JPS6028621A - Optical modulator and optical frequency controller - Google Patents

Optical modulator and optical frequency controller

Info

Publication number
JPS6028621A
JPS6028621A JP13572683A JP13572683A JPS6028621A JP S6028621 A JPS6028621 A JP S6028621A JP 13572683 A JP13572683 A JP 13572683A JP 13572683 A JP13572683 A JP 13572683A JP S6028621 A JPS6028621 A JP S6028621A
Authority
JP
Japan
Prior art keywords
waveguide
waveguides
optical
path length
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13572683A
Other languages
Japanese (ja)
Inventor
Masataka Shirasaki
白崎 正孝
Yasuo Furukawa
古川 泰男
Yushi Inagaki
雄史 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13572683A priority Critical patent/JPS6028621A/en
Publication of JPS6028621A publication Critical patent/JPS6028621A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/20Intrinsic phase difference, i.e. optical bias, of an optical modulator; Methods for the pre-set thereof

Abstract

PURPOSE:To obtain easily an intended stable phase difference and to make manufacture easy by providing a difference in optical path to two branch waveguides. CONSTITUTION:An input waveguide 2 is branched to two waveguides 3, 4 at a point B and are joined to each other at a point E to form an output waveguide 5. The waveguide 4 has the path length longer by 1384Angstrom which is half the wavelength 2768Angstrom of the light-emitted from an He-Ne laser in the crystal than the other waveguide 4. All the waveguides 2-5 have about 5-10mum path width. The two waveguides 3, 4 are parallel straight lines spaced at about 100mum in the parts CD, FG forming electrodes 6, 7. The electrodes 6, 7 exist right above said parallel straight lines and have about 5-10mum width and 5mm. length. When the electrodes are formed in the above-mentioned difference in path length, about 2mm. is required as the length of BC(BF). Optical fibers, etc. are connected to an input part A and an output part H.

Description

【発明の詳細な説明】 発明の技術分野 本発明は光変調器および光周波数制御器に係シ、よシ詳
しくは、安定した光振幅変調器および単一周波数の入力
光から安定した周波数差を持つ2つの光を与える光周波
数制御器に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to optical modulators and optical frequency controllers, and more particularly, to a stable optical amplitude modulator and a method for generating a stable frequency difference from a single frequency input light. This invention relates to an optical frequency controller that provides two types of light.

従来技術と問題点 光周波数を制御することによって光ヘテロゲイン計測な
どが可能となるが、それらを精密に効率良く行なうには
安定した周波数差を持つ2つの光を得ることが必要であ
る。従来、このような光を与える装置(光周波数制御器
)ではゼーマン効果あるいは超音波による光回折を利用
して周波数差のある2つの光を発生させていた。
Prior Art and Problems Optical heterogain measurements are possible by controlling the optical frequency, but in order to perform these measurements accurately and efficiently, it is necessary to obtain two lights with a stable frequency difference. Conventionally, devices for providing such light (optical frequency controllers) have utilized the Zeeman effect or optical diffraction caused by ultrasonic waves to generate two lights with different frequencies.

ゼーマン効果を利用した光周波数制御器では、レーザに
磁界を加えてゼーマン分離を起させ、周波数の異なる2
つの光を右回シ、左回シの円偏光として取シ出し、それ
から1/4波長板、偏光シリ゛ズムで分離することによ
って周波数が異なる2つの光を得る。しかし、この光周
波数制御器では、得られる2つの光の周波数の差が磁界
に依存すること、磁界を任意に設定することが困難であ
るので周波数差に限界が生じること、直線偏光を放出す
る半導体レーザを適用できないこと、1/4波長板およ
び偏光プリズムを用いているので装置が小型化できない
こと、等の問題がある。
In an optical frequency controller that uses the Zeeman effect, a magnetic field is applied to the laser to cause Zeeman separation, and two
Two lights with different frequencies are obtained by extracting the two lights as right-handed and left-handed circularly polarized lights, and then separating them using a quarter-wave plate and a polarization series. However, with this optical frequency controller, the difference in frequency between the two obtained lights depends on the magnetic field, it is difficult to set the magnetic field arbitrarily, so there is a limit to the frequency difference, and linearly polarized light is emitted. There are problems such as the inability to apply a semiconductor laser and the inability to miniaturize the device because a quarter-wave plate and polarizing prism are used.

