JPS59107324A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPS59107324A
JPS59107324A JP21900882A JP21900882A JPS59107324A JP S59107324 A JPS59107324 A JP S59107324A JP 21900882 A JP21900882 A JP 21900882A JP 21900882 A JP21900882 A JP 21900882A JP S59107324 A JPS59107324 A JP S59107324A
Authority
JP
Japan
Prior art keywords
light
waveguides
mode
optical modulator
mode light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21900882A
Other languages
Japanese (ja)
Other versions
JPH0422245B2 (en
Inventor
Ippei Sawaki
一平 佐脇
Hiroki Nakajima
啓幾 中島
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21900882A priority Critical patent/JPS59107324A/en
Publication of JPS59107324A publication Critical patent/JPS59107324A/en
Publication of JPH0422245B2 publication Critical patent/JPH0422245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical modulator which is not influenced by a plane of polarization of a light by separating a leading-in light to a TE mode and a TM mode by a branching element, modulating it by an intermediate Mach-Zender type modulating element, and thereafter, combining both light by a combining element. CONSTITUTION:Two waveguides 2, 3 are formed on an electro-optical crystal plate, and crossed at a point B and a point C, and the point B and the point C become a branching element and a combining element, respectively. The waveguides 2, 3 are made to branch into two on the way, and Mach-Zender type waveguides M1, M2 are formed on 2B and 3B by a voltage applying electrode 5 and an earth electrode 6. The led-in light is separated into a TE mode which goes straight on and a TM mode which turns and advances, by the branching element, they are modulated by the waveguides M1, M2, respectively, the TM mode light is curved by the combining element, and both light are combined and outputted to the outside. Therefore, it is possible to obtain an optical modulator which is not influenced by a plane of polarization of a leading-in light and has no polarization dependability.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は変調器の改良に関する。[Detailed description of the invention] (a) Technical field of the invention The present invention relates to improvements in modulators.

(b)  技術の背景 半導体レーザ素子等を用いて光通信により入力信号を伝
達する際、入力信号の周波数の帯域中を広げて信号の伝
達を高速に行うために光変調器が用いられている。
(b) Background of the technology When transmitting an input signal through optical communication using a semiconductor laser device, etc., an optical modulator is used to widen the frequency band of the input signal and transmit the signal at high speed. .

このような光変調器として例えばリチウムナイオペイト
(Li Nb O3)のような電気光学結晶の基板にT
i (チタン)等を細い線状に拡散して基板と屈折率を
変化せしめた先導波路が用いられている。
As such an optical modulator, for example, T is applied to a substrate of an electro-optic crystal such as lithium niopate (LiNbO3).
A leading waveguide is used in which a material such as titanium i (titanium) is diffused into a thin line to change the refractive index of the substrate.

このような光導波路を用いた光変調器は、小型でかつ光
が狭い導波路の領域内に閉ζ込められるので、変調に要
する電圧が低電圧で済む利点があるので光回路素子とし
て広く用いられている。
Optical modulators using such optical waveguides are compact and the light is confined within the narrow waveguide area, so they have the advantage of requiring only a low voltage for modulation, so they are widely used as optical circuit elements. It is being

(Cン 従来技術と問題点 このようなLINb O3の結晶は電気光学効果が大き
く、また光信号を低損失で伝達できる導波路も容易に形
成できるが、結晶には屈折率の異方性があり、また導入
される光の偏波面がTMモードあるいはTEモードのい
ずれかによって、該結晶に′電界をかけた際の結晶の屈
折率値の変動の度合が異なるといった即ち電気光学係数
に差を生じるようになる。そのため、光変調器に導入さ
れる光の偏光方向によって光変調器より出力される信号
が影響を受ける欠点がある。
(C) Conventional technology and problems Although such a LINb O3 crystal has a large electro-optic effect and can easily form a waveguide that can transmit optical signals with low loss, the crystal has anisotropy in the refractive index. Also, depending on whether the polarization plane of the introduced light is in TM mode or TE mode, the degree of variation in the refractive index value of the crystal when an electric field is applied to the crystal differs, that is, there is a difference in the electro-optic coefficient. Therefore, there is a drawback that the signal output from the optical modulator is affected by the polarization direction of the light introduced into the optical modulator.

