JPH0764031A - Optical modulator - Google Patents
Optical modulatorInfo
- Publication number
- JPH0764031A JPH0764031A JP21444193A JP21444193A JPH0764031A JP H0764031 A JPH0764031 A JP H0764031A JP 21444193 A JP21444193 A JP 21444193A JP 21444193 A JP21444193 A JP 21444193A JP H0764031 A JPH0764031 A JP H0764031A
- Authority
- JP
- Japan
- Prior art keywords
- modulation
- optical
- optical waveguide
- bias power
- central conductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
- G02F1/0356—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高性能な動作が可能な
電気光学効果を利用した光変調器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator utilizing electro-optic effect capable of high performance operation.
【0002】[0002]
【従来の技術】光通信・光情報処理システムにおいて
は、電気光学効果を有する強誘電体あるいは半導体、有
機材料等を用いた外部光強度変調器が多く利用されてい
る。特に、長中継スパン・大容量光ファイバ通信システ
ムにおいては、送信器から出力される変調光の波長チャ
ーピングが小さい事が望ましいので、外部光変調器が必
須のデバイスになる。2. Description of the Related Art In an optical communication / optical information processing system, an external light intensity modulator using a ferroelectric material having an electro-optical effect, a semiconductor, an organic material or the like is widely used. In particular, in a long repeater span / large capacity optical fiber communication system, it is desirable that the wavelength chirping of the modulated light output from the transmitter is small, so that the external optical modulator is an essential device.
【0003】LiNbO3 結晶を用いた従来の光変調器
と制御回路構成例を図3に示す。図3において、例えば
電気光学効果を有するzカット−LiNbO3 基板301
の表面付近に、例えばTiの熱拡散によりマッハーツェ
ンダ干渉計形光導波路302 が形成され、SiO2 バッフ
ァ層を介して変調電極の中心導体303 と接地導体304と
が形成されている。光導波路302 の入射端面より一定パ
ワーの入力光Piを入射すると、信号源305 からの信号
電圧に応じて強度(振幅)変調された出力光Poが光導
波路の302 の出射端面より出射される。この場合、変調
電極の中心導体303 と接地導体304 の構造的非対称性に
より、出力光Poは、その強度変調に伴って、位相変調
が僅かに生じ波長チャーピングが起こる(α値≠0の出
力光になる)。光ファイバ通信システムでは、一般に光
源のα値が小さい事が望ましい。しかし、光出力Poが
大パワーになると、システムの伝送特性はファイバの波
長分散特性や非線形特性に大きく影響を受ける。従っ
て、受信感度を改善しシステムの中継スパンをより長く
するために、α値を適当な大きさに設定する必要が生ず
る。図3の従来の光変調器では、DCバイアス電源306
の電圧Vを調整する事により、αの大きさを変える事が
できるが、それに伴って変調動作点も変わることにな
り、変調波形が歪むあるいは変調深度が浅くなる等の欠
点が生じる。FIG. 3 shows a conventional optical modulator using a LiNbO 3 crystal and an example of the control circuit configuration. In FIG. 3, for example, a z-cut-LiNbO 3 substrate 301 having an electro-optical effect is provided.
A Mach-Zehnder interferometer type optical waveguide 302 is formed in the vicinity of the surface of the element by thermal diffusion of Ti, and a center conductor 303 and a ground conductor 304 of the modulation electrode are formed via a SiO 2 buffer layer. When input light Pi having a constant power is incident from the incident end face of the optical waveguide 302, output light Po whose intensity (amplitude) is modulated according to the signal voltage from the signal source 305 is emitted from the emitting end face of the optical waveguide 302. In this case, due to the structural asymmetry of the central conductor 303 and the ground conductor 304 of the modulation electrode, the output light Po slightly undergoes phase modulation due to its intensity modulation and wavelength chirping occurs (output with α value ≠ 0). Become light). In an optical fiber communication system, it is generally desirable that the light source has a small α value. However, when the optical output Po has a large power, the transmission characteristic of the system is greatly affected by the chromatic dispersion characteristic and the nonlinear characteristic of the fiber. Therefore, in order to improve the receiving sensitivity and lengthen the relay span of the system, it becomes necessary to set the α value to an appropriate value. In the conventional optical modulator shown in FIG. 3, the DC bias power supply 306 is used.
