JPS59106106A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS59106106A
JPS59106106A JP57215471A JP21547182A JPS59106106A JP S59106106 A JPS59106106 A JP S59106106A JP 57215471 A JP57215471 A JP 57215471A JP 21547182 A JP21547182 A JP 21547182A JP S59106106 A JPS59106106 A JP S59106106A
Authority
JP
Japan
Prior art keywords
permanent magnet
alloy powder
phase
powder
main phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57215471A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Mizoguchi
徹彦 溝口
Masashi Sahashi
政司 佐橋
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57215471A priority Critical patent/JPS59106106A/en
Publication of JPS59106106A publication Critical patent/JPS59106106A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain a rare-earth element-cobalt permanent magnet having good sintering property of the compact, high magnetic flux density and superior maximum energy product by a method wherein a powder mixture of alloy powder having the R2Co17 type phase as a main phase and alloy powder having the RC05 type phase as a main phase is compacted in the magnetic field and then sintered. CONSTITUTION:A powder mixture of alloy powder having the R2Co17 type phase (where R represents one or more rare-earth element) as a main phase and alloy powder having the RC05 type phase as a main phase is compacted in the magnetic field and then sintered. The mixture ratio of said two kinds of alloy powders is preferably such that the alloy powder having the 1-5 type phase as a main phase is not higher than 50% in terms of wt%. If it exceeds 50%, the sintering property shows tendency to be lowered and magnetic characteristics of the permanent magnet are liable to be deteriorated. To improve magnetic characteristics of the permanent magnet, it is desirable to add Fe in the high composition ratio.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は希土類−コバルト系永久磁石の製造方法に関し
、更に詳しくは、磁性合金の焼結性が良好で、その結果
、優れた磁気特性が付与される希土類−コバルト系永久
磁石の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a rare earth-cobalt permanent magnet, and more specifically, a magnetic alloy having good sinterability and, as a result, excellent magnetic properties. The present invention relates to a method of manufacturing a rare earth-cobalt permanent magnet.

〔発明の技術的背景〕[Technical background of the invention]

従来から、各種組成を有するSmzCox7型(以下、
2−17Wと略記する)永久磁石が提案されておジ、そ
の製造方法としてVi、  i種以上の希土類元素とコ
バルトとを少なくとも含む目的とする最終組成の磁性合
金を、例えば高同波誘導加熱手段を用いた溶解法で調製
し、ついで該磁性合金を粉砕して微粉末とした後、該粉
末を′6f1場中で成型し、得られた成型体全焼結して
、しかる後、溶体化処理、時効処理を施すという製造方
法が知られている(特開昭52−109191号公報、
特公昭55−15096号公報等参照)。
Conventionally, SmzCox type 7 (hereinafter referred to as
A permanent magnet (abbreviated as 2-17W) has been proposed, and as a method for manufacturing it, a magnetic alloy with a final composition containing at least Vi, an i or more rare earth element and cobalt is heated, for example, by high-frequency induction heating means. The magnetic alloy was prepared by the melting method used, and then the magnetic alloy was pulverized to a fine powder, the powder was molded in a '6f1 field, the resulting molded body was completely sintered, and then solution treatment, A manufacturing method that involves aging treatment is known (Japanese Unexamined Patent Publication No. 52-109191,
(See Japanese Patent Publication No. 55-15096, etc.).

〔背景技術の問題点〕[Problems with background technology]

さて、この2−17型永久磁石においては、該磁石の磁
気特性を向上させるために、態別として。
Now, in this 2-17 type permanent magnet, in order to improve the magnetic properties of the magnet, as an aspect.

希土類元素及びコバルト以外の元素として、銅。Copper as an element other than rare earth elements and cobalt.