このようなLiNb01を結晶基板として用いた導波路
型光変調器としてはLiNbO3基板上にTiを線状に
拡散して形成した二本の導波路上を近接してて基板の屈
折率を変動させ、導波路に尋人された光を変調する方向
性結合器やあるいは一本の導波路を二方向に分岐せしめ
、その分岐せしめた一方の導波路上に絶縁膜を介して、
4i、極を形成し、この電極に電圧を印加して導入され
た光を変調するMach −Zender型干渉計の如
き変調素子があるがこれらはいずれも導入光の偏波面に
よって基板に電界をかけた際の屈折率の変動する割合が
異なるといった偏光依存性がある欠点を生じる。
A waveguide optical modulator using such LiNbO1 as a crystal substrate uses two waveguides formed by linearly diffusing Ti on a LiNbO3 substrate in close proximity to each other to vary the refractive index of the substrate. , a directional coupler that modulates the light transmitted to the waveguide, or a single waveguide branched into two directions, and an insulating film placed on one of the branched waveguides.
4i, there is a modulation element such as a Mach-Zender interferometer that forms a pole and modulates the introduced light by applying a voltage to this electrode, but these all apply an electric field to the substrate depending on the polarization plane of the introduced light. This results in the drawback of polarization dependence, such as a difference in the rate at which the refractive index changes when the polarization changes.

そのため、このような偏光依存性を除去するため導波路
型光変調器を形成するLiNbO3のような電気光学結
晶を切断する際に切断方向を考慮したり、また電極の形
状を変化したり、あるいは電極1廚 に回期性を持たせる等、種々考慮したが、いずれも結晶
の切断に手間がかかったり、電極の形成に時間がかかり
すぎたり、また′電極の形状が複雑に  ゛なったりし
て好ましくない。
Therefore, in order to eliminate such polarization dependence, it is necessary to consider the cutting direction when cutting the electro-optic crystal such as LiNbO3 that forms the waveguide type optical modulator, or to change the shape of the electrode. Various considerations were made, such as giving the electrode cyclicity, but all of them required time and effort to cut the crystal, took too much time to form the electrode, and made the shape of the electrode complicated. I don't like it.

(W 発明の目的 本発明は上述した問題点を除去するもので、電気光学結
晶を用いて導波路型光変調器を形成する際、該変調器に
導入される光の偏波面がTMモード力>TEモードかに
よって該結晶に電界をかけた際に結晶の)B(折率の変
動の度合いが変化しないような、すなわち導入光の偏光
方向によって光変調器より出力される光信号が影響を受
けないようにした新規な光変調器の提供を目的とするも
のである。
(W. Purpose of the Invention The present invention eliminates the above-mentioned problems. When forming a waveguide type optical modulator using an electro-optic crystal, the polarization plane of light introduced into the modulator has a TM mode force. >Depending on the TE mode, when an electric field is applied to the crystal, the degree of variation in the refractive index of the crystal does not change, that is, the optical signal output from the optical modulator is affected by the polarization direction of the introduced light. It is an object of the present invention to provide a novel optical modulator that is free from the irradiation.

(e〕 発明の構成 かかる目的を達成するための本発明の光変調器は、電気
光学結晶基板上に二本の導波路を設け、該導波路を交差
させて、導入される光のTEモード光、TMモード光の
分離1子を形成し、次いで前記二本の導波路を分岐させ
て前記結晶にT’Eモード光、T〜Iモード光を導入し
て変調させた際の該結晶のそれぞれのモード光に対する
上気光学常数の値の比に対応する長さの電極を備えたマ
ンノ1ツエンダー型変調素子を形成し、次いで14iJ
記分岐した導波路を合流させてTEモード光とT Mモ
ード光とを合流させる合流素子を形成したことを特徴と
するものである。
(e) Structure of the Invention In order to achieve the above object, the optical modulator of the present invention has two waveguides provided on an electro-optic crystal substrate, and the TE mode of the introduced light is set by intersecting the waveguides. of the crystal when a separated single beam of light and TM mode light is formed, and then the two waveguides are branched to introduce and modulate T'E mode light and T to I mode light into the crystal. A Manno-1 Zehnder modulator was formed with electrodes having a length corresponding to the ratio of the value of the upper optical constant to each mode light, and then 14iJ
The present invention is characterized in that a merging element is formed for merging the branched waveguides and merging TE mode light and TM mode light.

