チタン粒子またはチタン化合物を含有するジルコニア粉体を用いて製造されたことを特徴とする曲げ強度700MPa以上の高強度導電性ジルコニア焼結体に関する。
本発明の第2は、(f)炭素を0.05〜2重量%含有するものである請求項1記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体に関する。
本発明の第3は、(g)SiOを0.05〜3重量%含有するものである請求項1〜2いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体に関する。
本発明の第4は、(h)Alを0.05〜3重量%含有するものである請求項1〜3いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体に関する。
本発明の第5は、Y/ZrOモル比が1.5/98.5〜4/96の範囲にあり、Ti/Zr原子数比が0.3/99.7〜16/84の範囲で、粒子径が200nm以下の酸化チタン粒子またはチタン化合物を含有し、比表面積が3〜30m/gである粉体を用いて成形し、得られた成形体を、不活性ガス雰囲気下、真空下、N雰囲気下、水素含有雰囲気下および含水雰囲気下よりなる群から選ばれた雰囲気下において1250℃〜1700℃で焼成することを特徴とする曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法に関する。
本発明の第6は、炭素が0.05〜2重量%の範囲となる炭素または熱分解により炭素となる炭素化合物を含有するものである請求項5記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法に関する。
本発明の第7は、SiOが0.05〜3重量%の範囲となるSiOまたはケイ素化合物を含有するものである請求項5または6記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法に関する。
本発明の第8は、Alが0.05〜3重量%の範囲となるAlまたはアルミニウム化合物を含有するものである請求項5〜7いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法に関する。
本発明の第9は、成形体を、不活性ガス雰囲気下、真空下、N雰囲気下、水素含有雰囲気下および含水雰囲気下よりなる群から選ばれた雰囲気下において1250℃〜1700℃で焼成した後、不活性ガス雰囲気下において1600℃以下でホットアイソスタティックプレス(HIP)処理するものである請求項5〜8いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法に関する。
The first of the present invention is (a) a ZrO 2 —Y 2 O 3 -based zirconia sintered body in which the crystal phase of ZrO 2 is mainly composed of tetragonal zirconia, and (b) Y 2 O 3 / ZrO 2 mol The ratio is in the range of 1.5 / 98.5 to 4/96, (c) the Ti / Zr atomic ratio is in the range of 0.3 / 99.7 to 16/84, and (d) the average of zirconia The crystal grain size is 2 μm or less, (e) the porosity of the sintered body is 2% or less, and Ti does not exist as particles, but exists at the nano level, molecular level or atomic level at the zirconia grain boundaries Or a solid solution with a high Ti concentration in the vicinity of the grain boundary in the zirconia crystal grain, or a state in the zirconia crystal grain boundary existing at the nano level, molecular level or atomic level and grains in the zirconia crystal grain High Ti concentration near the boundary Bending strength of 700 MPa, characterized by being produced using zirconia powder containing titanium oxide particles or a titanium compound having a particle diameter of 200 nm or less and present in a mixed state of solid solution The present invention relates to the above high strength conductive zirconia sintered body.
The second of the present invention relates to (f) a high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more according to claim 1, which contains 0.05 to 2% by weight of carbon.
The third of the present invention, (g) Flexural Strength 700MPa or more high strength conductive zirconia sintered body according to any one of claims 1-2 and SiO 2 are those containing 0.05 to 3 wt%.
The fourth aspect of the present invention relates to a high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more according to any one of claims 1 to 3, wherein (h) Al 2 O 3 is contained in an amount of 0.05 to 3% by weight. .
In the fifth aspect of the present invention, the Y 2 O 3 / ZrO 2 molar ratio is in the range of 1.5 / 98.5 to 4/96, and the Ti / Zr atomic number ratio is 0.3 / 99.7 to 16 / In the range of 84, the particle size is 200 nm or less, containing titanium oxide particles or a titanium compound, and molded using a powder having a specific surface area of 3 to 30 m 2 / g. Bending strength of 700 MPa or more, characterized by firing at 1250 ° C. to 1700 ° C. in an atmosphere selected from the group consisting of an atmosphere, a vacuum, an N 2 atmosphere, a hydrogen-containing atmosphere, and a water-containing atmosphere The present invention relates to a method for producing a sintered zirconia sintered body.
The sixth aspect of the present invention includes carbon having a carbon content in the range of 0.05 to 2% by weight or a carbon compound that becomes carbon by thermal decomposition, and has a bending strength of 700 MPa or more. The present invention relates to a method for producing a zirconia sintered body.
The of the present invention 7, SiO 2 0.05 to 3 wt% of the range to become SiO 2 or of those containing a silicon compound according to claim 5 or 6, wherein the flexural strength 700MPa or more high strength conductive zirconia sintered The present invention relates to a method for producing a bonded body.
Eighth invention, Al 2 O 3 is 0.05 to 3 wt% of the range to become Al 2 O 3 or aluminum compound according in which any one of claims 5-7 which contains flexural strength 700MPa or more The present invention relates to a method for producing a high-strength conductive zirconia sintered body.
According to a ninth aspect of the present invention, the compact is fired at 1250 ° C. to 1700 ° C. in an atmosphere selected from the group consisting of an inert gas atmosphere, a vacuum, an N 2 atmosphere, a hydrogen-containing atmosphere, and a water-containing atmosphere. After that, a hot isostatic press (HIP) treatment is performed at 1600 ° C. or lower in an inert gas atmosphere. The method for producing a high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more according to any one of claims 5 to 8 About.

以下に本発明の高強度導電性ジルコニア焼結体が充足すべき各要件について詳細に説明する。   Hereinafter, each requirement to be satisfied by the high-strength conductive zirconia sintered body of the present invention will be described in detail.

(a)ZrOの結晶相が主として正方晶系ジルコニアであるZrO−Y系ジルコニア焼結体である点
ジルコニア焼結体に単斜晶系ジルコニアが大量に含有されていると、その結晶周辺に微少なクラックが生じ、応力が付加されると、この微少なクラックを起点として微小破壊が起こり、摩擦、衝撃、圧壊等に対する抵抗性が低下するので好ましくない。一方、立方晶系ジルコニアを大量に含有していると結晶粒径が大きくなり、機械的特性の低下が起こり、耐摩耗性等の低下が起こるため好ましくない。
(A) When the ZrO 2 -Y 2 O 3 zirconia sintered body at a point zirconia sintered body is a ZrO 2 crystalline phase mainly tetragonal zirconia monoclinic zirconia is contained in large quantities, If a minute crack is generated around the crystal and stress is applied, the minute crack starts from the minute crack, which is not preferable because resistance to friction, impact, crushing, etc. is lowered. On the other hand, if a large amount of cubic zirconia is contained, the crystal grain size becomes large, the mechanical properties are lowered, and the wear resistance and the like are lowered.