超音波を利用した光周波数制御器では、レーザ光をハー
フミラ−などで2つに分岐し、その一方の光はそのまま
使用し、そして他方の光を超音波周波数変調器に導き、
ブラック反射条件を利用して周波数変調することによっ
て周波数がもう一方の光と異なる光を得る。しかし、こ
の光周波数制御器では、プラ、り反射条件から設定でき
る周波数差に制限があること、超音波周波数変調器は大
きな駆動電力を必要とするために発熱があシ、その対策
手段が必要であること、等の問題がある。
In an optical frequency controller using ultrasonic waves, a laser beam is split into two by a half mirror, one of the beams is used as is, and the other beam is guided to an ultrasonic frequency modulator.
By performing frequency modulation using the black reflection condition, light having a frequency different from that of the other light is obtained. However, with this optical frequency controller, there is a limit to the frequency difference that can be set due to the plastic reflection conditions, and ultrasonic frequency modulators generate heat because they require large driving power, so countermeasures are needed. There are problems such as being

また、こうした光周波数制御器等において使用される光
変調器として、マツノ・ツエンダ干渉器を使ったグツシ
ーゾル形の光路即ち1本の光路を一旦分岐して2本の光
路にしだ後再び1本の光路に合一化した構造の光路にお
いて、その分岐した2本の光経路に対して電界をかけて
屈折率変化を与えて大きさが等しくて符号が逆の位相変
化を生じさせ、かつ2本の分岐路のうち1方の光経路中
に、屈折率の異なる物質を挿入したシ、外部電界等で屈
折率変化を与えて光の位相を変化させ、そしてこれら2
つの光路からの光を合成することによって光の振幅を変
調するものがある。しかし、光路中に屈折率の異なる物
質を挿入する手法はその制御が困難で、特定の位相変化
が得られにくい。また、一方の分岐路に外部電界を加え
て屈折率を変化させる手法は、位相変化がばらつくシ、
余分なiu源を必些とするなどの不都合がある。
In addition, as an optical modulator used in such optical frequency controllers, a Gutshisol type optical path using a Matsuno-Zehnder interferometer, that is, one optical path is once branched into two optical paths, and then one In an optical path that has a unified optical path, an electric field is applied to the two branched optical paths to change the refractive index, causing a phase change that is equal in size and opposite in sign, and A material with a different refractive index is inserted into one of the optical paths of the branched paths, and the refractive index is changed using an external electric field to change the phase of the light.
Some devices modulate the amplitude of light by combining light from two optical paths. However, the method of inserting substances with different refractive indexes into the optical path is difficult to control, and it is difficult to obtain a specific phase change. In addition, the method of changing the refractive index by applying an external electric field to one branch path causes the phase change to vary;
There are disadvantages such as requiring an extra IU source.

発明の目的 本発明は、以上の如き従来技術に鑑み、安定した光振幅
変調を与える製造容易な光変調器を提供するとともに、
単一周波数の入力光からよシ安定した周波数差を持つ2
つの光を与える光周波数制御器を提供することを目的と
する。
Purpose of the Invention In view of the prior art as described above, the present invention provides an easy-to-manufacture optical modulator that provides stable optical amplitude modulation, and
2 with a more stable frequency difference from a single frequency input light
The present invention aims to provide an optical frequency controller that provides two types of light.

発明の構成 そして、本発明は上記目的を達成するために、誘電体基
板の中または上にマツハツエンダ形導波路を形成し、そ
の2本の分岐導波路に電気光学効果、磁気光学効果等を
利用して大きさが等しく符号が逆の屈折率変化を与え得
るように構成し、かつ2本の分岐導波路に、電気光学効
果等で屈折率を変化させない状態で入力光の位相を半波
長相当分変化させるような路長差を持たせて成る光変調
器を提供する。
Structure of the Invention In order to achieve the above object, the present invention forms a Matsuhatsu Enda-shaped waveguide in or on a dielectric substrate, and utilizes electro-optic effect, magneto-optic effect, etc. in the two branch waveguides. The two branch waveguides are configured so that they can give refractive index changes of equal magnitude and opposite sign, and the phase of the input light is changed to the equivalent of a half wavelength without changing the refractive index due to electro-optic effects, etc. To provide an optical modulator having a path length difference such that the path length is changed by a certain amount.

