JPS5910609A - Control of injection work - Google Patents

Control of injection work

Info

Publication number
JPS5910609A
JPS5910609A JP11900782A JP11900782A JPS5910609A JP S5910609 A JPS5910609 A JP S5910609A JP 11900782 A JP11900782 A JP 11900782A JP 11900782 A JP11900782 A JP 11900782A JP S5910609 A JPS5910609 A JP S5910609A
Authority
JP
Japan
Prior art keywords
injection
concentration
liquid
grout
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11900782A
Other languages
Japanese (ja)
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP11900782A priority Critical patent/JPS5910609A/en
Publication of JPS5910609A publication Critical patent/JPS5910609A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To raise the controllability of the quality of grout injection work as well as the control work of the grout injection into the ground by a method in which control is made on the injection work by displaying concurrently the pH value and/or density of grout and the injection pressure and the flow rate of the grout. CONSTITUTION:In solidifying the ground by injecting a grout (e.g., water glassbased grout) into the ground, the injection pressure P and flow rate Q of the grout are displayed correspondingly to the injection times T of the grout. A coefficient representing the chemical characteristic of the grout (e.g., pH value and component concentration of grout, such as density D) is displayed. Control is made by displaying concurrently pH values and/or density D and injection pressure P and flow rate Q. Control on the injection work into the ground and also on the quality of the injection work can therefore be raised.

Description

【発明の詳細な説明】 本発明は地盤中に注入液(グラウト)を注入して前記地
盤を固結するに際して前記注入を管理する注入管理方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an injection management method for injecting a grout into the ground and managing the injection when solidifying the ground.

近年、地盤注入において公害防止の点から安全な地盤圧
入工法の開発が要請されている○従来の注入工法のうち
ゲル化時間の短い注入液を注入する1、5シヨツト法と
2.0ノヨツト法では、共に容器による計量或いは重量
による重量によって予め所定濃度に調整された主剤水溶
液(以下A液という)と硬化剤水溶液(以下B液という
)とを、二連のグラウトポンプで各別に一定の比率で圧
送し、1.5シヨツト法にあってはY字管で混合して直
ちに注入管を経て地盤内に注入し、2.0シヨツト法に
あっては二重管に構成された注入管を経て地盤内に注入
して混合するように構成されてお9、注入液の管理は、
施工管理者により適宜定められた時間間隔で、容器内の
A液および]3液の濃度を比重計等によって測定し、記
録する程度のことしか行なわれていなかった。
In recent years, there has been a demand for the development of safe ground injection methods from the perspective of pollution prevention. Among the conventional injection methods, there are the 1 and 5 shot method and the 2.0 shot method, which inject injection liquid with a short gelation time. Now, a main agent aqueous solution (hereinafter referred to as liquid A) and a hardening agent aqueous solution (hereinafter referred to as liquid B), both of which have been adjusted to a predetermined concentration by measuring with a container or by weight, are individually pumped at a fixed ratio using two grout pumps. In the 1.5 shot method, the mixture is mixed in a Y-shaped pipe and immediately injected into the ground through the injection pipe, and in the 2.0 shot method, the injection pipe configured as a double pipe is used. The liquid is injected into the ground and mixed9, and the management of the injection liquid is as follows:
The only thing that was done was to measure and record the concentrations of liquids A and 3 in the container using a hydrometer or the like at time intervals appropriately determined by the construction manager.

また、長いゲル化時間をもつ注入液の注入に用いられる
1、0シヨツト法では、予め所定濃度に調整したA液と
B液とを所定の容量比で混合し、この混合液を注入管を
介して地盤内に注入するが、注入液の濃度を確認するた
めの測定は常時は行なわれず、施工管理者による定時検
査、或いはAM、B液を新に調整した後の最初の混合を
行った時など最小限度必要とされる場合以外は行なわれ
ていなかった。
In addition, in the 1,0 shot method, which is used to inject injection solutions that have a long gelation time, solutions A and B, which have been adjusted to a predetermined concentration in advance, are mixed at a predetermined volume ratio, and this mixed solution is inserted into the injection tube. However, measurements to confirm the concentration of the injected solution are not always carried out, and regular inspections by the construction manager or initial mixing after newly adjusting AM and B solutions are carried out. It was not carried out except when it was minimally necessary.