なお、本発明は、ジルコニアの結晶相である単斜晶系ジルコニア(M)の存在の有無及び含有量、正方晶系ジルコニア(T)及び立方晶系ジルコニア(C)の量については、以下の方法でX線回折により求める。即ち、焼結体及び加工した焼結体製品の表面は、応力誘起変態により正方晶系ジルコニアから単斜晶系ジルコニアに変態しており、真の結晶相を同定することができないので、焼結体表面を鏡面にまで研磨し、X線回折により回折角27〜34度の範囲で測定し、単斜晶系ジルコニアの有無及び含有量を下記で示した式から求める。   In the present invention, the presence / absence and content of monoclinic zirconia (M), which is a crystalline phase of zirconia, the amount of tetragonal zirconia (T) and cubic zirconia (C) are as follows. Obtained by X-ray diffraction by the method. That is, the surface of the sintered body and the processed sintered body product has been transformed from tetragonal zirconia to monoclinic zirconia by stress-induced transformation, and the true crystal phase cannot be identified. The body surface is polished to a mirror surface, measured by X-ray diffraction in a diffraction angle range of 27 to 34 degrees, and the presence and content of monoclinic zirconia is determined from the following formula.

また、正方晶系ジルコニア及び立方晶系ジルコニアの含有量は、単斜晶系ジルコニアの有無を確認した方法と同様にして、X線回折により、回折角70〜77度の範囲で測定し、次式により求める。
なお、本発明においては上記X線回折から求められる立方晶系ジルコニアは15容量%まで、好ましくは5容量%まで、単斜晶系ジルコニアは10容量%まで、好ましくは5容量%まで、を許容することができる。また、本発明においては、前記範囲内であれば立方晶系と単斜晶系の両方を含有していてもよい。
Further, the content of tetragonal zirconia and cubic zirconia was measured in the diffraction angle range of 70 to 77 degrees by X-ray diffraction in the same manner as the method for confirming the presence or absence of monoclinic zirconia. Obtained by the formula.
In the present invention, cubic zirconia obtained from the above X-ray diffraction can be up to 15% by volume, preferably up to 5% by volume, and monoclinic zirconia can be up to 10% by volume, preferably up to 5% by volume. can do. Moreover, in this invention, if it is in the said range, you may contain both a cubic system and a monoclinic system.

(b)Y/ZrOモル比が1.5/98.5〜4/96である点
本発明におけるY/ZrOモル比は、1.5/98.5〜4/96の範囲にあることが必要であり、好ましくは1.5/98.5〜3/97の範囲である。通常、ZrO原料中に少量有することのあるHfOの含有量もZrO量として取扱う。
/ZrOモル比が1.5/98.5未満の場合には焼結体中に単斜晶系ジルコニア量が増加し、割れや欠けが発生し、摩耗、衝撃、圧壊等の低下をきたすので好ましくない。一方、Y/ZrOモル比が4/96を越えると立方晶系ジルコニア量が増加し、機械的特性が低下するので好ましくない。
なお、Y含有量のうち、30モル%までは、他の稀土類酸化物の1種または2種類以上で置換したものも用いることができる。このような稀土類酸化物としては、CeO、Nd、Yb、Dyが安価な点で好ましい。
(B) The Y 2 O 3 / ZrO 2 molar ratio is 1.5 / 98.5 to 4/96 The Y 2 O 3 / ZrO 2 molar ratio in the present invention is 1.5 / 98.5 to 4 / 96, preferably 1.5 / 98.5 to 3/97. Usually, the content of HfO 2 that may be contained in a small amount in the ZrO 2 raw material is also handled as the ZrO 2 amount.
When the Y 2 O 3 / ZrO 2 molar ratio is less than 1.5 / 98.5, the amount of monoclinic zirconia increases in the sintered body, cracks and chips occur, wear, impact, crushing, etc. This is not preferable because it causes a decrease in. On the other hand, if the Y 2 O 3 / ZrO 2 molar ratio exceeds 4/96, the amount of cubic zirconia increases and the mechanical properties deteriorate, such being undesirable.
In addition, up to 30 mol% of the Y 2 O 3 content, those substituted with one or more of other rare earth oxides can also be used. As such rare earth oxides, CeO 2 , Nd 2 O 3 , Yb 2 O 3 , and Dy 2 O 3 are preferable because of their low cost.

(c)Ti/Zr原子数比が0.3/99.7〜16/84の範囲にある点
本発明においてはTi/Zr原子数比は0.3/99.7〜16/84、好ましくは0.7/99.3〜13/87、より好ましくは1/99〜7.5/92.5の範囲である。
本発明の導電性ジルコニア焼結体において、Tiは粒子として存在するのではなく、ジルコニア結晶粒界にナノレベル、分子レベルまたは原子レベルで存在するか、あるいはジルコニア結晶粒内へ固溶しているか,あるいはジルコニア結晶粒界にナノレベル、分子レベルまたは原子レベルで存在する状態とジルコニア結晶粒内へ固溶している状態が混在している状態である。しかしながら、Tiはジルコニア結晶粒内へ均一に固溶しているのではなく、ジルコニア結晶粒子内の粒界近傍のTi濃度が高い固溶形態である。不活性ガス雰囲気下、真空下、N雰囲気下、水素含有雰囲気下および含水雰囲気下よりなる群から選ばれた雰囲気下における焼成過程で、ジルコニア及び酸化チタンが還元されて酸素欠損を有し、マトリックスの導電性を発現していると考えられる。また、N雰囲気下で焼成することでTiが窒素と反応して非常に微細な粒子として窒化チタンの形で存在することにより導電性を向上させる効果がある。
Ti/Zr原子数比が0.3/99.7未満の場合には導電性を発現させることができず、16/84を越える場合には、導電性は高くなるが、ジルコニアへ固溶するTiが増加し、その結果、立方晶系ジルコニアが増加したり、ジルコニア・チタニア化合物が生成し、機械的特性が低下するので好ましくない。
(C) The Ti / Zr atomic ratio is in the range of 0.3 / 99.7 to 16/84 In the present invention, the Ti / Zr atomic ratio is 0.3 / 99.7 to 16/84, preferably Is in the range of 0.7 / 99.3 to 13/87, more preferably 1/99 to 7.5 / 92.5.
In the conductive zirconia sintered body of the present invention, Ti does not exist as a particle, is it present at the zirconia grain boundary at the nano level, molecular level or atomic level, or is dissolved in the zirconia crystal grain , Or a state in which the zirconia crystal grain boundary exists at the nano-level, molecular level, or atomic level and a state in which the zirconia crystal grains are solid-solved are mixed. However, Ti is not uniformly dissolved in the zirconia crystal grains, but is in a solid solution form with a high Ti concentration in the vicinity of the grain boundary in the zirconia crystal grains. In the firing process in an atmosphere selected from the group consisting of an inert gas atmosphere, a vacuum, an N 2 atmosphere, a hydrogen-containing atmosphere, and a water-containing atmosphere, zirconia and titanium oxide are reduced to have oxygen deficiency, It is considered that the conductivity of the matrix is expressed. Further, by firing in an N 2 atmosphere, Ti reacts with nitrogen and exists in the form of titanium nitride as very fine particles, thereby improving the conductivity.
If the Ti / Zr atomic ratio is less than 0.3 / 99.7, the conductivity cannot be expressed, and if it exceeds 16/84, the conductivity increases, but it dissolves in zirconia. Ti increases, and as a result, cubic zirconia increases and zirconia-titania compounds are generated, which is not preferable because the mechanical properties deteriorate.