本発明に依る光変調器では2本の分岐導波路に路長差を
設けることによって光に位相差を与える構造であるため
に、所期の位相差を得ることが容易であシ、かつ得られ
る位相差は安定しておシ、しかも、製造が容易で量産に
向いている。
Since the optical modulator according to the present invention has a structure that provides a phase difference to light by providing a path length difference between two branch waveguides, it is easy to obtain a desired phase difference and it is advantageous. The resulting phase difference is stable and easy to manufacture, making it suitable for mass production.

本発明に依る光変調器に適用可能な光の種類は特に限定
されるものではない。しかし、一般的によく利用される
としてる光は、例えば、波長6328XのHe−Noレ
ーザ光、波長8500又または13000X、1550
0Xの半導体レーザ光などがある。
The type of light applicable to the optical modulator according to the present invention is not particularly limited. However, the commonly used light is, for example, a He-No laser beam with a wavelength of 6328X, a wavelength of 8500X or 13000X, a 1550X
Examples include 0X semiconductor laser light.

本発明は、前記目的を達成するために、同様にして、誘
電体基板の中または上に本発明による上記光変調器を2
個形成するとともに、入力光を2つに分岐して該2つの
光変調器に入力し、該2つの光変調器からの出力をそれ
ぞれ2つに分岐し、その分岐された出力2組をそれぞれ
四分の一波長に相当する位相差±90°を持たせて合成
するように導波路網を形成した光周波数制御器を提供す
る。
In order to achieve the above object, the present invention similarly provides two optical modulators according to the present invention in or on a dielectric substrate.
At the same time, the input light is split into two and input into the two optical modulators, the outputs from the two optical modulators are each split into two, and the two sets of branched outputs are each split into two. An optical frequency controller is provided in which a waveguide network is formed to synthesize signals with a phase difference of ±90° corresponding to a quarter wavelength.

以下、本発明の実施例を用いて詳述する。The present invention will be explained in detail below using examples.

発明の実施例 第1図は本発明の実施例の光変調器を示す。第2図は第
1図の線分■−■で切った断面図である。
Embodiment of the Invention FIG. 1 shows an optical modulator according to an embodiment of the invention. FIG. 2 is a sectional view taken along line 1--2 in FIG.

寸法5X15m++程度、厚さ0.5wII++程度で
結晶C軸を厚さ方向とするニオブ酸リチウム(LtNb
o5)結晶板1の主要平面上にチタンを厚さ数100X
程度蒸着した後i4ターニングし、950℃で数時間熱
処理してチタンを熱拡散させ、導波路2,3゜4.5を
形成する。次いで、2つの分岐された導波路3,4の直
上にバッファ一層としてアルミナを被着した後、アルミ
ニウム電極6,7を被着する。バッファ一層の形成は任
意である。
Lithium niobate (LtNb) with dimensions of approximately 5x15m++ and thickness of approximately 0.5wII++, with the crystal C axis in the thickness direction.
o5) Spread titanium on the main plane of crystal plate 1 to a thickness of several hundred
After a certain degree of vapor deposition, the titanium is turned by i4 and heat treated at 950° C. for several hours to thermally diffuse the titanium, thereby forming waveguides 2 and 3°4.5. Next, alumina is deposited as a buffer layer directly above the two branched waveguides 3 and 4, and then aluminum electrodes 6 and 7 are deposited. Formation of a buffer layer is optional.