鉄、 チタニウム、ツルコニウム、ハフニウム、ニオブ
、ニッケル、マンガンなどを含有した磁性合金を採用し
ていたが、磁気特性の中でも最大エネルギー私((BH
)max)及び磁束密度(Br )を向上させるために
は、その他の元素中、特に鉄の組成比を高めることが必
要である。
Magnetic alloys containing iron, titanium, turconium, hafnium, niobium, nickel, manganese, etc. were used;
)max) and magnetic flux density (Br), it is necessary to increase the composition ratio of iron among other elements.

しかしながら、上記した従来の製造方法では、磁性合金
中の鉄組成比が大きくなると、磁場成型法で得られた成
型体を焼結する際、焼結性が極めて急くなシ、高Br、
ひいては高(BH)maxを有する永久磁石が得られな
くなるという欠点があった。
However, in the above-mentioned conventional manufacturing method, when the iron composition ratio in the magnetic alloy increases, the sinterability becomes extremely rapid when sintering the molded body obtained by the magnetic field forming method.
As a result, there is a drawback that a permanent magnet having a high (BH) max cannot be obtained.

そこで、成型体の焼結性が良好で、かつ激れた磁気特性
を有する希土類−コバルト系永久磁石全製造することが
できる方法の開発が望まれていた。
Therefore, it has been desired to develop a method capable of producing a rare earth-cobalt permanent magnet having good sinterability and excellent magnetic properties.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、成型体の焼結性が良好で、しかも高い
磁束密度と優れた最大エネルギー積を有する2−17型
希土類−コバルト系永久磁石の製造方法を提供すること
にある。
An object of the present invention is to provide a method for manufacturing a 2-17 type rare earth-cobalt permanent magnet that has a molded body with good sinterability, high magnetic flux density, and excellent maximum energy product.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記問題点を解法すべく、磁性合金の焼
結方法に関して鋭意研究を重ねた結果、FemK比の高
い合金粉末だけから成る成型体を焼結する場合よシも、
2−17型相全主相とする合金粉末と1−5型相(RC
o5型相の略)全主相とする合金粉末とから成る2種の
合金粉末自体望の最終高Fe組成から成る永久磁石の組
成となるように混合して成型体とした後、これを焼結し
た方が、焼結性は良好になシ、結果的に高Br及び高(
BH)maxである永久磁石が得られるという新たな事
実を発見し、該事実を利用することによp本発明を完成
するに至ったものである。
In order to solve the above-mentioned problems, the present inventors have conducted extensive research on sintering methods for magnetic alloys, and have found that, even when sintering a molded body made only of alloy powder with a high FemK ratio,
Alloy powder with 2-17 type phase as the main phase and 1-5 type phase (RC
O5 type phase (abbreviation for O5 type phase) is mixed to form a molded body so that the two types of alloy powder consisting of alloy powder as the entire main phase have the desired final composition of a permanent magnet with high Fe composition, and then this is sintered. The sinterability is better when sintered, resulting in high Br and high (
The present invention was completed by discovering a new fact that a permanent magnet with BH)max can be obtained and utilizing this fact.

即ち、本発明は、1種以上の希土類元素(R)と、コパ
ル) (Co)  とを少なくとも含む合金粉末を磁場
中で成型した後、これを焼結して永久磁石全製造する方
法において、 」二記合金粉末が、R2C017型相を主相とする合金
粉末とRCo5型相を主相とする合金粉末とを混合して
成る混合粉末であること全特徴とする。
That is, the present invention provides a method for completely manufacturing a permanent magnet by molding an alloy powder containing at least one or more rare earth elements (R) and copal (Co) in a magnetic field, and then sintering the powder. All characteristics are that the alloy powder described in item 2 is a mixed powder formed by mixing an alloy powder having an R2C017 type phase as a main phase and an alloy powder having an RCo5 type phase as a main phase.