従って、従来の注入液の品質に関するデータは時間間隔
の大きいデータであるから、その間の注入液の濃度は把
握されておらず、混合作業の誤シなどがあったときは、
これを識別する手段がなく、他の管理用データに較べて
精度の低いものであることが否めなかった。
Therefore, since the conventional data regarding the quality of injectable liquid is data with large time intervals, the concentration of the injectable liquid during that time is not known, and if there is an error in the mixing operation,
There was no way to identify this, and it was undeniable that the accuracy was lower than other management data.

また、注入液の注入圧Pと、単位時間当りの注入量Qと
を測定し、その時間的変化特性(以下Tp  Q曲線と
いう)から施工品質を管理する方法がとられている○ しかし、この方法では注入時間に対応した圧力流量曲線
を解析することにより注入圧力並びに毎分注入量を正常
か異常かを把握する事は出来るが異常と分ってもその原
因を把握する事は困難で、あった。
In addition, a method is used to measure the injection pressure P and the injection amount Q per unit time of the injection liquid, and to control the construction quality from the temporal change characteristics (hereinafter referred to as Tp Q curve). In this method, it is possible to understand whether the injection pressure and the injection volume per minute are normal or abnormal by analyzing the pressure flow curve corresponding to the injection time, but even if it is found to be abnormal, it is difficult to understand the cause. there were.

即ち、圧力、流量が異常な場合は、しばしば所定の圧入
液とは異ったままの状態で注入されてぃたり、或いは注
入地盤状況には不適な注入液のまま注入されていたりす
る場合が多い。
In other words, if the pressure or flow rate is abnormal, it is often the case that the injection fluid is injected in a state different from the specified injection fluid, or that the injection fluid is unsuitable for the injection ground conditions. many.

本発明の目的は前述の公知技術に存する欠点を排除し、
注入液が地盤中で確実に固結されるように注入を監視す
ることにより注入を管理する圧入管理方法を提供するこ
とにある。
The object of the present invention is to eliminate the disadvantages present in the above-mentioned known technology,
An object of the present invention is to provide a press-in management method for controlling injection by monitoring the injection so that the injection liquid is reliably solidified in the ground.

前述の目的を達成す°るだめ、本発明によれば地盤中に
注入液を注入して該地盤を固結するに際して、前記注入
液の注入時間に対応して前記注入液の注入圧力と流量を
表示することにより前記注入を管理する注入管理方法に
おいて、前記注入圧力および流量の表示に加えて前記注
入液の化学的特性を表わす係数、および/または注入液
の、配合成分濃度を表わす係数を前記注入圧力および流
量の表示と同時に表示して注入を管理することを特徴と
する。
In order to achieve the above-mentioned object, according to the present invention, when injecting an injection liquid into the ground and solidifying the ground, the injection pressure and flow rate of the injection liquid are adjusted in accordance with the injection time of the injection liquid. In addition to displaying the injection pressure and flow rate, a coefficient representing the chemical characteristics of the injection liquid and/or a coefficient representing the concentration of a compounded component of the injection liquid is displayed. The present invention is characterized in that injection is managed by displaying the injection pressure and flow rate at the same time as the injection pressure and flow rate.

以下、本発明を具体的に詳述する。Hereinafter, the present invention will be specifically explained in detail.

本発明は前述のとおり、注入液の注入圧力および流量に
加えて化学的特性を表わす係数および/または配合成分
濃度を表わす係数を同時に表示することによシ圧入を管
理することを特徴とする。
As described above, the present invention is characterized in that in addition to the injection pressure and flow rate of the injection liquid, the injection is managed by simultaneously displaying a coefficient representing the chemical characteristics and/or a coefficient representing the concentration of the compounded components.

注入液の化学的特性を表わす係数として、例えばPH値
、あるいは電気的数値、例えば電気伝導度、比抵抗値等
があげられる。また、配合成分濃度を表わす係数として
密度、粘度、電気伝導度(あるいは比抵抗)、音波(あ
るいは超音波)、弾性波等の測定値があげられる。
Examples of coefficients representing chemical characteristics of the injection liquid include PH value, or electrical values such as electrical conductivity and specific resistance. Further, as coefficients representing the concentration of compounded components, measured values such as density, viscosity, electrical conductivity (or specific resistance), sound waves (or ultrasonic waves), and elastic waves can be cited.