(f)  発明の実弛例 以下図面を用いて本発明の一実施例につき詳雑に説明す
る。’、j51図は本発明の光変調器の購造を示す平面
図、第2図はそのA−A’線に沿った断面図である。
(f) Practical Example of the Invention An example of the present invention will be described in detail below with reference to the drawings. ', j51 is a plan view showing the purchase of the optical modulator of the present invention, and FIG. 2 is a sectional view taken along the line AA'.

図示するようにC軸方向に垂直に切断したLiNbO3
の結晶基板1」二にT1を蒸着後、所定の深さに拡散し
て2本の光導波路2.3を形成する。この、・σ波路は
B点、0点で交差させるようにしておきこのB点を含む
部分を分岐素子、0点を含む部分を合流素子とする。そ
して分岐点Bより合流点C迄の間のそれぞれの導波路2
.3は途中で2A、2Bおよび3A、3Bのように分岐
させる。
LiNbO3 cut perpendicular to the C-axis direction as shown
After T1 is deposited on the crystal substrate 1''2, it is diffused to a predetermined depth to form two optical waveguides 2.3. This .sigma wave path is made to intersect at point B and point 0, and the part including point B is used as a branching element, and the part including point 0 is used as a merging element. And each waveguide 2 from branch point B to confluence point C
.. 3 branches into 2A, 2B and 3A, 3B in the middle.

次いで、この基板l上二酸化シリコン(SiO2)膜等
の絶縁膜4を形成してから分岐した導波路2B、3Bl
二に該絶縁膜4を介してアIレミニウム(At)等を蒸
着して電圧印加用正極5を形成し、この電極と櫛の別状
に対向してアース用蛋極6を形成する。
Next, after forming an insulating film 4 such as a silicon dioxide (SiO2) film on this substrate l, branched waveguides 2B and 3Bl are formed.
Second, aluminum (At) or the like is deposited through the insulating film 4 to form a voltage applying positive electrode 5, and a grounding electrode 6 is formed opposite to this electrode in a separate comb shape.

そしてこの分岐した導波路2B上に形成されて対向して
いる電極5,6の長さLlは導波路3B上に形成されて
対向しているMkJi5.6の長さt3に比して約】/
3の長さとしておく。
The length Ll of the electrodes 5 and 6 formed on the branched waveguide 2B and facing each other is about 100% compared to the length t3 of MkJi5.6 formed on the waveguide 3B and facing each other. /
Set the length to 3.

このように導波路2A、2Bと対向部分がt、の長さを
有する5、6とを組としたMach −Zender型
導波路M、と導波路3A、3Bと対向部分が12の長さ
を有するε・、6とを組としたMach −Zcnde
 r型等波路騒とを形成する。
In this way, there is a Mach-Zender type waveguide M consisting of waveguides 2A, 2B and 5, 6 whose opposing portions have a length of t, and a Mach-Zender type waveguide M whose opposing portions have a length of 12. Mach −Zcnde with ε・,6
R-type equal wave path noise is formed.

このような変調器に例えばレーザ光源より光ファイバを
介して光を導入する。このように光フ1イバを介して導
入される光は、直線偏光の状態でなく橢目偏光の状態と
なっており、この導入された光は分岐素子によってTE
モード光と7Mモード光(こ分離される。ここで’r 
Eモード光は直進して進みMa ch −Ze ndo
 r型導入蹟M2に尋人され、1゛I4モート光は曲が
って進みMach −Zender型導入路rv1 、
に244人される。そし°r’rEモード光は1via
ch −Zender型導入路rvJ2においてヌ」間
部t2の長さを−11−する屯1由5,6によって反調
を受け、1’ fvl七−ト光はMach −Zend
er型導入路1山において刻向都かtlの長さを有する
上極5,6によって変調を受ける。
Light is introduced into such a modulator from, for example, a laser light source via an optical fiber. In this way, the light introduced through the optical fiber is not in a linearly polarized state but in a square polarized state, and this introduced light is converted into TE by a branching element.
mode light and 7M mode light (separated. Here 'r
E mode light travels straight ahead
Entering the r-type introduction path M2, the 1゛I4 mote light curves and advances Mach-Zender type introduction path rv1,
There were 244 people. Then °r'rE mode light is 1via
In the ch -Zender type introduction path rvJ2, the length of the gap t2 is -11-, and the 1'fvl7-t light is reversed by Mach-Zend.
It is modulated by the upper poles 5 and 6 having a length of tl in the er-type introduction path 1.