本発明方法と従来方法との異なる点は、本発明方法にあ
っては、2−17型相全主相とする合金粉末と、■−5
型相を主相とする合金粉末との混合粉末を焼結するもの
であって、この混合粉末全体の組成が、得られる永久磁
石の目標組成と同一であればよいのに対し、従来方法に
あっては、一種の合金粉末自体が得られる永久磁石の目
標組成と同一であるという点において異なるのみである
The difference between the method of the present invention and the conventional method is that the method of the present invention uses an alloy powder having all the 2-17 type phase as the main phase;
This method involves sintering a mixed powder with an alloy powder whose main phase is a mold phase, and the composition of the entire mixed powder only needs to be the same as the target composition of the resulting permanent magnet. The only difference is that the type of alloy powder itself is the same as the target composition of the obtained permanent magnet.

従って、本発明方法はその他の点について従来方法に準
する。
Therefore, the method of the present invention conforms to the conventional method in other respects.

本発明方法においては、まずSm 、 Pr 、 Ce
 。
In the method of the present invention, first Sm, Pr, Ce
.

Sc 、 Y 、 La 、 Nd 、 Pm 、 E
u 、 Gd 、 Dy + no +Er 、 Yb
 、 Lu 、 Tb 、 Tm  1どの希土類元素
の1種又は281以上とコバルトと、更に必要であれば
その他の元素とから成る組成で、かつ2−17型相を主
相とする合金粉末及び1−5型相全主相とする合金粉末
の2種類を用意する。ここでその他の元素とは、Fe 
、 Cu 、 IVln 、 Cr 、 Ni  など
から選ばれる1種又は2 af以上の元素のことである
が、永久磁石の磁気特性を向上させるためには、更にT
i 、Zr、Hf 、Nb、Ta、Wなどの遷移金属を
添加することが望ましい。また、本発明において、2−
17型相又は1−5型相全主相とするということは、そ
の他の相はいかなる相であってもよいが、合金組成中に
各種存在する相の中で2−17型相又は1−5型相の存
在量が最も多いということを意味する。更に、上記した
その他の元素の添加が必要であれば、該元素は2−17
型相を主相とする合金粉末あるいは1−5型相を主相と
する合金粉末のいずれか一方又は両者に含有されていれ
ばよい。
Sc, Y, La, Nd, Pm, E
u, Gd, Dy + no + Er, Yb
, Lu, Tb, Tm 1 or more of rare earth elements such as 1 or 281 or more, cobalt, and other elements if necessary, and an alloy powder having a 2-17 type phase as the main phase, and 1- Two types of alloy powders having type 5 phase as the entire main phase are prepared. Here, the other elements are Fe
, Cu, IVln, Cr, Ni, etc., or more than 2 af elements, but in order to improve the magnetic properties of permanent magnets, T
It is desirable to add transition metals such as i, Zr, Hf, Nb, Ta, and W. Furthermore, in the present invention, 2-
The fact that the 17 type phase or 1-5 type phase is the main phase means that the other phases may be any phase, but the 2-17 type phase or 1-5 type phase is the main phase among the various phases that exist in the alloy composition. This means that type 5 has the highest abundance. Furthermore, if it is necessary to add other elements mentioned above, the elements should be added in 2-17
It may be contained in either or both of the alloy powder having the type phase as the main phase or the alloy powder having the 1-5 type phase as the main phase.

これら2神類の合金粉末の混合比は、混合粉末における
1−5型相を主相とする合金粉末の重■%か50%以下
であることが好才しい。50%を超えると、焼結性の低
下傾向があられれ、ひいては得られる永久磁石の磁気f
l′件が劣化し易くなる。
The mixing ratio of these two types of alloy powder is preferably 50% or less by weight of the alloy powder whose main phase is the 1-5 type phase in the mixed powder. If it exceeds 50%, the sinterability tends to decrease, and as a result, the magnetic f of the obtained permanent magnet decreases.
l' items are more likely to deteriorate.