一例として、注入液の注入時間に対応して注入圧力およ
び流量に加え、P)(値、および密度を同時に表示して
注入管理を行う方法を以下に示す。
As an example, a method for managing injection by simultaneously displaying the injection pressure and flow rate, P)(value), and density in accordance with the injection time of the injection liquid will be described below.

第1図はモル比N=3.21の水ガラスの各種濃度、す
なわちN8203.218i02濃度がそれぞn O,
05,0,10゜0.21.0.74.1.06 (モ
ル/1)の各種圧入液にかかるpH値とゲル化時間との
関係を示すグラフであり、このグラフからPH値の表示
によりいがなる領域でゲル化する形式の水ガラス注入液
が、すなわち、酸性領域、中性領域あるいはアルカリ領
域でゲル化する形式の水ガラス注入液であるかが識別で
き、使用する注入液の水ガラス濃度、 PH値1および
ゲル化時間との関係をあらかじめ知ることができる。
Figure 1 shows various concentrations of water glass with a molar ratio N = 3.21, that is, the N8203.218i02 concentration is n O,
05,0,10゜0.21.0.74.1.06 (mol/1) This is a graph showing the relationship between the pH value and gelation time for various injection liquids, and the pH value can be displayed from this graph. It is possible to identify whether a water glass injection solution that gels in a region where the irritability occurs is a water glass injection solution that gels in an acidic region, a neutral region, or an alkaline region, and the type of injection solution used. The relationship between water glass concentration, PH value 1, and gelation time can be known in advance.

第2図は注入液のモル比N=3.21の水ガラス配合濃
度(モル/1)と密度(f/crll・20℃)との関
係を表わすグラフである0第2図から密度の表示により
主成分である水ガラスの配合濃度が識別でき、使用する
注入液の永ガラス配合濃度と密度との関係をあらかじめ
知っておくことができる。さらに第1図および第2図か
ら使用すべき水ガラス系注入液がいかなる時間内にゲル
化しうる配合のものであるかが識別される。
Figure 2 is a graph showing the relationship between water glass blend concentration (mol/1) and density (f/crll・20°C) for the molar ratio N = 3.21 of the injection solution.0 Figure 2 shows the density. This makes it possible to identify the blended concentration of water glass, which is the main component, and to know in advance the relationship between the water glass blended concentration and the density of the injection solution to be used. Furthermore, from FIGS. 1 and 2 it can be identified that the water glass-based injection solution to be used has a composition that can gel within what time.

第3図(a) 、 (b) 、 (c)はそれぞれ注入
時間(1”)に対応して注入液のPH値、密度(I))
、注入圧力(P)、および流量(Q/分)の値を同時に
表示して注入を管理する本発明にかかる具体例を示す。
Figure 3 (a), (b), and (c) show the PH value and density (I) of the injected liquid corresponding to the injection time (1"), respectively.
A specific example according to the present invention will be shown in which values of injection pressure (P), and flow rate (Q/min) are displayed simultaneously to manage injection.

第3図(a)は所定の注入量を注入した時点で徐々にP
曲線が上昇し、正常な注入状況を示す。
Figure 3(a) shows that P gradually increases after a predetermined injection amount is injected.
The curve rises, indicating a normal injection situation.

第3図(blはわずかな注入量で急激に注入圧力(Pl
が上昇し、異常な注入状況を示しているが、この原因は
PH値の減少にあるものでありしたがって、水ガラス濃
度の減少まだは酸性反応剤が過大に送られていることに
基因するが、0曲線より水ガラス濃度が正しく送られて
いることがわかるので結局その理由は反応剤の混合量の
過大によるものである事が判る。
Figure 3 (bl is the injection pressure (Pl) that suddenly increases with a small injection amount
has increased, indicating an abnormal injection situation, but this is due to a decrease in the pH value, and therefore, the decrease in water glass concentration is still due to the acidic reactant being sent too much. Since it can be seen from the zero curve that the water glass concentration is being sent correctly, it can be seen that the reason for this is that the amount of reactant mixed is too large.