(d)ジルコニアの平均結晶粒径が2μm以下である点
本発明において、平均結晶粒径は2μm以下、好ましくは1μm以下である。平均結晶粒径が2μmを越える場合には耐摩耗性、耐衝撃性等の機械的特性が低下するので好ましくない。なお、平均結晶粒径は小さいほど耐摩耗性が向上する点で好ましいが、平均結晶粒径の下限は現在の微細化技術では0.1μm程度である。
なお、平均結晶粒径は、焼結体表面を鏡面まで研磨し、次いで熱エッチングもしくは化学エッチングを施した後、走査電子顕微鏡で観察してインターセプト法により10点測定した平均値とする。算出式は下記の通りである。
(D) The average crystal grain size of zirconia is 2 μm or less In the present invention, the average crystal grain size is 2 μm or less, preferably 1 μm or less. When the average crystal grain size exceeds 2 μm, mechanical properties such as wear resistance and impact resistance deteriorate, which is not preferable. A smaller average crystal grain size is preferable in terms of improving wear resistance, but the lower limit of the average crystal grain size is about 0.1 μm in the current miniaturization technique.
The average crystal grain size is an average value obtained by polishing the surface of the sintered body to a mirror surface, performing thermal etching or chemical etching, then observing with a scanning electron microscope and measuring 10 points by the intercept method. The calculation formula is as follows.

(e)焼結体の気孔率が2%以下である点
本発明においては焼結体の気孔率が2%以下、好ましくは1%以下である。いいかえれば、気孔はない方がよい。気孔率が2%を越える場合には焼結体の気孔が増加し、導電性の低下をきたすだけでなく、機械的特性の低下を招くので好ましくない。
(E) The porosity of a sintered compact is 2% or less In this invention, the porosity of a sintered compact is 2% or less, Preferably it is 1% or less. In other words, it is better not to have pores. When the porosity exceeds 2%, the porosity of the sintered body increases, which not only causes a decrease in conductivity, but also causes a decrease in mechanical properties, which is not preferable.

(f)炭素を0.05〜2重量%(焼結体全体に対する%)含有する点
本発明においては炭素が0.05〜2重量%、好ましくは0.05〜1重量%含有することが望ましい。炭素はZrO結晶粒界に存在し導電性を向上させる働きがあり、さらにはTiと反応して非常に微細な粒子として炭化チタンの形で存在して導電性を向上させる効果がある。また炭素は焼成過程で、ジルコニア及び酸化チタンの還元剤として働き、焼結体内の酸素欠陥を制御させ、体積固有抵抗を制御する働きもある。炭素が0.05重量%未満であると炭素添加の効果がなく、2重量%を越える場合には導電性は高くなるが焼結性が低下するだけでなく機械的特性の低下を招くため好ましくない。
(F) The point which contains 0.05 to 2 weight% (% with respect to the whole sintered compact) of carbon In this invention, it is 0.05 to 2 weight%, Preferably 0.05 to 1 weight% of carbon is contained. desirable. Carbon exists in the ZrO 2 crystal grain boundary and has a function of improving the conductivity. Further, it reacts with Ti and is present as very fine particles in the form of titanium carbide, thereby improving the conductivity. Carbon also acts as a reducing agent for zirconia and titanium oxide in the firing process, controls oxygen defects in the sintered body, and controls volume resistivity. If the carbon content is less than 0.05% by weight, there is no effect of carbon addition, and if it exceeds 2% by weight, the conductivity is increased, but not only the sinterability is lowered but also mechanical properties are lowered, which is preferable. Absent.

(g)SiOを0.05〜3重量%(焼結体全体に対する%)含有する点
本発明においてはSiOが0.05〜3重量%、好ましくは0.1〜2重量%含有することが望ましい。SiOは焼結性向上に寄与するだけでなく、ZrO結晶粒界近傍に偏析し、ZrO結晶粒界の強化効果があるので耐摩耗性、耐衝撃性等の機械的特性をすぐれたものとする。SiOが0.05重量%未満の場合には添加効果がなく、3重量%を越える場合にはZrO結晶粒界にSiOの結晶あるいはZrOと反応してジルコン相が析出し、機械的特性の低下を招くため好ましくない。
(G) SiO 2 0.05 to 3 wt% (% of the total sintered body) in the present invention that it contains SiO 2 0.05 to 3% by weight, preferably 0.1 to 2 wt% It is desirable. SiO 2 not only contributes to improve sintering properties, it segregated in the vicinity of ZrO 2 grain boundaries and because of the strengthening effect of the ZrO 2 grain boundary wear resistance, mechanical properties such as impact resistance superior Shall. When SiO 2 is less than 0.05% by weight, there is no effect of addition, and when it exceeds 3% by weight, a zircon phase is precipitated by reacting with SiO 2 crystals or ZrO 2 at the ZrO 2 crystal grain boundary. It is not preferable because it causes deterioration of the mechanical characteristics.

(h)Alを0.05〜3重量%(焼結体全体に対する%)含有する点
本発明においてはAlが0.05〜3重量%、好ましくは0.1〜2.5重量%含有することが望ましい。AlはZrO結晶粒界にAl結晶粒子として存在するだけでなく、ZrO結晶粒界及び粒界近傍に偏析している。また、Alの添加は焼結性の向上、微構造の均一化に効果があるだけでなく、ZrO結晶粒界の強化効果があるので耐摩耗性、耐衝撃性等の機械的特性をすぐれたものとする。Al含有量が0.05重量%未満の場合にはAl添加効果がなく、3重量%を越える場合にはZrO結晶粒界に偏析するAl濃度が高くなったり、Al結晶粒子が多く存在することになり、導電性の低下や機械的特性及び耐久性の低下が起こるので好ましくない。
(H) A point containing 0.05 to 3% by weight of Al 2 O 3 (% to the whole sintered body) In the present invention, Al 2 O 3 is 0.05 to 3% by weight, preferably 0.1 to 2 %. It is desirable to contain 5% by weight. Al 2 O 3 is not only present as Al 2 O 3 crystal grains ZrO 2 grain boundaries, segregated ZrO 2 grain boundaries and grain boundary vicinity. In addition, the addition of Al 2 O 3 is effective not only in improving the sinterability and homogenizing the microstructure, but also in strengthening the ZrO 2 crystal grain boundaries, so mechanical properties such as wear resistance and impact resistance are provided. It has excellent characteristics. When the Al 2 O 3 content is less than 0.05% by weight, there is no effect of adding Al 2 O 3, and when it exceeds 3% by weight, the Al concentration segregating at the ZrO 2 crystal grain boundary increases, A large amount of 2 O 3 crystal particles are present, which is not preferable because of a decrease in conductivity and a decrease in mechanical properties and durability.

本発明にかかる高強度ジルコニア焼結体の体積固有抵抗は10〜1010Ω・cm、好ましくは10〜10Ω・cmである。体積固有抵抗が1010Ω・cmを越える場合には帯電防止、静電気除去に効果がないので好ましくない。一方、体積固有抵抗が10Ω・cm未満の場合は導電性が高すぎるため、静電気を一気に除去してしまうため、大気摩擦によって超高電圧の放電が発生するので好ましくない。したがって、体積固有抵抗は低くければ低いほどよいというものではない。 The volume specific resistance of the high-strength zirconia sintered body according to the present invention is 10 3 to 10 10 Ω · cm, preferably 10 4 to 10 9 Ω · cm. If the volume resistivity exceeds 10 10 Ω · cm, it is not preferable because it is not effective for preventing charging and removing static electricity. On the other hand, when the volume resistivity is less than 10 3 Ω · cm, the conductivity is too high, and static electricity is removed at a stretch. Therefore, an extremely high voltage discharge is generated due to atmospheric friction, which is not preferable. Therefore, the lower the volume resistivity, the better.