The magnitude of α can be changed by adjusting the voltage V of 1. However, the modulation operating point is also changed accordingly, which causes a defect that the modulation waveform is distorted or the modulation depth becomes shallow.
【0004】図4は、波長チャーピングを抑制した従来
のLiNbO3 光変調器とその制御回路の基本構成を示
す。図4において、401 はxカット−LiNbO3 基
板、403 、404 はマッハーツェンダ干渉計を構成する光
導波路402 の分岐された光導波路部分402a,402b の屈折
率を変調するための変調電極の中心導体、405 は接地導
体、Piは入射光、Poは出射光である。406,408 及び
407,409 は、中心導体403,404 に信号を印加するための
第1、第2のマイクロ波信号源及びDCバイアス電源で
ある。FIG. 4 shows a basic configuration of a conventional LiNbO 3 optical modulator that suppresses wavelength chirping and its control circuit. In FIG. 4, reference numeral 401 is an x-cut-LiNbO 3 substrate, and 403 and 404 are the centers of the modulation electrodes for modulating the refractive index of the branched optical waveguide portions 402a and 402b of the optical waveguide 402 that constitutes the Mach-Zehnder interferometer. A conductor, 405 is a ground conductor, Pi is incident light, and Po is emitted light. 406,408 and
Reference numerals 407 and 409 denote first and second microwave signal sources and a DC bias power source for applying signals to the central conductors 403 and 404, respectively.
【0005】図5の(a),(b) は、図4の従来例の動作原
理を説明するための図であり、図5の(a) は図4の中心
導体403,404 に印加されるそれぞれの電圧波形、図5の
(b)は光導波路402 の分岐された光導波路部分402a,402b
における導波光に対する伝搬定数β、実効屈折率n、
電界強度E、変調電極長Lを表し、Eo は出力光Poの
電界強度である。図4において、入射光Piは、マッハ
ーツェンダ干渉計入射側の分岐回路により、強度Eioの
光が光導波路部分402a,402b にそれぞれ導波され、変調
電極の電圧に応じてそれぞれ位相変調を受けた後、再び
合波回路により合波され出力される。この時、出力光電
界強度Eoは次式で与えられる。5A and 5B are diagrams for explaining the operation principle of the conventional example of FIG. 4, and FIG. 5A is applied to the central conductors 403 and 404 of FIG. 4, respectively. Voltage waveform of Fig. 5
(b) is a branched optical waveguide portion 402a, 402b of the optical waveguide 402.
, The propagation constant β for the guided light, the effective refractive index n,
The electric field strength E and the modulation electrode length L are shown, and Eo is the electric field strength of the output light Po. In FIG. 4, the incident light Pi is guided by the Mach-Zehnder interferometer incident side branch circuit to the light of intensity Eio, which is respectively guided to the optical waveguide portions 402a and 402b, and undergoes phase modulation according to the voltage of the modulation electrode. After that, it is multiplexed again by the multiplexing circuit and output. At this time, the output optical field intensity Eo is given by the following equation.