第3図(c)はいくら圧入しても狂人圧力(P)が上昇
しないという異常な注入状態を示しているが、この原因
はPH値の増大より水ガラス濃度の増大または酸性反応
剤の過少に起因するものである事が推定され0曲線より
水ガラス濃度が過少になっているためであると判定出来
る。
Figure 3 (c) shows an abnormal injection condition in which the maniac pressure (P) does not increase no matter how much pressure is injected.The cause of this is an increase in the water glass concentration or an insufficient amount of acidic reactant rather than an increase in the pH value. It is estimated that this is due to the 0 curve, and it can be determined that the water glass concentration is too low from the 0 curve.

このように本発明はPQ曲線と共に定性的特性並びに定
量的特性からなる注入液の特性値を示す曲線を記録する
ことにより、現在注入されている注入液の識別、配合の
適否、異常の解析等が可能となって確実な圧入管理が可
能になり、公害の点から安全でかつ充分信頼性のある注
入工法を確立する事を可能にしたものである。
In this way, the present invention records a curve indicating the characteristic values of the injectable liquid, which is composed of qualitative and quantitative characteristics, along with the PQ curve, thereby making it possible to identify the currently injected injectable liquid, determine whether the formulation is appropriate, analyze abnormalities, etc. This makes it possible to perform reliable injection management, making it possible to establish an injection method that is both safe and reliable in terms of pollution.

第4図(a)は本発明方法を実施する際に用いられる放
射線透過形密度計を用いた濃度測定装置の縦断面図、第
4図(b)は第4図(a) II −’If線よシみた
断面図で、(1)は管体、(2)はフランジで、後に示
す注入管に至る注入液の流路の一部を構成するように連
結される。(3)は放射線源、(4)は放射線検出器、
(5)は放射線速−い材、(6)は検出器(4)の高圧
電源、(7)は検出器(4)が検出したパルス信号を計
数する回路と、この計数値から注入液の濃度を算出する
演算回路とを有する計数・演算器、(8)はこれらを収
容する容器で、(1)ないしく8)で放射線透過形濃度
測定装置(9)を構成する。
FIG. 4(a) is a longitudinal cross-sectional view of a concentration measuring device using a radiation transmission type densitometer used when carrying out the method of the present invention, and FIG. In the cross-sectional view taken from the line, (1) is a pipe body, and (2) is a flange, which are connected so as to constitute a part of a flow path for an injection liquid leading to an injection tube shown later. (3) is a radiation source, (4) is a radiation detector,
(5) is a radiation-fast material, (6) is a high-voltage power supply for the detector (4), and (7) is a circuit that counts the pulse signals detected by the detector (4). A counting/calculating device (8) having a calculation circuit for calculating the concentration is a container for housing these, and (1) to 8) constitute a radiation transmission type concentration measuring device (9).

この濃度測定装置(9)は、線源(3)にコバルト60
などのガンマ線源を用い、検出器(4)にG N、I計
数管などを用いた場合は、管体(1)内を流れる溶液の
密度を測定することができ、この密度値から当諌溶液の
濃度を求めることができる。即ち、ガンマ線の入射強度
をIo、透過強度を丁、溶液の密度をρとすると、 I/Io=eXp(−al))(但しaは定数)となり
、密度ρと強度比I/Ioとの間には指数関数回帰関係
がある。従って、透過強度1を測定すれば溶液の密度ρ
を算出することができ、溶液が水ガラスグラウトのよう
に、溶質と溶媒の密度が相違するものであれば密度ρか
ら濃度Cを求めることができる。また検出器(4)の計
数率nはガンマ線の透過強度■に比例するので、予め濃
度(密度)既知の溶液と計数率nとの関係を求めておけ
ば、検出器(4)の計数率nから溶液の濃度Cを求める
ことができる。
This concentration measuring device (9) uses cobalt-60 as a radiation source (3).
When using a gamma ray source such as G N, I counter etc. as the detector (4), it is possible to measure the density of the solution flowing inside the tube body (1), and from this density value, the The concentration of the solution can be determined. That is, if the incident intensity of the gamma ray is Io, the transmitted intensity is D, and the density of the solution is ρ, then I/Io = eXp(-al)) (where a is a constant), and the density ρ and the intensity ratio I/Io There is an exponential regression relationship between them. Therefore, if the transmission intensity 1 is measured, the solution density ρ
can be calculated, and if the solution is one in which the solute and solvent have different densities, such as water glass grout, the concentration C can be determined from the density ρ. In addition, since the counting rate n of the detector (4) is proportional to the transmitted intensity of gamma rays, if the relationship between a solution whose concentration (density) is known and the counting rate n is determined in advance, the counting rate n of the detector (4) can be calculated. The concentration C of the solution can be determined from n.