ここでC軸に垂直な平面で切61シたLi Nb tJ
3の結晶においては、1゛Eモード光に対する電気光学
常数r13 とTPAモード光に対する電気光学常数r
x+とは異なっており、r33中3r、3の関係を有し
ているので4と4を’2/ 4 =r33/r+3中3
の長さになるよう(こ、つまり1゛Eモード光が変−を
受ける対向T4L極の長さt2を7Mカード光が変調を
受ける対向電極の長さtlの約3倍になるようにする。
Here, 61 pieces of Li Nb tJ are cut on a plane perpendicular to the C axis.
In the crystal of No. 3, the electro-optic constant r13 for 1゛E mode light and the electro-optic constant r for TPA mode light
It is different from x+ and has a relationship of 3r in r33, 3, so 4 and 4 are '2/4 = 3 in r33/r+3
(In other words, the length t2 of the opposing T4L pole where the 1゛E mode light is modulated is approximately three times the length tl of the opposing electrode where the 7M card light is modulated.) .

この後さらに合流素子でVMlをかけられた7Mモード
光を曲げ、TEモード光を直進させることで変調器の外
部に両モードの合流した光を出力させるようにする。
Thereafter, the 7M mode light applied with VMl is further bent by the merging element, and the TE mode light is made to proceed straight, so that the combined light of both modes is outputted to the outside of the modulator.

このようにすれば尋人される光のTEモード、TMモー
ドの両方のモードの光によって影響を受けない偏光依存
性のない光変調器が得られ、このような変調器を用いれ
ば直線偏光の光だけでなく橢円偏光の光でも偏光の依存
性がなく変調できるので、光通信システム等に用いて極
めて効果的である。
In this way, it is possible to obtain a polarization-independent optical modulator that is unaffected by both the TE mode and TM mode of light, and by using such a modulator, linearly polarized light can be Since not only light but also circularly polarized light can be modulated without polarization dependence, it is extremely effective for use in optical communication systems and the like.

(g>  発明の効果 以上述べたように本発明の光変調器によれば導入される
光の偏波面の影響を受けない光変調器が得られ、該変調
器を光通信システム等に用いnば高効率、高信頼度の光
通信が出来る等効果が大である。
(g> Effects of the Invention As described above, according to the optical modulator of the present invention, an optical modulator that is not affected by the polarization plane of introduced light can be obtained, and the modulator can be used in optical communication systems, etc. It has great effects, such as enabling highly efficient and highly reliable optical communications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光変調器の構造を示す平面図、第2図
はそのA−A’線に沿った断面図である。 図【こおいて、lはLi Nb O3基板、2.2A、
 2B。 3.3A、3Bは導波路、4は絶縁膜、5,6は電極、
rcl、 、 M2はMach −Zendar型導波
路、B、Cは交差点、Ll + 4は電極の長さを示す
。 し匈1で1づ 第1図 第2図
FIG. 1 is a plan view showing the structure of the optical modulator of the present invention, and FIG. 2 is a sectional view taken along the line AA'. Figure [Here, l is Li Nb O3 substrate, 2.2A,
2B. 3. 3A and 3B are waveguides, 4 is an insulating film, 5 and 6 are electrodes,
rcl, , M2 are Mach-Zendar type waveguides, B and C are intersection points, and Ll + 4 is the length of the electrode. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (υ 電気光学結晶基板上に二本の導波路を設け、該導
波路を交差させて、導入される光のTEモード光、1M
モード光の分離素子を形成し、次いで前記二本の導波路
を分岐させて前記結晶(こTEモード光、1Mモード光
を導入して変調させた際の該結晶のそれぞれのモード光
に対する電気光学常数の値の比に対応する長さの電極を
備えたマツノーツエンダ−型変調素子を形成し、次いで
前記分岐した導波路を合流させてTEモード光と1Mモ
ード光とを合流させる合流素子を形成したことを特徴と
する光変調器。 (2)前記電気光学結晶としてリチウムナイオベイ) 
(1−i Nb 03)を用いたことを特徴とする特許
請求範囲第(υ項に記載の光変調器。
[Claims] (υ Two waveguides are provided on an electro-optic crystal substrate, the waveguides are crossed, and the TE mode light of the light introduced is 1M
A mode light separating element is formed, and then the two waveguides are branched to form an electro-optic optical system for each mode light of the crystal when TE mode light and 1M mode light are introduced and modulated. A pine-no-Zender type modulation element having an electrode with a length corresponding to the ratio of the constant values is formed, and then the branched waveguides are merged to form a merging element that merges the TE mode light and the 1M mode light. (2) Lithium Niobay as the electro-optic crystal.
(1-i Nb 03).
JP21900882A 1982-12-13 1982-12-13 Optical modulator Granted JPS59107324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21900882A JPS59107324A (en) 1982-12-13 1982-12-13 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21900882A JPS59107324A (en) 1982-12-13 1982-12-13 Optical modulator