また、永久磁石の磁気特性を向上させるためには、Fe
を高組成比で添加することが望ましいが1不発ツJVC
あっては上記2種類の合金粉末から成る混合粉末におい
て、Fe含有量が15重量%を超えるときに最も従来よ
、1れた焼結性が得られる。
In addition, in order to improve the magnetic properties of permanent magnets, Fe
It is desirable to add at a high composition ratio, but one misfire JVC
In a mixed powder composed of the above two types of alloy powder, when the Fe content exceeds 15% by weight, sintering properties that are better than conventional ones can be obtained.

本発明方法においては。次に、上記した混合粉末を磁場
中で常法に従い成型した後、得られた成型体を焼結する
。焼結温度及び焼結時間は格別限定されないが、焼結温
度については、2−]、7i相金主相とする合金の融点
と1−5型相を主相とする合金の融点(通常、前−考の
方が高融点である)との中間11M1lで焼結すること
が好ましい。このとき低融点の合金は一部溶融するため
、焼結体の焼結密度が増加し、その結果、優れた焼結性
が得られることとなる。
In the method of the present invention. Next, the above-mentioned mixed powder is molded in a magnetic field according to a conventional method, and then the obtained molded body is sintered. The sintering temperature and sintering time are not particularly limited; It is preferable to sinter with 11M1l intermediate between the former and the latter having a higher melting point. At this time, since the low melting point alloy is partially melted, the sintered density of the sintered body increases, and as a result, excellent sinterability is obtained.

本発明にあっては以上の処理のみであっても、永久磁石
を初ることは可能であるが、所望であれば更に常法に従
い溶体化処理、時効処理を施すことによシ一層優れた磁
気特性を有する永久磁石が得られる。
In the present invention, it is possible to produce permanent magnets even with only the above-mentioned treatments, but if desired, even more excellent results can be obtained by further performing solution treatment and aging treatment according to conventional methods. A permanent magnet with magnetic properties is obtained.

尚、本発明方法は、Fef含有した永久磁石、特にFe
含有量が15N量%を超えた永久磁石の製造方法に有効
であるが、本発明方法はこれに限らず、Feを含有しな
い永久磁石であっても、焼結性が悪いために所望の磁気
特注を有する永久磁石が得られない場合にも適用し得る
ことは自明であるう3゜ 〔発明の実施例〕 実施例1〜実施例6 第1表に示した2−17型相を主相とする合金粉末と、
1−5型相を主相とする合金粉末とを、第2表に示した
混合比に混合した後、これを15koeの5 ’A中で
約2 ton/i の圧力を加えることによシ異方注の
圧粉体とし、得られた圧粉体全焼結して、次に、時効処
理を施すことによシ永久磁石全製造した。
Incidentally, the method of the present invention applies to permanent magnets containing Fe, especially Fe-containing permanent magnets.
Although the method of the present invention is effective for manufacturing permanent magnets with a content exceeding 15N, the method of the present invention is not limited to this. Even with permanent magnets that do not contain Fe, it is difficult to obtain the desired magnetic It is obvious that it can be applied even when a permanent magnet with a custom-made structure cannot be obtained. 3゜ [Embodiments of the invention] Examples 1 to 6 The 2-17 type phase shown in Table 1 is used as the main phase. alloy powder,
1-5 type phase as the main phase at the mixing ratio shown in Table 2, and then mixed by applying a pressure of about 2 ton/i in a 15 koe 5'A. A permanent magnet was produced by making an anisotropically cast powder compact, sintering the obtained powder compact, and then subjecting it to an aging treatment.

尚、2紳の合金粉末を混合した混合粉末の組成(′i4
.Ji%)は以下のとおpである。
In addition, the composition of the mixed powder (′i4
.. Ji%) is p as follows.