第4図(C)は水ガラスグラウトについての計数率nと
濃度Cおよび密度ρの関係を示す図である。
FIG. 4(C) is a diagram showing the relationship between the counting rate n, the concentration C, and the density ρ for water glass grout.

またこの濃度測定器(9)は、放射線源(3)にカリホ
ルニウム252などの高速中性子線源を用い、検出器(
4)に例えば−リウム(3)中性子検出器を中性子減速
材で包んだ高速中性子検出器を用いた放射線透過膨水分
計を用いた構成としてもよい。この場合は、管体(1)
内を流れる溶液の水素の量、即ち水分量を測定すること
ができ、これから溶液の濃度Cを求めることができる。
In addition, this concentration measuring device (9) uses a fast neutron source such as californium-252 as the radiation source (3), and the detector (
For example, 4) may be configured using a radiation transmission swelling moisture meter using a high-speed neutron detector in which a -lium(3) neutron detector is wrapped in a neutron moderator. In this case, the pipe body (1)
The amount of hydrogen, ie, the amount of water, in the solution flowing inside can be measured, and the concentration C of the solution can be determined from this.

第4図(d)は濃度既知の水ガラスグラウトについて求
めた計数率nと溶液の水分量との関係を示す図、同図(
elは同じく計数率1]と溶液の濃度Cとの関係を示す
図である。
Figure 4(d) is a diagram showing the relationship between the counting rate n determined for water glass grout of known concentration and the water content of the solution;
Similarly, el is a diagram showing the relationship between the counting rate 1] and the concentration C of the solution.

第5図は本発明方法の実施に用いられる他の放射線反射
形濃度測定装置(101の断面図で、(II)は溶液の
容器、α2)は計数・演算器の出力データを記録する記
録器である。
FIG. 5 is a cross-sectional view of another radiation reflection type concentration measuring device (101) used to carry out the method of the present invention, (II) is a solution container, and α2 is a recorder for recording output data of a counting/computing unit. It is.

この濃度測定装置はガンマ線源とガンマ線検出器とを組
合せた放射線反射珍密度計を用いたものと、高速中性子
線源と−リウム(3)中性子検出器などの熱中性子線検
出器とを組合せた放射線反射形水分計を用いたものとが
あり、前者は溶液の密度を、後者は溶液の水分量を測定
することができ、前記透過形密度計、水分計を用いたも
のと同嘩に溶液の濃度al求めることができる。
This concentration measurement device uses a radiation reflection density meter that combines a gamma ray source and a gamma ray detector, and a device that uses a fast neutron source and a thermal neutron detector such as a -lium(3) neutron detector. There is a type that uses a radiation reflection type moisture meter, and the former can measure the density of a solution, and the latter can measure the water content of a solution. The concentration al can be determined.

つぎにこの濃度測定装置とPH検出器を圧力計、流量計
と共に用いた本発明に係る注入管理方法を説明する。
Next, an injection control method according to the present invention using this concentration measuring device and PH detector together with a pressure gauge and a flow meter will be explained.

第6図は1.0シヨツト法による注入工法に本発明を適
用した一実施例のブロック図で、θ3)はA液槽、(1
4)はB液槽、0■は混合槽、(16)は注入ポンプ、
a7)は流量計、職は圧力計、a9)は注入管、(20
)は演算制御装置(以下CPUと略記する) G3+は
PH検出器、(34)は分枝管、(2υ、 (22)は
弁で濃度測定装置(9)の検出値或いはPH値が予め定
めた値に弁CD、(22)の開度を調節したり或いはA
液、B液の配合を調節したりする事も出来る。
Fig. 6 is a block diagram of an embodiment in which the present invention is applied to the injection method using the 1.0 shot method, where θ3) is the A liquid tank, (1
4) is the B liquid tank, 0■ is the mixing tank, (16) is the injection pump,
a7) is a flow meter, position is a pressure gauge, a9) is an injection pipe, (20
) is an arithmetic and control unit (hereinafter abbreviated as CPU), G3+ is a PH detector, (34) is a branch pipe, (2υ) is a valve, and the detected value or PH value of the concentration measuring device (9) is predetermined. Adjust the opening degree of valve CD (22) to the value set, or
It is also possible to adjust the composition of liquid and B liquid.