第1図において、入力導波路2は点Bで2つの導波路3
,4に分岐し、それから点Eで合一化して出力導波路5
になる。1つの分岐導波路4はもう1つの分岐導波路3
よシもHe−Neレーザの放出光の結晶中での波長27
68Xの半分に当る1384Xだけ長い路長を有してい
る。導波路2 、3 、4゜5はすべて路幅5〜10I
NL程度である。また、2つの分岐導波路3,4は電極
6,7を形成する部分CD、FGにおいて間隔100μ
m程度の平行な直線をなしている。電極6,7はこの平
行な直線部分の直上に存在し、幅5〜10尾程度、長さ
5−程度である。上記の路長差でこのような電極を形成
した場合BC(BF)の長さとして2燗程度が必要であ
る。尚、入力部A1出力部Hには光ファイバー等を接続
する。
In FIG. 1, the input waveguide 2 is connected to the two waveguides 3 at point B.
, 4, and then merge at point E to form an output waveguide 5.
become. One branch waveguide 4 and another branch waveguide 3
The wavelength of the light emitted by the He-Ne laser in the crystal is 27.
It has a long path length of 1384X, which is half of 68X. Waveguides 2, 3, 4゜5 all have a path width of 5 to 10I.
It is about NL. Moreover, the two branch waveguides 3 and 4 are spaced apart by 100 μm in the portions CD and FG forming the electrodes 6 and 7.
They form parallel straight lines of about m. The electrodes 6 and 7 are located directly above this parallel straight line portion, and have a width of about 5 to 10 tails and a length of about 5 mm. When such an electrode is formed with the above path length difference, the length of BC (BF) is approximately 2 mm. Note that an optical fiber or the like is connected to the input section A1 and the output section H.

この光変調器にHa−Noレーデが放出する波長632
8Xの光を入力すると、電極6.7に電圧を印加しない
場合、2つの分岐導波路3,4の路長差によって180
0の位相差が生じるので、出力はOとなる。電極6,7
に電圧Vを印加すると、導波路3と導波路4に大きさは
等しいが方向が逆の電界が加わるので電気光学効果によ
って大きさが等しくて符号が逆の屈折率変化を生じ、光
波にkV(kは比例定数)の位相差ができる。こうして
電界によって位相差kvを持たされた光波を点Eで合成
すると、上記の180°の位相差と合わさって!111
1 kVに比例する出力(振幅)を与え、kVがあまシ
大きくない場合にはVに比例する振幅変調がかけられる
ことになる。
The wavelength 632 emitted by the Ha-No radar to this optical modulator
When 8X light is input, if no voltage is applied to the electrode 6.7, 180
Since a phase difference of 0 occurs, the output becomes 0. Electrodes 6, 7
When a voltage V is applied to the waveguides 3 and 4, an electric field of equal magnitude but opposite direction is applied to the waveguides 3 and 4, causing a change in the refractive index of equal magnitude but opposite sign due to the electro-optic effect. A phase difference of (k is a proportionality constant) is created. When the light waves that have a phase difference kv due to the electric field are combined at point E, they are combined with the above 180° phase difference! 111
An output (amplitude) proportional to 1 kV is given, and if kV is not very large, amplitude modulation proportional to V is applied.

第3図は本発明の実施例である光周波数制御器を示す。FIG. 3 shows an optical frequency controller that is an embodiment of the present invention.

この光周波数制御器も、上記光変調器の製作と同様の手
法で、ニオブ酸リチウム結晶板10にチタンを熱拡散し
て導波路11を形成した後、アルミニウム電極12.1
3,14.15を形成したものである。図中、入力導波
路IJは2つに分岐して導波路J B’およびJ13″
となる。導波路JB’は2つに分岐して導波路B′σσ
ビおよび!3’F’σビとなった後導波路E’!(’に
合一化している。同様にして、導波路JB“は2つに分
岐して導波路B〃σ’TfF!’およびB“rσ′ビと
なった後導波路pj/ f lc合一化しテイル。区間
C’ D’、、 F’ G’ 、 C”D”IF″ぴの
直上に電極12.13,14.15が形成されている。
This optical frequency controller is also manufactured by thermally diffusing titanium onto a lithium niobate crystal plate 10 to form a waveguide 11, using the same method as in the manufacturing of the optical modulator described above.
3, 14, and 15 were formed. In the figure, the input waveguide IJ branches into two waveguides JB' and J13''.
becomes. The waveguide JB' branches into two waveguides B'σσ
Bi and! After becoming 3'F'σ Bi, the waveguide E'! Similarly, the waveguide JB" is branched into two waveguides B〃σ'TfF!' and B"rσ'B, and then the waveguides pj/f lc are combined. Electrodes 12.13 and 14.15 are formed directly above the unified tail sections C', D', F'G', and C"D"IF".