実施例1 ・−3m 26.6%、 Cu 10%、F
e18.4%、 Ti 1.6%、 Co残 //  2 ・−S+n 25.5%、 Cu 8.2
 % 、 Fe22.5係、 Ti 1.8%、 Co
残 tl  3 =−Sm 27.0%、 Cu 8.2 
% 、 Fe 17.0% 、 Mn 4.2%、 T
i 0.8%、 NbO,8%、 Co残 tt  4 ・−3m 16.3%、 Ce 8.9%
、(:u6.9%。
Example 1 -3m 26.6%, Cu 10%, F
e18.4%, Ti 1.6%, Co balance//2 ・-S+n 25.5%, Cu 8.2
%, Fe22.5%, Ti 1.8%, Co
Remaining tl 3 =-Sm 27.0%, Cu 8.2
%, Fe 17.0%, Mn 4.2%, T
i 0.8%, NbO, 8%, Co remaining tt 4 ・-3m 16.3%, Ce 8.9%
, (: u6.9%.

Fe 16.6%、 Ni 4.4%I’l’11.3
%。
Fe 16.6%, Ni 4.4%I'l'11.3
%.

Co残 //  5−8m 25.0%+ Pr 3.0%、C
u1.0.0% 、 Fe 16.5% 、 Ti O
,5%、 Nb003係、 Co残 実施例6− Sm 26.5 % 、 Cu 7.75
 % 、  Fe24.8%、 Ti 1.5%、 C
o残また、焼結条件及び時効処理パターンを第2表に併
記したが、表中、時効処理)fターンを示す数字は、以
下の時効処理を表わす1 1 、、、 (850℃X 1hr) +(750℃X
 4hrs) +(650℃X10hrs)2−(85
0℃X 5hrs )+(750℃X10hrs)+(
650℃X20hr s )3−(650℃X1hr)
+(550℃X2hrs)+(450℃X4hrs)比
較例1〜比較f16 実施例1〜6の混合粉末と各々同一組成の単一合金粉末
を用い、該粉末全焼結したこと以外は前記の実施例と同
碌の方法で永久磁石を製造した。
Co remaining // 5-8m 25.0% + Pr 3.0%, C
u1.0.0%, Fe16.5%, TiO
, 5%, Nb003, Co remaining Example 6 - Sm 26.5%, Cu 7.75
%, Fe24.8%, Ti 1.5%, C
In addition, the sintering conditions and aging treatment patterns are listed in Table 2. In the table, the number indicating f-turn (aging treatment) represents the following aging treatment. (850°C x 1 hr) +(750℃X
4hrs) + (650°C x 10hrs) 2-(85
0℃×5hrs)+(750℃×10hrs)+(
650℃×20hrs)3-(650℃×1hr)
+ (550°C x 2hrs) + (450°C x 4hrs) Comparative Examples 1 to Comparative f16 The same examples as above except that a single alloy powder having the same composition as the mixed powder of Examples 1 to 6 was used, and the powder was completely sintered. Permanent magnets were manufactured using the same method.

尚、比較例と実施例における合金番号は各々同一番号ど
うしが対応している。
Note that the same alloy numbers in the comparative example and the example correspond to each other.

焼結条件及び時効処理パターンを第2表に併記した。The sintering conditions and aging treatment patterns are also listed in Table 2.

以上の永久磁石について、焼結性の目安となる焼結密度
及び各種磁気特性を第2表に一括して記した。
Regarding the above permanent magnets, the sintered density and various magnetic properties, which are indicators of sinterability, are summarized in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明の永久磁石の製造方法によれは、希土類−コバル
ト系永久磁石の磁気特性に影響分及ばず焼結工程におい
て、良好な焼結性が得られることとなる。これは特に、
磁石組成中のFe含有知を増加させる際に生じていた焼
結性の低下を防止する上で有効であp、Fe含有量が1
5%ケ超えると、この効果は一層顕著なものとなる。
According to the method for manufacturing a permanent magnet of the present invention, good sinterability can be obtained in the sintering process without affecting the magnetic properties of the rare earth-cobalt permanent magnet. This is especially
It is effective in preventing the deterioration of sinterability that occurs when increasing the Fe content in the magnet composition.
When the amount exceeds 5%, this effect becomes even more pronounced.