【0006】 Eo =Ei0/2・exp(−jβ1 L)+Ei0/2・exp(−jβ2 L ) =Ei0・cos(ΔβL)・exp(jβL)≡Ei ・exp(j φ) (1) ここで、 Δβ=(β1 −β2 )/2 β=(β1 +β2 )/2 Ei =Ei0・cos(ΔβL) φ=βL である。すなわち、図4の光変調器では、マイクロ波信
号源406,408 からの電圧v1 、v2 によってΔβを変化
させる事によって、光強度を変調している。この時、波
長チャーピングのα値は、 α=Ei ・(dφ/dt )/(dEi /dt) (2) =−cot(ΔβL)・(1+m)/(1−m)≡A・B (3) m=(dn1 /dt)/(dn2 /dt)≡Δn1 /Δ
n2 A=−cot(ΔβL) B=(1+m)/(1−m) で与えられる。ここでtは時間を表す。Δn1 、Δn2
はマイクロ波信号源408,410 の電圧v1 ,v2 によって
生ずる、光導波路部分402a,402b それぞれの屈折率変化
量であり、それぞれv1 ,v2 の大きさに比例して変化
する。図5の(a)に示すようにv1 とv2 の位相が同相
(v1 ・v2 >0)の場合m<0、逆相(v1 ・v2 <
0)の場合m>0になる。従って、AはDCバイアスv
1 ,v2 の大きさによって、Bはv1 、v2 の大きさと
位相関係によって制御できるので、αの大きさを任意に
設定できる。動作点は、通常、光出力オン、オフの中間
点に設定されるので、この場合、AはA=±1になり、
−1≦α≦1の範囲で可変できる。以上の関係式は微小
なマイクロ波信号で変調した場合のαの特性を表してい
る。実際の動作では大信号(変調指数〜1)で変調をか
けるので、上記の式は実動作時の近似値を表す。[0006] Eo = Ei0 / 2 · exp ( -jβ 1 L) + Ei0 / 2 · exp (-jβ 2 L) = Ei0 · cos (ΔβL) · exp (jβL) ≡Ei · exp (j φ) (1) Here, Δβ = (β 1 −β 2 ) / 2 β = (β 1 + β 2 ) / 2 Ei = Ei 0 · cos (ΔβL) φ = βL. That is, in the optical modulator of FIG. 4, the optical intensity is modulated by changing Δβ by the voltages v 1 and v 2 from the microwave signal sources 406 and 408. At this time, the α value of the wavelength chirping is α = Ei · (dφ / dt) / (dEi / dt) (2) = −cot (ΔβL) · (1 + m) / (1-m) ≡A · B ( 3) m = (dn 1 / dt) / (dn 2 / dt) ≡Δn 1 / Δ
n 2 A = −cot (ΔβL) B = (1 + m) / (1-m) Here, t represents time. Δn 1 , Δn 2
Is the refractive index change amount of each of the optical waveguide portions 402a and 402b caused by the voltages v 1 and v 2 of the microwave signal sources 408 and 410, and changes in proportion to the magnitudes of v 1 and v 2 , respectively. As shown in (a) of FIG. 5, when the phases of v1 and v2 are in-phase (v 1 · v 2 > 0), m <0, and opposite phase (v 1 · v 2 <
In the case of 0), m> 0. Therefore, A is the DC bias v
1, v depending on the size of 2, B is so v 1, v can be controlled by the magnitude and phase relationships of 2, can be arbitrarily set the size of the alpha. Since the operating point is normally set to the midpoint between ON and OFF of the optical output, in this case, A becomes A = ± 1,
It can be varied within the range of −1 ≦ α ≦ 1. The above relational expression represents the characteristic of α when modulated with a minute microwave signal. In the actual operation, modulation is performed with a large signal (modulation index ˜1), so the above equation represents an approximate value in the actual operation.
【0007】[0007]
【発明が解決しようとする課題】以上の従来例では、2
つの変調電極をマッハーツェンダ干渉計光導波路に対し
て並列に構成しているが、それぞれの電気的クロストー
クを低減させるために、この2つの変調電極を充分に離
す必要がある。このために、マッハーツェンダ干渉計の
分岐回路の分岐角を大きくとるとこの分岐部の放射損失
が大きくなる欠点が生じる。一方、分岐角を小さく保っ
たままにすると分岐部の長さが大きくなる欠点が生じ、
伝搬損失も大きくなる欠点があった。In the above conventional example, 2
Although the two modulation electrodes are arranged in parallel with the Mach-Zehnder interferometer optical waveguide, it is necessary to sufficiently separate the two modulation electrodes in order to reduce the electric crosstalk. For this reason, if the branch angle of the branch circuit of the Mach-Zehnder interferometer is made large, there is a drawback that the radiation loss of this branch portion becomes large. On the other hand, if the branch angle is kept small, the length of the branch part will increase,
There is a drawback that the propagation loss becomes large.