本発明の導電性ジルコニア焼結体は、Ti/Zr原子数比及び炭素量により体積固有抵抗を任意に制御することが可能である。また、本発明の高強度ジルコニア焼結体は曲げ強度が700MPa以上の高強度を有している。   The conductive zirconia sintered body of the present invention can arbitrarily control the volume resistivity by the Ti / Zr atomic number ratio and the carbon content. The high-strength zirconia sintered body of the present invention has a high strength with a bending strength of 700 MPa or more.

本発明の高強度導電性ジルコニア焼結体の製造方法について説明する。
本発明では、液相法により精製したジルコニア粉体を使用することが好ましい。即ちZrOとYの含有量が所定のモル比、すなわち(b)Y/ZrOモル比が1.5/98.5〜4/96の範囲となるようにジルコニウム化合物(例えばオキシ塩化ジルコニウム)の水溶液とイットリウム化合物(例えば塩化イットリウム)の水溶液を均一に混合し、加水分解し、水和物を得、脱水、乾燥させた後、500〜1000℃で仮焼し、不純物が少ないジルコニア仮焼粉体を得る方法が採用される。
The manufacturing method of the high intensity | strength electroconductive zirconia sintered compact of this invention is demonstrated.
In the present invention, it is preferable to use zirconia powder purified by a liquid phase method. That is, the zirconium compound is such that the content of ZrO 2 and Y 2 O 3 is within a predetermined molar ratio, that is, (b) the Y 2 O 3 / ZrO 2 molar ratio is in the range of 1.5 / 98.5 to 4/96. (For example, zirconium oxychloride) and an aqueous solution of an yttrium compound (for example, yttrium chloride) are uniformly mixed, hydrolyzed to obtain a hydrate, dehydrated and dried, and calcined at 500 to 1000 ° C. A method of obtaining a zirconia calcined powder with few impurities is employed.

導電性物質であるTi成分の添加は、仮焼したジルコニア粉体の粉砕、分散時にTiO、Ti、TiOなどの酸化物の形態で添加あるいは熱分解して残存させることのできる水和物、有機金属化合物(例えばチタンテトラnブトキシド、チタンテトライソプロポキシドなど)等の形態で添加してもよい。このためジルコニア粉体へ添加する酸化チタンまたはチタン化合物の粒子径は200nm以下、好ましくは100nm以下、より好ましくは50nm以下である。酸化チタンまたはチタン化合物の粒子径が200nmを越えると、Tiが粒子として存在するか、もしくは結晶粒径の大きい立方晶系ジルコニアを生成し、組成の不均一性がおこり、微量添加では導電性を発現することができず好ましくない。とくに粒子径が200nmを越える酸化チタンを多量に添加して導電性を発現させた場合には、結晶粒径の粗大化や立方晶系ジルコニア量の増加、および/またはジルコニア・チタニア化合物が生成し、マトリックス本来の優れた耐摩耗性、機械的特性を低下させるため好ましくない。前記ジルコニア仮焼粉体への添加はTi成分が均一にジルコニア粉体中に均一に分散していることが重要で、湿式で粉砕、分散を行うことが好ましい。 The addition of the Ti component, which is a conductive substance, is water that can be added or thermally decomposed to remain in the form of oxides such as TiO 2 , Ti 2 O 3 , and TiO when the calcined zirconia powder is pulverized and dispersed. It may be added in the form of a hydrate, an organometallic compound (for example, titanium tetra-n butoxide, titanium tetraisopropoxide, etc.) and the like. For this reason, the particle diameter of the titanium oxide or titanium compound added to the zirconia powder is 200 nm or less, preferably 100 nm or less, more preferably 50 nm or less. When the particle size of titanium oxide or titanium compound exceeds 200 nm, Ti is present as particles or cubic zirconia having a large crystal particle size is generated, resulting in non-uniform composition. It is not preferable because it cannot be expressed. In particular, when a large amount of titanium oxide having a particle diameter exceeding 200 nm is added to develop conductivity, the crystal grain size increases, the amount of cubic zirconia increases, and / or zirconia / titania compounds are produced. This is not preferable because it reduces the inherent excellent wear resistance and mechanical properties of the matrix. In addition to the zirconia calcined powder, it is important that the Ti component is uniformly dispersed in the zirconia powder, and it is preferable to perform pulverization and dispersion in a wet manner.

Ti成分はジルコニウム化合物とイットリウム化合物の水溶液を均一に混合する際に、所定量のTi成分となるようにチタン化合物の水溶液を添加、混合し、ジルコニア仮焼粉体を得るのと同様の方法によりTi成分を含有したジルコニア仮焼粉体としても良い。   When the Ti component is uniformly mixed with an aqueous solution of a zirconium compound and an yttrium compound, an aqueous solution of the titanium compound is added and mixed so as to become a predetermined amount of Ti component, and the same method as that for obtaining a zirconia calcined powder is obtained. A zirconia calcined powder containing a Ti component may be used.

SiOを添加する場合、前記ジルコニア仮焼粉体の粉砕、分散時に酸化物の形態で添加あるいは熱分解して、残存させることのできるエチルシリケートなどの有機金属化合物などの形態で添加しても良い。特に、有機金属化合物での添加は、SiOを均一にジルコニア粉体中に分散させることができるので好ましい。SiOの粒子径は200nm以下、好ましくは100nm以下である。SiOの粒子径が200nmを超える場合には、ZrO結晶粒界にSiOの結晶粒子が存在し、機械的特性の低下をきたすため好ましくない。 When adding SiO 2 , the zirconia calcined powder may be added in the form of an oxide during pulverization or dispersion, or may be added in the form of an organometallic compound such as ethyl silicate that can be thermally decomposed to remain. good. In particular, addition with an organometallic compound is preferable because SiO 2 can be uniformly dispersed in the zirconia powder. The particle diameter of SiO 2 is 200 nm or less, preferably 100 nm or less. When the particle diameter of SiO 2 exceeds 200 nm, SiO 2 crystal particles are present at the ZrO 2 crystal grain boundary, which is not preferable.

Alを添加する場合、前記ジルコニア仮焼粉体の粉砕、分散時に酸化物の形態で添加あるいは熱分解して、残存させることのできる水酸化物、炭酸化物、有機金属化合物等の形態で添加しても良い。Alの粒子径は2μm以下、好ましくは1μm以下である。Alの粒子径が2μmを超える場合には、ZrO結晶粒界にAlの粗大粒子が存在し、機械的特性の低下をきたすため好ましくない。 When Al 2 O 3 is added, the zirconia calcined powder is added in the form of an oxide at the time of pulverization and dispersion, or thermally decomposed and can remain such as hydroxide, carbonate, organometallic compound, etc. May be added. The particle diameter of Al 2 O 3 is 2 μm or less, preferably 1 μm or less. When the particle diameter of Al 2 O 3 exceeds 2 μm, coarse particles of Al 2 O 3 are present at the ZrO 2 crystal grain boundary, which is not preferable.