導波路JB’から導波路tH′’tでと導波路JR”か
ら導波路E!′1f′まではそれぞれ前述した第1図の
光変調器と実質的に同一である。
The waveguide JB' to the waveguide tH''t and the waveguide JR'' to the waveguide E!'1f' are substantially the same as the optical modulator shown in FIG. 1 described above.

導波路ビ「およびビIr′をそれぞれ2つに分岐し、そ
の1本づつ、即ち、一方はH’にとl(”K、他方はH
’MとfMをそれぞれ合一化して出力導波路KLおよび
MNとしている。ここで導波路H’には導波路EffK
よシもHa−Neレーザーの波長の四分の−だけ路長が
短かい。同様に、導波路fMは導波路πMよシも波長の
四分の−だけ路長が短かい。
The waveguides B' and B'Ir' are each branched into two, one each for H' and l('K, and the other for H').
'M and fM are combined into output waveguides KL and MN, respectively. Here, the waveguide H' has a waveguide EffK.
The path length is also shorter by a quarter of the wavelength of the Ha-Ne laser. Similarly, the waveguide fM has a shorter path length than the waveguide πM by a quarter of the wavelength.

この光周波数制御器の入力側IJに単一周波数ωの光を
入力し、電極12.13にVl==V(11(nΔωt
1電極14.15にV2 =V6ccsΔωt〔式中、
voは2〜3vの一定電圧、Δωは変調周波数、tは時
間を表わす。〕の電圧を同時に印加すると、出力側KL
およびMNに同波数ω十Δωとω−Δωの光が独立して
得られる。この光周波数fii制御器の基本原理の詳細
については、本発明者らが先に提案した特許出願(特願
昭58−76574 )の明細書および図面を参照され
たいが、大略は、単一周波数ωの光を2つに分離し、そ
れらに90’の位相差をつけて変調周波数Δωで振幅変
調し、得られる2つの光を位相差±90’で合成するこ
とによって周波数ω+Δωとω−Δωの光を得るもので
ある。本発明でも採用しているこの提案によれば安定し
た周波数差を持つ光が得られる。本発明では、更に、前
述した光変調器の構造を誘電体結晶中に組み入れること
によって、よ多安定な周波数差を与えかつ小型で製造容
易外光周波数制御器を得る。
Light of a single frequency ω is input to the input side IJ of this optical frequency controller, and Vl==V(11(nΔωt
1 electrode 14.15 V2 = V6ccsΔωt [in the formula,
vo represents a constant voltage of 2 to 3V, Δω represents a modulation frequency, and t represents time. ) is applied at the same time, the output side KL
and MN with the same wave numbers ω+Δω and ω−Δω are independently obtained. For details of the basic principle of this optical frequency fii controller, please refer to the specification and drawings of the patent application (Japanese Patent Application No. 58-76574) proposed by the present inventors. By separating the light of ω into two parts, giving them a phase difference of 90' and amplitude modulating them at a modulation frequency Δω, and combining the two obtained lights with a phase difference of ±90', the frequencies ω + Δω and ω − Δω are obtained. It is something that gives you the light of. According to this proposal, which is also adopted in the present invention, light having a stable frequency difference can be obtained. In the present invention, the above-described optical modulator structure is further incorporated into a dielectric crystal to obtain an external optical frequency controller that provides a more stable frequency difference and is small and easy to manufacture.