【0008】本発明の目的は、このような光通信システ
ムにおいて、光強度の変調波形が歪む事なく波長チャー
ピングを制御する事によって高性能な伝送特性を実現す
る事が可能であり、さらに電気的クロストークを抑制し
た高性能な光変調器を提供することにある。An object of the present invention is to realize high performance transmission characteristics by controlling wavelength chirping without distortion of the modulation waveform of light intensity in such an optical communication system. It is to provide a high-performance optical modulator that suppresses dynamic crosstalk.
【0009】[0009]
【課題を解決するための手段】上記問題点を解決するた
めに、本発明では、少なくとも2つの変調電極と光導波
路とで構成され、電気光学効果を利用した光変調器にお
いて、該2つの変調電極を該光導波路の導波方向に縦列
に構成した。In order to solve the above problems, in the present invention, in an optical modulator using at least two modulation electrodes and an optical waveguide, and utilizing the electro-optic effect, the two modulations are provided. The electrodes were arranged in series in the waveguide direction of the optical waveguide.
【0010】[0010]
【作用】本発明によれば、光変調器において、2つの変
調電極を光の導波方向に対して縦列に構成したので、分
岐角を大きくしないで各変調電極の間隔を広げることが
でき、電気クロストークを充分低減化することができ
る。According to the present invention, in the optical modulator, the two modulation electrodes are arranged in series in the light guiding direction, so that the interval between the modulation electrodes can be widened without increasing the branch angle. It is possible to sufficiently reduce electric crosstalk.
【0011】[0011]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0012】図1は、本発明の第1の実施例を示すもの
であり、2つの変調電極をタンデム構成にしている。図
1において101 はzカット−LiNbO3 基板、103,10
4 はマッハツェンダ干渉計を構成する光導波路102 の分
岐された部分102a,102b の屈折率を変調するための変調
電極の第1及び第2の中心導体、105,106 は各中心導体
に対応する接地導体で、互いに接続されている。Piは
入射光、Poは出射光である。107,109 及び108,110
は、中心導体103,104 に信号を印加するための第1、第
2のマイクロ波信号源及びDCバイアス電源である。こ
の場合、駆動回路を構成する信号源107,109 及びDCバ
イアス電源108,110 の各電圧v1 , v2 ,V1 ,V2 を
調整することにより、従来例と同様に変調出力光Poの
波長チャーピング量を任意に調整可能である。また、マ
ッハーツェンダ干渉計光導波路102の分岐された部分102
a,102b の間隔を例えば図3の従来の寸法と同じにし
て、第1の中心導体103 と第2の中心導体104 との間隔
tを数100μm以上容易に広げる事ができるので電気
的クロストークを充分に低減可能である。しかも、第1
及び第2の変調電極(103,105及び104,106)はマッハーツ
ェンダ干渉計を構成する光導波路部分102a,102b に対し
てプシュプル動作できるために、高効率の変調動作も可
能である。なお、図1において、第2の変調電極の中心
導体104 を光導波路部分102a側に形成して、第1の変調
電極103,105 と同様の配置で構成しても、マイクロ波信
号源109 とDCバイス電源110 の極性を逆にすれば、同
様の特性を実現できる。FIG. 1 shows a first embodiment of the present invention in which two modulation electrodes have a tandem structure. In FIG. 1, 101 is a z-cut-LiNbO 3 substrate, 103, 10
4 is the first and second center conductors of the modulation electrodes for modulating the refractive index of the branched portions 102a and 102b of the optical waveguide 102 that constitutes the Mach-Zehnder interferometer, and 105 and 106 are ground conductors corresponding to the respective center conductors. , Connected to each other. Pi is incident light and Po is outgoing light. 107,109 and 108,110
Are the first and second microwave signal sources and DC bias power source for applying signals to the central conductors 103 and 104. In this case, by adjusting the respective voltages v 1 , v 2 , V 1 , V 2 of the signal sources 107, 109 and the DC bias power sources 108, 110 constituting the drive circuit, the wavelength chirping amount of the modulated output light Po is adjusted as in the conventional example. Can be adjusted arbitrarily. In addition, the branched portion 102 of the Mach-Zehnder interferometer optical waveguide 102
By making the distance between a and 102b the same as the conventional size shown in FIG. 3, for example, the distance t between the first central conductor 103 and the second central conductor 104 can be easily increased by several hundreds of μm or more, so that electrical crosstalk can be achieved. Can be sufficiently reduced. Moreover, the first
Also, since the second modulation electrodes (103, 105 and 104, 106) can perform push-pull operation with respect to the optical waveguide portions 102a, 102b constituting the Mach-Zehnder interferometer, highly efficient modulation operation is also possible. Note that, in FIG. 1, even if the center conductor 104 of the second modulation electrode is formed on the optical waveguide portion 102a side and arranged in the same arrangement as the first modulation electrodes 103 and 105, the microwave signal source 109 and the DC bias Similar characteristics can be achieved by reversing the polarity of the power supply 110.