さらに記録器02)で、注入液の濃度C,PH値注入置
注入量注入圧力Pの各データを時間の経過とともに記録
することもできる。図示してはいないがシーケンス回路
を内在したコントローラーにょシこれらを自動的に行う
事が出来るのは勿論である。
Further, with the recorder 02), it is also possible to record each data of the concentration C of the injection liquid, the PH value, the injection amount, and the injection pressure P over time. Although not shown, it is of course possible to automatically perform these operations using a controller that includes a sequence circuit.

従って、従来の’I” −P −Q曲線に加えて、注入
液の濃度Cのデータ或いは更にPH値のデータも併せて
記録されているので、施工品質の管理がより確実に行な
える効果がある○ 第7図は本発明を1.oショット法による注入工法適用
した他の実施例のブロック図で、この実施例は注入液の
濃度並びにPH値を濃度測定装置(9)並びにP)(検
出器(33)で測定し、A液の濃度を濃度測定装置00
)で測定してそれぞれ記録する構成とし゛だものである
。このようにすると、注入液の混合比率を、濃度測定装
置(9) 、 (10)の検出値に基づいて、またA液
とB液の混合比を、A液の濃度を基準として定めるので
、注入液に含まれる有効成分の混合比を一定範囲内に調
節することができる利点が第6図の実施例のものに加わ
る。
Therefore, in addition to the conventional 'I''-P-Q curve, data on the concentration C of the injected liquid or even PH value data are also recorded, which has the effect of more reliable management of construction quality. ○ Figure 7 is a block diagram of another embodiment in which the present invention is applied to the injection method using the 1. o shot method. The concentration of liquid A is measured by the detector (33) and the concentration is measured by the concentration measuring device 00.
) is configured to measure and record each. In this way, the mixing ratio of the injection liquid is determined based on the detected values of the concentration measuring devices (9) and (10), and the mixing ratio of liquids A and B is determined based on the concentration of liquid A, so that An advantage added to the embodiment shown in FIG. 6 is that the mixing ratio of the active ingredients contained in the injection solution can be adjusted within a certain range.

第8図は本発明を1.5シヨツト法による注入工法に適
用した一実施例のブロック図で、図において(Iba 
) + (Ibb )は二連の注入ポンプ、(23)は
)′字管、 (24)はブラッシングミキサ、 (25
) 、 (261は戻り管である。この実施例も第7図
の実施例と同様に、A液の濃度と、注入液の濃度並びに
P H値とを測定しそれぞれQ、P値と共に記録するよ
うにしたもので、同様の利点がある。
FIG. 8 is a block diagram of an embodiment in which the present invention is applied to a 1.5 shot injection method.
) + (Ibb) is a double infusion pump, (23) is a)'-shaped tube, (24) is a brushing mixer, (25
), (261 is a return pipe. In this example, as in the example shown in FIG. 7, the concentration of the A solution, the concentration of the injected solution, and the PH value are measured and recorded together with the Q and P values, respectively. It has similar advantages.

第9図は本発明の更に他の実施例のブロック図で、二重
管の注入管を用いてA液とB液とを地盤内に注入する2
、0シヨツト法による注入]−法に適用したものである
。図において(27)は二重管に構成された注入管、 
(28)は注入管(27)のヘッドに取付けられた二重
管スイベルで、運動する注入ポンプ(16a) 、 (
16b )によりA液、B液は一定の容量比で注入され
るので、A液の流量及び注入圧は、13液の流量、注入
圧と一定の関係にあ、9A液とB液との混合比は一定の
比率となる、 なお、B液の濃度が規定値どおりに調整されていること
が保証できる場合は、この実施例のようにA′e、の濃
度或いは更にPH値を測定し、記録するだけで注入薬液
の管理は十分であると考えられる。
FIG. 9 is a block diagram of still another embodiment of the present invention, in which liquid A and liquid B are injected into the ground using a double injection pipe.
, injection by the zero shot method]-method. In the figure, (27) is an injection pipe configured as a double pipe;
(28) is a double pipe swivel attached to the head of the injection tube (27), which moves the injection pump (16a), (
16b), liquids A and B are injected at a constant volume ratio, so the flow rate and injection pressure of liquid A are in a constant relationship with the flow rate and injection pressure of liquid 13, and the mixing of liquids 9A and B. The ratio will be a constant ratio. If it can be guaranteed that the concentration of liquid B is adjusted to the specified value, measure the concentration of A'e or even the PH value as in this example, It is considered that simply recording the information is sufficient for managing the injected drug solution.