炭素を添加する場合、炭素源として採用されるのはカーボンブラック、グラッシーカーボングラファイト等のナノ粒子が採用される。より好ましくは液状の炭素化合物で、雰囲気中で分解して炭素源として残存させることのできるフェノール樹脂、フラン樹脂等の熱硬化性樹脂や、ABS樹脂、PVA、ポリビニルブチラール等の熱可塑性樹脂をそのままの形態で、もしくはモノマーとして添加後重合させることで有機高分子となるような有機物の形態で添加しても良い。カーボンブラック、グラッシーカーボングラファイト等の炭素粒子で添加する場合、炭素の粒子径が200nm以下、好ましくは100nm以下であることが好ましい。添加する炭素の粒子径が200nmを越える場合には焼結体内に炭素のみの凝集体として存在するため、機械的特性が低下するだけでなく、導電性の向上に寄与しないため好ましくない。ジルコニア仮焼粉体を湿式により粉砕、分散する際に、所定量の炭素源を添加して所定の形状に成形して成形体を得る。炭素源として有機物を使用する場合は、所定量の炭素源を添加した粉砕、分散した粉体を不活性ガス雰囲気下又は真空下にて300℃〜1000℃で熱処理を施すことにより有機物を分解させ、後述する方法により成形粉体を得ることが好ましく、あるいは炭素源を添加した粉体を用いて所定の形状に成形し、不活性ガス雰囲気下又は真空下において300℃〜1000℃にて有機物を分解させて成形体としても良い。また、後述する焼成工程において、カーボン発熱体や、耐熱用黒鉛容器を使用することによって焼結体に浸透する炭素は、炭素源を添加するのと同じ効果が得られる。   When carbon is added, nanoparticles such as carbon black and glassy carbon graphite are employed as the carbon source. More preferably, it is a liquid carbon compound, and a thermosetting resin such as phenol resin and furan resin that can be decomposed and remain as a carbon source in an atmosphere, or a thermoplastic resin such as ABS resin, PVA, or polyvinyl butyral as it is. Alternatively, it may be added in the form of an organic substance that becomes an organic polymer by polymerization after addition as a monomer. When carbon particles such as carbon black and glassy carbon graphite are added, the carbon particle diameter is preferably 200 nm or less, and preferably 100 nm or less. When the particle diameter of the added carbon exceeds 200 nm, it exists as an aggregate of only carbon in the sintered body, which is not preferable because not only the mechanical properties are deteriorated but also the conductivity is not improved. When the zirconia calcined powder is pulverized and dispersed by a wet process, a predetermined amount of a carbon source is added and molded into a predetermined shape to obtain a molded body. When using an organic substance as a carbon source, the organic substance is decomposed by subjecting the pulverized and dispersed powder to which a predetermined amount of carbon source has been added to a heat treatment at 300 ° C. to 1000 ° C. in an inert gas atmosphere or in a vacuum. It is preferable to obtain a molded powder by a method described later, or it is molded into a predetermined shape using a powder to which a carbon source is added, and an organic substance is applied at 300 ° C. to 1000 ° C. in an inert gas atmosphere or under vacuum. It may be decomposed to form a molded body. Further, in the firing step described later, carbon that penetrates the sintered body by using a carbon heating element or a heat-resistant graphite container has the same effect as adding a carbon source.

ジルコニア仮焼粉体を湿式により粉砕、分散し、必要により公知の成形助剤(ワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形用粉体を得る。得られた成形用粉体を公知の成形方法で成形する。公知の成形方法としては、プレス成形、ラバープレス成形、鋳込み成形(排泥鋳込、充填鋳込、加圧鋳込法)、押出成形等の方法がある。   The zirconia calcined powder is pulverized and dispersed by a wet process, and if necessary, a known molding aid (wax emulsion, PVA, acrylic resin, etc.) is added and dried by a known method such as a spray dryer to obtain a molding powder. obtain. The obtained molding powder is molded by a known molding method. Known molding methods include press molding, rubber press molding, cast molding (exhaust mud casting, filling casting, pressure casting method), extrusion molding, and the like.

得られた粉体の比表面積は3〜30m/g、好ましくは5〜20m/gが良い。比表面積が3m/g未満の場合には焼結性が低下し、得られた焼結体の気孔率が大きくなり機械的特性が低下するだけでなく、導電性の低下をきたすため好ましくない。一方、比表面積が30m/gを越える場合には、粉体が強固な凝集体を形成しやすくなり、成形性および焼結性が低下し、得られた焼結体の気孔率が大きくなり機械的特性の低下をきたすため好ましくない。 The specific surface area of the obtained powder 3~30m 2 / g, preferably 5 to 20 m 2 / g is good. When the specific surface area is less than 3 m 2 / g, the sinterability is lowered, the porosity of the obtained sintered body is increased, not only the mechanical properties are lowered, but also the conductivity is lowered, which is not preferable. . On the other hand, when the specific surface area exceeds 30 m 2 / g, the powder tends to form a strong aggregate, the moldability and the sinterability are lowered, and the porosity of the obtained sintered body is increased. This is not preferable because the mechanical properties are deteriorated.

前記成形体の焼成方法は、前記成形体を不活性ガス雰囲気下、真空下、N雰囲気下、水素含有雰囲気下および含水雰囲気下よりなる群から選ばれた雰囲気下において1250℃〜1700℃好ましくは1250℃〜1600℃で焼成する。1250℃より低いと緻密化が十分でなく、焼結体の気孔率が大きくなり導電性を発現させることができないだけでなく、機械的特性の低下を招くため好ましくない。1700℃を越えると結晶粒径が大きくなり、立方晶系ジルコニアが増加し機械的特性及び摩耗特性の低下を招くため好ましくない。このときガス圧もしくは一軸加圧を同時に行いながら焼成しても良い。さらに、必要に応じてHIP処理を施すことにより摩擦、衝撃、圧壊等に対する抵抗性を高くすることができ、機械的特性の向上、さらには耐久性の向上ができる。HIP処理は常圧焼結後、不活性ガス雰囲気下にて1600℃以下で行うことが望ましい。 The molded body is preferably fired at 1250 ° C. to 1700 ° C. in an atmosphere selected from the group consisting of an inert gas atmosphere, a vacuum, an N 2 atmosphere, a hydrogen-containing atmosphere, and a water-containing atmosphere. Is fired at 1250 ° C to 1600 ° C. When the temperature is lower than 1250 ° C., the densification is not sufficient, the porosity of the sintered body is increased, and the electrical conductivity cannot be expressed. If the temperature exceeds 1700 ° C., the crystal grain size increases, cubic zirconia increases, and mechanical properties and wear properties are deteriorated. At this time, firing may be performed while simultaneously performing gas pressure or uniaxial pressure. Furthermore, by performing HIP treatment as necessary, resistance to friction, impact, crushing, etc. can be increased, and mechanical properties and durability can be improved. The HIP treatment is desirably performed at 1600 ° C. or lower in an inert gas atmosphere after atmospheric pressure sintering.