【0013】以上では、変調電極の長さを分岐された光
導波路部分102a,102b 共に同じにした場合を示したが、
異なった長さにしても良い。また、マッハーツェンダ干
渉計光導波路の分岐・合波回路としてY分岐回路を用い
た場合を説明したが、例えば3dB方向性結合器やX形
分岐回路、あるいはY分岐回路等を組合わせて構成した
光変調器や光スイッチ等も同様の原理によってαを任意
に設定した動作が可能である。In the above, the case where the lengths of the modulation electrodes are the same for both the branched optical waveguide portions 102a and 102b has been shown.
Different lengths may be used. Also, the case where the Y branch circuit is used as the branching / multiplexing circuit of the Mach-Zehnder interferometer optical waveguide has been described, but for example, it is configured by combining a 3 dB directional coupler, an X-shaped branch circuit, or a Y branch circuit. The optical modulator and the optical switch described above can also operate with α arbitrarily set according to the same principle.
【0014】図2は、本発明による第2の実施例であ
り、変調電極として進行波形非対称コプレーナストリッ
プ線路を用いた場合である。第1のマイクロ波信号源20
7 は、マッハーツェンダ干渉計光導波路部分202a,202b
の一方202aに形成された第1の変調電極の中心導体203
に、第2のマイクロ波信号源209 は光導波路202 に形成
された第2の変調電極の中心導体204 に接続される。こ
の場合、式(2) の定義式から分かるように、α値は光出
力の位相変調度と強度偏重度の比で与えらえるので、第
1のマイクロ波信号源207 からの信号により強度変調さ
れた光に対して、第2のマイクロ波信号源209 からの信
号により適当な大きさの位相変調をかけてやる事によ
り、任意のα値を設定可能になる。なお、205,206 は接
地電極、208はDCバイアス電源である。FIG. 2 shows a second embodiment according to the present invention, in which a traveling waveform asymmetrical coplanar strip line is used as the modulation electrode. First microwave signal source 20
7 is a Mach-Zehnder interferometer optical waveguide part 202a, 202b
Center conductor 203 of the first modulation electrode formed on one side 202a
In addition, the second microwave signal source 209 is connected to the central conductor 204 of the second modulation electrode formed in the optical waveguide 202. In this case, as can be seen from the definition equation (2), since the α value can be given by the ratio of the phase modulation degree of the optical output and the intensity deviation degree, the intensity modulation by the signal from the first microwave signal source 207 is performed. An arbitrary α value can be set by subjecting the generated light to phase modulation of an appropriate magnitude with a signal from the second microwave signal source 209. Note that 205 and 206 are ground electrodes, and 208 is a DC bias power supply.
【0015】以上では、光強度変調部にマッハーツェン
ダ干渉計光導波路を用いた場合を示したが、マッハーツ
ェンダ干渉計光導波路の代わりに方向性結合器あるいは
X形分岐回路等の光導波路で構成した光変調器や光スイ
ッチ等も同様に本発明の効果を利用できる。In the above, the case where the Mach-Zehnder interferometer optical waveguide is used for the light intensity modulation section is shown. However, instead of the Mach-Zehnder interferometer optical waveguide, an optical waveguide such as a directional coupler or an X-shaped branch circuit is used. The effect of the present invention can be similarly applied to the optical modulator, the optical switch, and the like configured in.