尚、以上の実施例では光変調器の2つの分岐導波路の屈
折率を大きさが等しくて符号が逆になるように変化させ
るために、導波路直上に電極を形成して電圧を印加した
(電気光学効果)が、導波路直上に極性が逆の電磁石を
配置して磁気光生動° 果を利用することなども可能で
ある。誘電体結晶の例としてはLiNbO3のほか、L
iTaOxなどがある。導波路の形成法、電極材料の種
類なども上記実施例に限定されない。更に、光変調器あ
るいは光周波数制御器において光に位相差を与えるため
に路長差を設ける場合、典型的には半波長または四分の
一波長の路長差に設定するが、整数波長プラスマイナス
半波長または四分の一波長の路長差を利用してもよい。
In the above example, in order to change the refractive index of the two branch waveguides of the optical modulator so that the sizes are equal and the signs are opposite, an electrode was formed directly above the waveguide and a voltage was applied. It is also possible to utilize the magneto-optical effect (electro-optic effect) by arranging an electromagnet with opposite polarity directly above the waveguide. Examples of dielectric crystals include LiNbO3 and L
Examples include iTaOx. The method of forming the waveguide, the type of electrode material, etc. are not limited to the above embodiments. Furthermore, when providing a path length difference in order to give a phase difference to light in an optical modulator or optical frequency controller, the path length difference is typically set to a half wavelength or a quarter wavelength, but an integer wavelength plus A path length difference of minus half wavelength or quarter wavelength may be used.

発明の効果 以上の設問から明らかなように、本発明によシ、安定し
た振幅変調および周波数制御を達成しかつ制御および製
造容易な小型の光変調器および光周波数制御器が提供も
れる。
Effects of the Invention As is clear from the above questions, the present invention provides a compact optical modulator and optical frequency controller that achieve stable amplitude modulation and frequency control and are easy to control and manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光変調器の平面図、第2図は第1図の線分■−
■で切って見た断面図、第3図は光周波数制御器の平面
図である。 1.10・・・誘電体、2,3,4.5.1.1・・・
導波路、6,7,12,13,14.15・・・電極。
Figure 1 is a plan view of the optical modulator, and Figure 2 is the line segment ■- in Figure 1.
3 is a cross-sectional view taken along section (3) and a plan view of the optical frequency controller. 1.10...dielectric, 2,3,4.5.1.1...
Waveguide, 6, 7, 12, 13, 14. 15... electrode.

Claims (1)

【特許請求の範囲】 (− 1、基板内または基板士又力導波路を2本に分岐し、該
分岐導波路を再び合一化して出力導波路とする導波路網
を形成し、該2本の分岐導波路に対して電気光学効果、
磁気光学効果等を利用して大きさが等しくて符号が逆の
屈折率変化を与え得るように構成し、かつ前記2本の分
岐導波路に路長差を設けて前記屈折率変化がない状態で
入力光の位相をその半波長相当分だけ相違させるように
したことを特徴とする光変調器。 2、基板内または基板上において入力用導波路を第1お
よび第2の導波路に分岐し、該第1の導波路を第3およ
び第4の導波路に分岐し、該第3および第4の導波路を
合一化して第5の導波路とし、該第2の導波路を第6お
よび第7の導波路に分岐し、該第6および第7の導波路
を合一化して第8の導波路とし、該第5の導波路を第9
および第10の導波路に分岐し、該第8の導波路を第1
1および第12の導波路に分岐し、該第9および第11
の導波路を合一化して第1の出力用導波路とし、該第1
0および第12の導波路を合一化して第2の出力用導波
路とする導波路網を形成し、前記第3および第4の導波
路に入力光の位相をその半波長相当分だけ相違させるよ
うな路長差を設け、/ かつ該第3および第4の導波路に対して大きさが等しく
て符号が逆の屈折率変化を与え得るように構成し、前記
第6および第7の導波路に入力光の位相?その半波長相
当分だけ相違させるような路長差を設け、かつ該第6お
よび第7の導波路に対して大きさが等しくて符号が逆の
屈折率変化を与え得るように構成し、前記第9の導波路
に前記第11の導波路に対して入力光の位相をその四分
の一波長相当分だけ進めるような路長差を与え、前記第
10の導波路に前記第12の導波路に対して入力光の位
相をその四分の一波長相当分だけ遅らせるような路長差
を与えたことを特徴とする光周波数制御器。
[Scope of Claims] (-1. A waveguide network is formed by branching a power waveguide in a substrate or on a substrate into two, and reuniting the branched waveguides to form an output waveguide; Electro-optic effect for the book branch waveguide,
A state in which the refractive index change is configured to be equal in magnitude and opposite in sign by utilizing a magneto-optic effect, and there is no change in the refractive index by providing a path length difference between the two branch waveguides. An optical modulator characterized in that the phase of input light is different by an amount equivalent to a half wavelength. 2. Branching the input waveguide into a first and second waveguide in or on the substrate, branching the first waveguide into a third and fourth waveguide, and branching the input waveguide into a third and fourth waveguide. waveguides are combined to form a fifth waveguide, the second waveguide is branched into a sixth and seventh waveguide, and the sixth and seventh waveguides are combined to form an eighth waveguide. waveguide, and the fifth waveguide is the ninth waveguide.
and branches into a tenth waveguide, and connects the eighth waveguide to the first waveguide.
The ninth and eleventh waveguides branch into the first and twelfth waveguides.
waveguides are combined to form a first output waveguide, and the first output waveguide is
A waveguide network is formed by combining the 0 and 12 waveguides to form a second output waveguide, and the phase of the input light to the third and fourth waveguides is different by an amount equivalent to a half wavelength. a path length difference such that the third and fourth waveguides are equal in size and opposite in sign; What is the phase of the input light to the waveguide? A path length difference is provided such that the path length differs by an amount equivalent to a half wavelength, and the refractive index change is configured to be equal in size and opposite in sign to the sixth and seventh waveguides, and A path length difference is given to the ninth waveguide so as to advance the phase of the input light by an amount equivalent to a quarter wavelength with respect to the eleventh waveguide, and An optical frequency controller characterized by providing a wave path with a path length difference that delays the phase of input light by an amount equivalent to a quarter wavelength.
JP13572683A 1983-07-27 1983-07-27 Optical modulator and optical frequency controller Pending JPS6028621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13572683A JPS6028621A (en) 1983-07-27 1983-07-27 Optical modulator and optical frequency controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13572683A JPS6028621A (en) 1983-07-27 1983-07-27 Optical modulator and optical frequency controller