本発明においては、Tiの含有量が非常に少なくても所望の導電性が得られるので、Tiによりジルコニア焼結体本来の特性が損われることがなく、ジルコニア焼結体の特性を生かしつつ導電性を付与することに成功したものである。本発明におけるTi/Zr原子数比0.3/99.7〜16/84という規定で示されるTiの量は、TiO/ZrOの重量比に換算すると約0.2/99.8〜10.3/89.7であり、先行技術の特開2003−212651号公報や特開2003−212652号公報、特開2003−261376号公報におけるTiの添加量と比べても非常に少なく、かつ機械的特性も曲げ強度が700MPa以上と高い機械的特性を有している。そのうえ、本発明においては、導電性物質であるTiの存在形態は従来のミクロンオーダーの粒子の形ではなく、非常に微細なナノ、分子、原子レベルである点が特徴的であり、本発明の要件を満足させるとTiをこのような状態で存在させることができるのは驚くべきことである。
また、本発明による高強度導電性ジルコニア焼結体は、帯電防止、静電気除去が可能でありながら、高強度を有し、すぐれた耐摩耗性、耐衝撃性等の種々の機械的特性とすぐれた耐食性を有していることから、従来の帯電防止、静電気除去が必要となる産業用耐摩耗構造材をはじめ、半導体製造装置用部品(ウェハー搬送用、プラズマエッチング用部品等)、ハードディスク用ベアリング等の用途にも広く利用できる。
In the present invention, desired conductivity can be obtained even if the Ti content is very low, so that the original characteristics of the zirconia sintered body are not impaired by Ti, and the conductivity is maintained while taking advantage of the characteristics of the zirconia sintered body. It has succeeded in imparting sex. In the present invention, the amount of Ti indicated by the Ti / Zr atomic number ratio of 0.3 / 99.7 to 16/84 is about 0.2 / 99.8 to the weight ratio of TiO 2 / ZrO 2. 10.3 / 89.7, which is very small compared to the amount of Ti added in the prior art Japanese Patent Laid-Open Nos. 2003-212651, 2003-212552, and 2003-261376, and The mechanical properties also have high mechanical properties with a bending strength of 700 MPa or more. In addition, the present invention is characterized in that Ti, which is a conductive material, is not in the form of conventional micron-order particles, but at a very fine nano, molecular, or atomic level. It is surprising that Ti can be present in this state if the requirements are met.
In addition, the high-strength conductive zirconia sintered body according to the present invention has high strength and various mechanical properties such as excellent wear resistance and impact resistance while being capable of preventing static electricity and removing static electricity. In addition to conventional anti-static and static-proof industrial wear-resistant structural materials that require anti-static and static elimination, semiconductor manufacturing equipment components (wafer transport, plasma etching components, etc.), hard disk bearings It can be widely used for such applications.

以下、実施例及び比較例により本発明をより具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention more concretely, this invention is not limited at all by these Examples.

実施例1〜8、比較例1〜6
純度99.5%のオキシ塩化ジルコニウムと純度99.9%の硝酸イットリウムを表1の組成となるように水溶液にて混合した。次にこの水溶液を加熱環流下で加水分解し、Yが固溶した水和ジルコニウムの沈殿物を生成させ、脱水、乾燥し、500〜1000℃で1時間仮焼し、得られたジルコニア粉体を湿式にて粉砕、分散した。Tiは酸化チタンまたは液状の有機チタン化合物の形態で得られた仮焼粉体の粉砕、分散時に所定量添加した。実施例8は液状の有機チタン化合物を添加したもので、それ以外の実施例および比較例は、酸化チタン(TiO)の形態で添加した。SiOやAlはいずれも酸化物粉体の形態で、得られた仮焼粉体の粉砕、分散時に所定量を添加混合した。比較例2は粒子径180nmのSiOを添加したもの、比較例4は粒径650nmのSiOを添加したもので、それ以外の実施例および比較例は、粒子径20nmのSiOを添加したものである。また、比較例2は粒子径1.5μmのAlを添加したもので、比較例5は粒子径5μmのAlを添加したもので、それ以外の実施例および比較例は粒子径0.5μmのAlを添加したものある。炭素源は得られたジルコニア仮焼粉体の粉砕、分散時に所定量を添加、混合、分散を行った。実施例6、8及び比較例2は液状の熱硬化性樹脂をそのまま添加したもので、実施例3は粒子径20nmのカーボンブラックを、比較例4は粒子径が500nmのカーボンブラックを添加したものである。
Examples 1-8, Comparative Examples 1-6
Zirconium oxychloride having a purity of 99.5% and yttrium nitrate having a purity of 99.9% were mixed in an aqueous solution so as to have the composition shown in Table 1. Next, this aqueous solution was hydrolyzed under heating reflux to produce a precipitate of hydrated zirconium in which Y 2 O 3 was dissolved, dehydrated and dried, and calcined at 500 to 1000 ° C. for 1 hour to obtain Zirconia powder was pulverized and dispersed by a wet process. Ti was added in a predetermined amount during pulverization and dispersion of the calcined powder obtained in the form of titanium oxide or a liquid organic titanium compound. In Example 8, a liquid organotitanium compound was added, and the other Examples and Comparative Examples were added in the form of titanium oxide (TiO 2 ). Both SiO 2 and Al 2 O 3 were in the form of oxide powder, and a predetermined amount was added and mixed at the time of pulverization and dispersion of the obtained calcined powder. Comparative Example 2 was obtained by adding SiO 2 having a particle diameter of 180 nm, Comparative Example 4 was obtained by adding SiO 2 having a particle diameter of 650 nm, and other Examples and Comparative Examples were added by SiO 2 having a particle diameter of 20 nm. Is. Also, Comparative Example 2 is obtained by adding Al 2 O 3 particle size 1.5 [mu] m, comparative example 5 in which the addition of Al 2 O 3 having a particle diameter of 5 [mu] m, the examples and comparative examples other than it particles There is one to which Al 2 O 3 having a diameter of 0.5 μm is added. A predetermined amount of carbon source was added, mixed, and dispersed during pulverization and dispersion of the obtained zirconia calcined powder. Examples 6 and 8 and Comparative Example 2 were obtained by adding a liquid thermosetting resin as it was, Example 3 was obtained by adding carbon black having a particle size of 20 nm, and Comparative Example 4 was obtained by adding carbon black having a particle size of 500 nm. It is.