【0016】以上では、LiNbO3 基板を用いた場合
を示したが、電気光学効果を有する他の誘電体や半導体
等の基板を用いた光デバイスにおいても、本発明の効果
を得る事ができるのは自明である。Although the case where the LiNbO 3 substrate is used has been shown above, the effect of the present invention can be obtained in an optical device using a substrate such as another dielectric or semiconductor having an electro-optical effect. Is self-evident.
【0017】[0017]
【発明の効果】以上説明したように、本発明によれば、
2つの変調電極を光導波路の導波方向に縦列に構成した
ので、2つ駆動回路の動作電圧を調整することによっ
て、電気的クロストークを充分低減化すると共に、波長
チャーピング量を任意の大きさに設定できるので、光通
信システムにおいて、高性能な伝送特性を実現できる。As described above, according to the present invention,
Since the two modulation electrodes are arranged in series in the waveguide direction of the optical waveguide, the electrical crosstalk can be sufficiently reduced and the wavelength chirping amount can be set to an arbitrary value by adjusting the operating voltage of the two drive circuits. Therefore, high performance transmission characteristics can be realized in the optical communication system.
【図1】本発明の一実施例を示した図FIG. 1 is a diagram showing an embodiment of the present invention.
【図2】本発明による他の一実施例を示した図FIG. 2 is a diagram showing another embodiment according to the present invention.
【図3】従来の光変調器及び制御回路の構成図FIG. 3 is a block diagram of a conventional optical modulator and control circuit.
【図4】従来の光変調器及び制御回路の構成図FIG. 4 is a block diagram of a conventional optical modulator and control circuit.
【図5】波長チャーピング制御の原理を説明する図FIG. 5 is a diagram illustrating the principle of wavelength chirping control.
【符号の説明】 101,201 …LiNbO3 基板、102,202 …マッハーツェ
ンダ干渉計光導波路、103,203 …第1の変調電極の中心
導体、104,204 …第2の変調電極の中心導体、105,106,
205,206 …接地導体、Pi…入射光、Po…出射光、10
7,207 …第1のマイクロ波信号源、108,208 …第1のD
Cバイアス電源、109,209 …第2のマイクロ波信号源、
110 …第2のDCバイアス電源。[Explanation of reference numerals] 101,201 ... LiNbO 3 substrate, 102,202 ... Mach-Zehnder interferometer optical waveguide, 103, 203 ... Central conductor of first modulation electrode, 104, 204 ... Central conductor of second modulation electrode, 105, 106,
205,206 ... Ground conductor, Pi ... Incident light, Po ... Emitted light, 10
7,207… First microwave signal source, 108,208… First D
C-bias power supply, 109,209 ... Second microwave signal source,
110 ... Second DC bias power supply.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永沼 充 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Mitsuru Naganuma 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation
Claims (1)
で構成され、電気光学効果を利用した光変調器におい
て、 該2つの変調電極を該光導波路の導波方向に縦列に構成
したことを特徴とする光変調器。1. An optical modulator including at least two modulation electrodes and an optical waveguide, wherein the two modulation electrodes are arranged in series in a waveguide direction of the optical waveguide in an optical modulator utilizing an electro-optical effect. And an optical modulator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21444193A JPH0764031A (en) | 1993-08-30 | 1993-08-30 | Optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21444193A JPH0764031A (en) | 1993-08-30 | 1993-08-30 | Optical modulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0764031A true JPH0764031A (en) | 1995-03-10 |
Family
ID=16655831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21444193A Pending JPH0764031A (en) | 1993-08-30 | 1993-08-30 | Optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0764031A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0980363A (en) * | 1995-09-11 | 1997-03-28 | Fujitsu Ltd | Controller for optical modulator |
US6002510A (en) * | 1997-04-18 | 1999-12-14 | Nec Corporation | Driving apparatus for optical modulator and driving apparatus for modulator integrated light source |
WO2006067941A1 (en) * | 2004-12-22 | 2006-06-29 | Advantest Corporation | Optical switch and optical test device |