Publications (1)

Publication Number Publication Date
JPS6028621A true JPS6028621A (en) 1985-02-13

Family

ID=15158443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13572683A Pending JPS6028621A (en) 1983-07-27 1983-07-27 Optical modulator and optical frequency controller

Country Status (1)

Country Link
JP (1) JPS6028621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360432A (en) * 1986-08-30 1988-03-16 Fujitsu Ltd Waveguide light phase modulator
JPS63261220A (en) * 1987-04-20 1988-10-27 Fujitsu Ltd Light modulating element
JPH03184015A (en) * 1989-12-14 1991-08-12 Fujitsu Ltd Optical modulator
JP2005077987A (en) * 2003-09-03 2005-03-24 Sumitomo Osaka Cement Co Ltd Optical modulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360432A (en) * 1986-08-30 1988-03-16 Fujitsu Ltd Waveguide light phase modulator
JPS63261220A (en) * 1987-04-20 1988-10-27 Fujitsu Ltd Light modulating element
JPH03184015A (en) * 1989-12-14 1991-08-12 Fujitsu Ltd Optical modulator
JP2005077987A (en) * 2003-09-03 2005-03-24 Sumitomo Osaka Cement Co Ltd Optical modulator

Similar Documents

Publication Publication Date Title
US5091981A (en) Traveling wave optical modulator
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
US11733586B2 (en) Integrated electro-optic frequency comb generator
US5303315A (en) Near Z digital switch
US4776656A (en) TE-TM mode converter
US6560014B1 (en) Method and device for controlling the polarization of a beam of light
US4359268A (en) Light quantity control apparatus
JPS6028621A (en) Optical modulator and optical frequency controller
JPH0375847B2 (en)
JPS6149649B2 (en)
US3957340A (en) Electrooptical amplitude modulator
JPH0728006A (en) Optical bias adjustment method and waveguide type optical modulation device, as well as method for imparting phase difference to guided light
JPS59107324A (en) Optical modulator
JPH05249419A (en) Optical waveguide type optical device
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
JPH0720413A (en) Composite optical circuit
JPS6236631A (en) Waveguide type optical modulator
JPH01197724A (en) Optical waveguide switch
CN115469464A (en) Polarization control device and polarization control method
JP2606552B2 (en) Light control device
JPS6374029A (en) Polarization control device
JPH02101425A (en) Optical modulator
JPH01109322A (en) Optical phase modulator
JPS6211329B2 (en)
JPS62269113A (en) Polarization control device