次いで得られたスラリーを乾燥、整粒し、成形用粉体とした。この成形用粉体を成形圧1tonf/cmで冷間静水圧(CIP)成形法により板状に成形した。得られた成形体を、カーボン発熱体の焼成炉で、黒鉛ルツボを用いて1200℃〜1720℃においてAr雰囲気中で2時間常圧焼成し、焼結体を得た。得られた焼結体の特性を表1に示す。炭素量は焼結体を乳鉢にて解砕し、酸素気流中燃焼による赤外線吸収方式の炭素分析装置(堀場製作所、EMIA−220V)にて測定を行った。実施例6、比較例3はAr雰囲気下にて常圧焼成後、圧力1000kgf/mm下、1390℃にて1時間HIP処理を行った焼結体である。体積固有抵抗はφ20×2mmに加工したサンプルの両面に電極を付けて測定した。実施例1、2、3、5、6、7、8及び比較例1、3、4、5、6については高抵抗計を用いて極性反転測定法にてバイアス電圧50V、バイアス電圧印可時間15秒/サイクル、極性反転サイクル数4回/測定、の条件で測定した。なお、抵抗を測定する場合、通常抵抗値の高い材料は一定の直流電圧をかけて、そのときの電流値から抵抗を算出するが、ZrOなどの電圧をかけることによって分極する材料は、プラス方向、つづいてマイナス方向という順序で交互に電圧をかけて測定する極性反転法を用いる。「バイアス電圧印加時間15秒/サイクル」というのは、プラス方向に電圧を15秒間、マイナス方向に電圧を15秒間かける操作を1サイクルとするものである。「極性反転サイクル数4回/測定」というのは、この操作を4サイクル繰り返すという意味である。抵抗値の読み取りは、電圧をかけて15秒後の抵抗の絶対値をよみとり、1サイクルあたりプラス方向とマイナス方向に2回抵抗の絶対値が読みとれるので、2回×4サイクル=8回で、8個の抵抗の絶対値を平均して、その平均値から体積固有抵抗を算出する。それ以外の実施例4及び比較例2については上記方法では正確に測定できないため、デジタルボルツメータにて測定を行った。曲げ強度は、得られた焼結体をJIS−R1601に準拠した形状に加工し、上記JIS法に従って測定しその平均値を示す。 Subsequently, the obtained slurry was dried and sized to obtain a molding powder. The molding powder was molded into a plate shape by a cold isostatic pressure (CIP) molding method at a molding pressure of 1 tonf / cm 2 . The obtained molded body was fired at 1200 ° C. to 1720 ° C. in an Ar atmosphere for 2 hours in a carbon heating element firing furnace using a graphite crucible to obtain a sintered body. Table 1 shows the characteristics of the obtained sintered body. The amount of carbon was measured by pulverizing the sintered body in a mortar and using an infrared absorption type carbon analyzer (Horiba, EMIA-220V) by combustion in an oxygen stream. Example 6 and Comparative Example 3 are sintered bodies that were subjected to HIP treatment for 1 hour at 1390 ° C. under a pressure of 1000 kgf / mm 2 after firing under normal pressure in an Ar atmosphere. The volume resistivity was measured by attaching electrodes to both sides of a sample processed to φ20 × 2 mm. For Examples 1, 2, 3, 5, 6, 7, and 8 and Comparative Examples 1, 3, 4, 5, and 6, a bias voltage of 50 V and a bias voltage application time of 15 were measured by a polarity inversion measurement method using a high resistance meter. The measurement was performed under the conditions of second / cycle, polarity reversal cycle number 4 times / measurement. When measuring resistance, usually a material with a high resistance value is applied with a constant DC voltage, and the resistance is calculated from the current value at that time. However, a material that is polarized by applying a voltage such as ZrO 2 is positive. The polarity inversion method is used in which voltage is applied alternately in the direction of the direction, followed by the negative direction. “Bias voltage application time 15 seconds / cycle” is an operation in which a voltage is applied for 15 seconds in the positive direction and a voltage is applied for 15 seconds in the negative direction as one cycle. “Polarity reversal cycle number 4 times / measurement” means that this operation is repeated 4 cycles. Read the resistance value, read the absolute value of the resistance after 15 seconds after applying voltage, and read the absolute value of the resistance twice in the positive and negative directions per cycle, so 2 times x 4 cycles = 8 times Then, the absolute values of the eight resistors are averaged, and the volume resistivity is calculated from the average value. Since Example 4 and Comparative Example 2 other than that cannot be measured accurately by the above method, they were measured with a digital bolometer. The bending strength is obtained by processing the obtained sintered body into a shape conforming to JIS-R1601, measuring it according to the JIS method, and showing the average value.

図1の(A)および図1の(B)に実施例2の焼結体の微構造写真を示す。図1の(B)は図1の(A)の結晶粒界部分を拡大した写真を示すものであり、Tiは粒子として存在せず、結晶粒界にナノレベル、分子レベル、原子レベルで存在していることが明らかであり、ジルコニア粒界にアモルファス、ガラスなどの第2成分の析出がないことが判る。以上の結果から、本発明の高強度導電性ジルコニア焼結体は曲げ強度が700MPa以上の高強度であり、極微量の導電性物質の添加で、焼結体の体積固有抵抗が10〜1010Ω・cmであり、帯電防止、静電気除去が可能な導電性を有していることが明らかである。 FIGS. 1A and 1B are micrographs of the sintered body of Example 2. FIG. FIG. 1 (B) shows an enlarged photograph of the grain boundary part of FIG. 1 (A). Ti does not exist as a particle, and exists at the nano grain level, molecular level and atomic level at the grain boundary. It is clear that there is no precipitation of the second component such as amorphous or glass at the zirconia grain boundary. From the above results, the high-strength conductive zirconia sintered body of the present invention has high bending strength of 700 MPa or more, and the volume resistivity of the sintered body is 10 3 to 10 by adding a very small amount of conductive material. It is 10 Ω · cm, and it is clear that it has conductivity capable of preventing charging and removing static electricity.

以上の結果から、本発明の高強度導電性ジルコニア焼結体は曲げ強度が700MPa以上の高強度であり、極微量の導電性物質の添加で、焼結体の体積固有抵抗が10〜1010Ω・cmとなり、帯電防止、静電気除去が可能な導電性を有していることが明らかである。 From the above results, the high-strength conductive zirconia sintered body of the present invention has high bending strength of 700 MPa or more, and the volume resistivity of the sintered body is 10 3 to 10 by adding a very small amount of conductive material. It is apparent that the resistance is 10 Ω · cm, and it has conductivity capable of preventing charging and removing static electricity.

図1の(A)は実施例2の焼結体の微構造写真を示す。図1の(B)は図1の(A)の拡大写真である。1A shows a microstructure photograph of the sintered body of Example 2. FIG. FIG. 1B is an enlarged photograph of FIG.

Claims (9)