JP2006251570A (en) * | 2005-03-11 | 2006-09-21 | Nec Corp | Optical transmitter and phase modulating method |
US7319800B2 (en) | 2004-05-18 | 2008-01-15 | Ngk Insulators, Ltd. | Optical waveguide device |
JP2008242243A (en) * | 2007-03-28 | 2008-10-09 | Sumitomo Osaka Cement Co Ltd | Optical waveguide element, and optical crosstalk suppressing method of optical waveguide |
US7603002B2 (en) | 2005-03-18 | 2009-10-13 | Fujitsu Limited | Optical device |
KR20150059436A (en) * | 2013-11-22 | 2015-06-01 | 한양대학교 산학협력단 | Light based interferometer system |
-
1993
- 1993-08-30 JP JP21444193A patent/JPH0764031A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0980363A (en) * | 1995-09-11 | 1997-03-28 | Fujitsu Ltd | Controller for optical modulator |
US6002510A (en) * | 1997-04-18 | 1999-12-14 | Nec Corporation | Driving apparatus for optical modulator and driving apparatus for modulator integrated light source |
US7319800B2 (en) | 2004-05-18 | 2008-01-15 | Ngk Insulators, Ltd. | Optical waveguide device |
WO2006067941A1 (en) * | 2004-12-22 | 2006-06-29 | Advantest Corporation | Optical switch and optical test device |
JP2006251570A (en) * | 2005-03-11 | 2006-09-21 | Nec Corp | Optical transmitter and phase modulating method |
US7603002B2 (en) | 2005-03-18 | 2009-10-13 | Fujitsu Limited | Optical device |
JP2008242243A (en) * | 2007-03-28 | 2008-10-09 | Sumitomo Osaka Cement Co Ltd | Optical waveguide element, and optical crosstalk suppressing method of optical waveguide |
KR20150059436A (en) * | 2013-11-22 | 2015-06-01 | 한양대학교 산학협력단 | Light based interferometer system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5835212A (en) | Variable chirp optical modulator using single modulation source | |
US8149492B2 (en) | Optical modulator | |
JP2698797B2 (en) | External modulation method and apparatus for optical carrier | |
US6583917B2 (en) | Optical intensity modulation device and method | |
US6501867B2 (en) | Chirp compensated Mach-Zehnder electro-optic modulator | |
EP0609887B1 (en) | Periodic domain reversal electro-optic modulator | |
US20060120655A1 (en) | Optical modulator with pre-determined frequency chirp | |
US5708734A (en) | Polarisation-independent optical device | |
US6580840B1 (en) | High efficiency electro-optic modulator with equalized frequency response | |
US6341031B1 (en) | Optical pulse generation using a high order function waveguide interferometer | |
JP2792482B2 (en) | Semiconductor Mach-Zehnder modulator | |
JPH0764031A (en) | Optical modulator | |
JP2658387B2 (en) | Optical modulator, driving method thereof, and optical modulator driving device | |
EP1217425B1 (en) | Optical intensity modulation device and method | |
JP2823872B2 (en) | Optical transmitter | |
US6370283B1 (en) | Electro-optic modulator for generating solitons | |
Murata et al. | 38 GHz signal optical fiber transmission using guided-wave electrooptic single-sideband modulators with polarization reversals | |
EP2659602B1 (en) | An optical duobinary modulated signal generator | |
GB2361071A (en) | Optical modulator with pre-determined frequency chirp | |
US20050141072A1 (en) | Electroabsorption modulator with two sections | |
Murata et al. | Demonstration of 26GHz signal optical fiber transmission by use of guided-wave electrooptic single-sideband modulators with periodically polarization-reversed schemes | |
JPH06118460A (en) | Optical phase modulation circuit | |
Madabhushi | Lithium Niobate Optical Modulators | |
Shreyas et al. | External modulators and, Electro-optic Mach-Zehnder modulatormodelling and analysis using Matlab | |
JPH04288531A (en) | Optical switch |