従って、焼結性の向上によジ、磁気妓件に優れ廉*ii
iな永久磁石が得られるため、本発明の工朶的価値は極
めて大である。
Therefore, due to improved sinterability, it has excellent magnetic properties and is inexpensive*ii
Since an i permanent magnet can be obtained, the industrial value of the present invention is extremely large.

Claims (1)

【特許請求の範囲】 1種以上の希土類元素(R)と、コパル) (Co)と
を少なくとも含む合金粉末を磁場中で成型した後、これ
を焼結して永久磁石を製造する方法において、 上記合金粉末が、R2C017型相を主相とする合金粉
末とRCo5型相を主相とする合金粉末とを混合して成
る混合粉末であることを特徴とする永久磁石の製造方法
[Claims] A method for manufacturing a permanent magnet by molding an alloy powder containing at least one or more rare earth elements (R) and copal (Co) in a magnetic field and then sintering the powder, A method for producing a permanent magnet, wherein the alloy powder is a mixed powder obtained by mixing an alloy powder having an R2C017 type phase as a main phase and an alloy powder having an RCo5 type phase as a main phase.
JP57215471A 1982-12-10 1982-12-10 Manufacture of permanent magnet Pending JPS59106106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215471A JPS59106106A (en) 1982-12-10 1982-12-10 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215471A JPS59106106A (en) 1982-12-10 1982-12-10 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS59106106A true JPS59106106A (en) 1984-06-19

Family

ID=16672914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215471A Pending JPS59106106A (en) 1982-12-10 1982-12-10 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS59106106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620872A (en) * 1984-10-18 1986-11-04 Mitsubishi Kinzoku Kabushiki Kaisha Composite target material and process for producing the same
JPH02129974A (en) * 1988-11-09 1990-05-18 Fuji Elelctrochem Co Ltd Manufacture of temperature-sensitive element material
EP0654801A2 (en) * 1993-11-11 1995-05-24 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
US5647886A (en) * 1993-11-11 1997-07-15 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
US6139765A (en) * 1993-11-11 2000-10-31 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620872A (en) * 1984-10-18 1986-11-04 Mitsubishi Kinzoku Kabushiki Kaisha Composite target material and process for producing the same
JPH02129974A (en) * 1988-11-09 1990-05-18 Fuji Elelctrochem Co Ltd Manufacture of temperature-sensitive element material
EP0654801A2 (en) * 1993-11-11 1995-05-24 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
EP0654801A3 (en) * 1993-11-11 1995-07-05 Seiko Epson Corp Magnetic powder, permanent magnet produced therefrom and process for producing them.
US5647886A (en) * 1993-11-11 1997-07-15 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
US6139765A (en) * 1993-11-11 2000-10-31 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them

Similar Documents

Publication Publication Date Title
US4081297A (en) RE-Co-Fe-transition metal permanent magnet and method of making it
JPWO2002103719A1 (en) Rare earth permanent magnet material
US4135953A (en) Permanent magnet and method of making it
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPS59132104A (en) Permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
US5993732A (en) Method for manufacturing a rare earth magnetic powder having high magnetic anisotropy
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPS59106106A (en) Manufacture of permanent magnet
JPH01175705A (en) Manufacture of rare earth magnet
JPH0339451A (en) Permanent magnet material
JPH0146575B2 (en)
JPH0146574B2 (en)
CN114255947A (en) Sm-Fe-N magnetic material and method for producing same
JPS609104A (en) Permanent magnet
JPS6031208A (en) Permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPS59163803A (en) Permanent magnet
JPS59218705A (en) Permanent magnet material and manufacture thereof
JPS63241142A (en) Ferromagnetic alloy
JPS601808A (en) Permanent magnet
JPS6052555A (en) Permanent magnet material and its production
JPH02259038A (en) Rare earth magnetic alloy
JPS59163804A (en) Permanent magnet
JPS63169357A (en) Magnetic alloy