(a)ZrOの結晶相が主として正方晶系ジルコニアからなるZrO−Y系ジルコニア焼結体であって、(b)Y/ZrOモル比が1.5/98.5〜4/96の範囲にあり、(c)Ti/Zr原子数比が0.3/99.7〜16/84の範囲にあり、(d)ジルコニアの平均結晶粒径が2μm以下であり、(e)焼結体の気孔率が2%以下であり、Tiは粒子として存在するのではなく、ジルコニア結晶粒界にナノレベル、分子レベルまたは原子レベルで存在するか、あるいはジルコニア結晶粒内の粒界近傍のTi濃度が高い形態で固溶しているか、あるいはジルコニア結晶粒界にナノレベル、分子レベルまたは原子レベルで存在する状態とジルコニア結晶粒内の粒界近傍のTi濃度が高い形態で固溶している状態が混在している状態で存在し、かつ粒子径が200nm以下の酸化チタン粒子またはチタン化合物を含有するジルコニア粉体を用いて製造されたことを特徴とする曲げ強度700MPa以上の高強度導電性ジルコニア焼結体。 (A) ZrO 2 crystal phase is a ZrO 2 -Y 2 O 3 zirconia sintered body consisting mainly of tetragonal zirconia, (b) Y 2 O 3 / ZrO 2 molar ratio of 1.5 / 98 (C) Ti / Zr atomic number ratio is in the range of 0.3 / 99.7 to 16/84, and (d) the average crystal grain size of zirconia is 2 μm or less. (E) The porosity of the sintered body is 2% or less, and Ti does not exist as particles, but exists at the nano-level, molecular level or atomic level at the zirconia crystal grain boundaries, or zirconia crystal grains or grain boundaries Ti concentration in the vicinity of the inner is formed as a solid solution at a high form, or nano-level zirconia grain boundaries, high grain boundary Ti concentration in the vicinity of the state and zirconia crystal grains existing at the molecular level or atomic level Jo which is a solid solution in the form High strength conductivity having a bending strength of 700 MPa or more, characterized in that it is produced using zirconia powder containing titanium oxide particles or titanium compounds having a particle size of 200 nm or less . Zirconia sintered body. (f)炭素を0.05〜2重量%含有するものである請求項1記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体。 (F) The high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more according to claim 1, which contains 0.05 to 2% by weight of carbon. (g)SiOを0.05〜3重量%含有するものである請求項1〜2いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体。 (G) SiO 2 0.05 to 3 wt% of any one of claims 1-2 are those containing flexural strength 700MPa or more high strength conductive zirconia sintered body. (h)Alを0.05〜3重量%含有するものである請求項1〜3いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体。 (H) The high strength conductive zirconia sintered body having a bending strength of 700 MPa or more according to any one of claims 1 to 3, which contains 0.05 to 3% by weight of Al 2 O 3 . /ZrOモル比が1.5/98.5〜4/96の範囲にあり、Ti/Zr原子数比が0.3/99.7〜16/84の範囲で、粒子径が200nm以下の酸化チタン粒子またはチタン化合物を含有し、比表面積が3〜30m/gである粉体を用いて成形し、得られた成形体を、不活性ガス雰囲気下、真空下、N雰囲気下、水素含有雰囲気下および含水雰囲気下よりなる群から選ばれた雰囲気下において1250℃〜1700℃で焼成することを特徴とする曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法。 The Y 2 O 3 / ZrO 2 molar ratio is in the range of 1.5 / 98.5 to 4/96, the Ti / Zr atomic number ratio is in the range of 0.3 / 99.7 to 16/84, the particle diameter Is molded using a powder containing titanium oxide particles or a titanium compound of 200 nm or less and having a specific surface area of 3 to 30 m 2 / g, and the resulting molded body is subjected to N under an inert gas atmosphere under vacuum. Production of high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more, characterized by firing at 1250 ° C. to 1700 ° C. in an atmosphere selected from the group consisting of 2 atmospheres, hydrogen-containing atmospheres and water-containing atmospheres Method. 炭素が0.05〜2重量%の範囲となる炭素または熱分解により炭素となる炭素化合物を含有するものである請求項5記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法。   6. The method for producing a high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more according to claim 5, wherein the carbon contains carbon in a range of 0.05 to 2% by weight or a carbon compound that becomes carbon by thermal decomposition. . SiOが0.05〜3重量%の範囲となるSiOまたはケイ素化合物を含有するものである請求項5または6記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法。 Method for producing a SiO 2 0.05 to 3 wt% of the range to become SiO 2 or silicon compounds are those which contain claim 5 or 6, wherein the bending or strength 700MPa high strength conductive zirconia sintered body. Alが0.05〜3重量%の範囲となるAlまたはアルミニウム化合物を含有するものである請求項5〜7いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法。 Al 2 O 3 is 0.05 to 3 wt% of the range to become Al 2 O 3 or aluminum compounds are those containing claim 5-7, wherein one bending or strength 700MPa high strength conductive zirconia sintered Body manufacturing method. 成形体を、不活性ガス雰囲気下、真空下、N雰囲気下、水素含有雰囲気下および含水雰囲気下よりなる群から選ばれた雰囲気下において1250℃〜1700℃で焼成した後、不活性ガス雰囲気下において1600℃以下でホットアイソスタティックプレス(HIP)処理するものである請求項5〜8いずれか記載の曲げ強度700MPa以上の高強度導電性ジルコニア焼結体の製造方法。
After firing the molded body at 1250 ° C. to 1700 ° C. in an atmosphere selected from the group consisting of an inert gas atmosphere, a vacuum, an N 2 atmosphere, a hydrogen-containing atmosphere, and a water-containing atmosphere, an inert gas atmosphere The method for producing a high-strength conductive zirconia sintered body having a bending strength of 700 MPa or more according to any one of claims 5 to 8, wherein hot isostatic pressing (HIP) treatment is performed at 1600 ° C or lower.
JP2004014703A 2004-01-22 2004-01-22 High strength conductive zirconia sintered body and method for producing the same Expired - Lifetime JP5062942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014703A JP5062942B2 (en) 2004-01-22 2004-01-22 High strength conductive zirconia sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014703A JP5062942B2 (en) 2004-01-22 2004-01-22 High strength conductive zirconia sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005206421A JP2005206421A (en) 2005-08-04
JP5062942B2 true JP5062942B2 (en) 2012-10-31

Family

ID=34900414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014703A Expired - Lifetime JP5062942B2 (en) 2004-01-22 2004-01-22 High strength conductive zirconia sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5062942B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080264564A1 (en) 2007-04-27 2008-10-30 Applied Materials, Inc. Method of reducing the erosion rate of semiconductor processing apparatus exposed to halogen-containing plasmas
JP4871567B2 (en) * 2005-10-07 2012-02-08 株式会社ニッカトー Porous conductive zirconia sintered body and vacuum chuck member comprising the same
JP5036271B2 (en) * 2006-10-16 2012-09-26 株式会社ニッカトー Zirconia conductive sintered body
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US8383236B2 (en) 2008-02-07 2013-02-26 Kyocera Corporation Zirconia sintered body and production method the same
JP5790366B2 (en) * 2011-09-21 2015-10-07 東ソー株式会社 Plasma-resistant member and manufacturing method thereof
JP6657765B2 (en) * 2015-10-19 2020-03-04 東ソー株式会社 Black zirconia sintered body and its use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294571A (en) * 1988-05-20 1989-11-28 Hitachi Metals Ltd Material for thin-film magnetic head slider
JP2002154873A (en) * 2000-11-10 2002-05-28 Nitsukatoo:Kk Zirconia sintered compact excellent in durability
JP2003261376A (en) * 2002-03-06 2003-09-16 Toto Ltd Zirconia sintered compact and method of producing the same

Also Published As

Publication number Publication date
JP2005206421A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP3624219B2 (en) Polycrystalline SiC molded body, manufacturing method thereof and applied product comprising the same
Sutharsini et al. Two-step sintering of ceramics
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
JP5242529B2 (en) Method for producing free-cutting ceramics
JPH08268755A (en) Zirconia-based composite ceramic sintered compact and its production
JPH06172026A (en) Sintered compact of zirconia-based complex ceramic and its production
JP3035582B2 (en) Alumina sintered body
JP5062942B2 (en) High strength conductive zirconia sintered body and method for producing the same
JP5593529B2 (en) Black zirconia reinforced alumina ceramic and method for producing the same
KR100494188B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JP4871567B2 (en) Porous conductive zirconia sintered body and vacuum chuck member comprising the same
JP5189786B2 (en) Conductive alumina sintered body
Kawano et al. Spark plasma sintering of nano‐sized TiN prepared from TiO2 by controlled hydrolysis of TiCl4 and Ti (O‐i‐C3H7) 4 solution
JP6982000B2 (en) Oriented AlN sintered body and its manufacturing method
JP5303345B2 (en) Conductive zirconia sintered body
JP5113469B2 (en) Manufacturing method of oxide powder coated with carbide powder
JP5036271B2 (en) Zirconia conductive sintered body
JP5403851B2 (en) Method for producing sintered zirconium silicate
JP4708153B2 (en) Conductive alumina sintered body
JP2004189509A (en) Conductive zirconia sintered compact
KR101442634B1 (en) Manufacturing method of aluminum titanate having high-temperature strength and manufacturing method of the same
JP2000070745A (en) Member for pulverizer
JP4773709B2 (en) Crusher parts
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
WO2022163150A1 (en) Sintered body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100525

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5062942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term