Publications (2)

Publication Number Publication Date
JPS59107324A true JPS59107324A (en) 1984-06-21
JPH0422245B2 JPH0422245B2 (en) 1992-04-16

Family

ID=16728809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21900882A Granted JPS59107324A (en) 1982-12-13 1982-12-13 Optical modulator

Country Status (1)

Country Link
JP (1) JPS59107324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644719A (en) * 1987-06-29 1989-01-09 Japan Broadcasting Corp Optical modulator
US5031236A (en) * 1986-12-29 1991-07-09 British Telecommunications Public Limited Company Polarization insensitive optical signal reception
JPH0980365A (en) * 1995-09-19 1997-03-28 Nec Corp Waveguide type optical device
EP0950167A1 (en) * 1996-10-18 1999-10-20 Uniphase Corporation Variable chirp optical modulator using single modulation source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031236A (en) * 1986-12-29 1991-07-09 British Telecommunications Public Limited Company Polarization insensitive optical signal reception
JPS644719A (en) * 1987-06-29 1989-01-09 Japan Broadcasting Corp Optical modulator
JPH0980365A (en) * 1995-09-19 1997-03-28 Nec Corp Waveguide type optical device
EP0950167A1 (en) * 1996-10-18 1999-10-20 Uniphase Corporation Variable chirp optical modulator using single modulation source
EP0950167A4 (en) * 1996-10-18 2001-02-07 Uniphase Corp Variable chirp optical modulator using single modulation source

Also Published As

Publication number Publication date
JPH0422245B2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US4291939A (en) Polarization-independent optical switches/modulators
US5751867A (en) Polarization-insensitive, electro-optic modulator
KR0162755B1 (en) Modulator using electro-optic polymer
US5303315A (en) Near Z digital switch
JPS6220532B2 (en)
JPS6378124A (en) Polarization adjustor
JP3200629B2 (en) Optical modulator using photonic bandgap structure and optical modulation method
JP3272064B2 (en) 4-section optical coupler
US3990775A (en) Thin-film optical waveguide
JPS6125122A (en) Modulation of electromagnetic carrier
JPS59107324A (en) Optical modulator
US3957340A (en) Electrooptical amplitude modulator
JPH0764031A (en) Optical modulator
JPH01287623A (en) Optical waveguide type semiconductor polarization beam splitter
RU2129721C1 (en) Method for switching and modulation of unidirectional parent-distribution waves and device which implements said method
JPS6028621A (en) Optical modulator and optical frequency controller
JPS6236631A (en) Waveguide type optical modulator
US5970188A (en) Method and apparatus for controlling an optical signal
JPS60646B2 (en) optical phase modulator
JPH01128037A (en) Optical switching and modulating device
JPH01109322A (en) Optical phase modulator
JPH04311918A (en) Light wave guide passage device
KR0162756B1 (en) General polarization transformer using electro-optic polymer
JPH05196903A (en) Branched interference type optical modulator of polarization independent type
Papuchon 3.1 Integrated-Optic Components