第10図は本発明を2.0シヨツト法によるステップ注
入工法に適用した一実施例のブロック図で、ゲルタイム
の極めて短い注入液となるAI液、B1液との絹合せと
、ゲルタイムの長い注入液となるA2液とB2液との組
合せの2組を用意し、ゲルタイムの短い注入液と、ゲル
タイムの長い注入液とを所定のプログラムに従って切換
えて注入したのち、注入位置を遂次移動させるものであ
る。
Figure 10 is a block diagram of an embodiment in which the present invention is applied to the step injection method using the 2.0 shot method. Two combinations of liquids A2 and B2 are prepared, and the injection liquid with a short gel time and the injection liquid with a long gel time are switched and injected according to a predetermined program, and then the injection position is sequentially moved. It is.

このような注入液の切換は、従来は作業員の操作により
行なわれていだが、CPU(20)に予め注入プログラ
ムを記憶させておき、このプログラムに従って弁(29
)〜(32)の開閉を制御すれば注入液の切換えの自動
化が図れるとともに注入液の切換が、濃度の変化として
記録でき、施工管理上、確かなデータとして利用できる
Conventionally, such switching of the injection liquid has not been performed by operator operation, but an injection program is stored in advance in the CPU (20), and the valve (29) is changed according to this program.
By controlling the opening and closing of ) to (32), the switching of the injection liquid can be automated, and the switching of the injection liquid can be recorded as a change in concentration, which can be used as reliable data for construction management.

なおこの例はプログラム制御を行なう例を説明したが、
この外、注入圧Pと注入量Qとの積算値により注入液の
切換を行なうようにした場合にも切換状態が注入液の濃
度変化或いはPi変化として記録でき、上記例と同様に
施工管理上、薙がんデ〜りとして利用することができる
Note that this example describes an example of program control, but
In addition, even if the injection liquid is switched based on the integrated value of the injection pressure P and the injection amount Q, the switching state can be recorded as a change in the concentration of the injection liquid or a change in Pi, which can be used for construction management as in the above example. , it can be used as a nagingan deri.

なお、濃度測定装置(9)および叫のPo検出器配設位
置は上記各実施例に示した位置に限られるものではなく
、目的とするA液、B液の注入液の濃度が均一となって
いる場所寸たは流路内であればどこでもよい。
Note that the concentration measurement device (9) and the position of the Po detector are not limited to the positions shown in each of the above embodiments, and the concentration of the target injected liquids A and B is uniform. Anywhere within the flow path is acceptable.

まだ上記実施例ではいずれも連続的に測定して記録する
例を示しだが、適当に定めだ一定の時間間隔で測定して
記録するようにしてもよい。
Although the above embodiments show examples in which measurements are taken continuously and recorded, measurements may also be made at appropriately determined regular time intervals.

才だ上記実施例では計数率nから濃度を算出して記録す
る例を示したが放射線検出器の割数率nは、ある範囲で
は近似的に済液の濃度に比例することがあるので、その
ときには割数率nをそのま捷記録しても管理データとし
て用いうろことけいう捷でもない。
In the above example, the concentration was calculated and recorded from the counting rate n, but since the division rate n of the radiation detector may be approximately proportional to the concentration of the solution within a certain range, In that case, even if the divisor ratio n is recorded as is, it will not be used as management data.

なお、上記実施例では何れもA液1、B液、注入液の濃
度を測定し、これを記録する例を示したカー、液の密度
、−まだは水分量の検出値をそのまま管理データとして
用い、まだは検出値を指標する記号等として配録し、こ
れを管理デ、−夕として用いてもよいことはいう1でも
ない、。
In each of the above embodiments, the concentrations of liquid A 1, liquid B, and injection liquid are measured and recorded, but the detected values of liquid density and water content are used as management data as they are. However, it is also possible to record the detected value as an index symbol, etc., and use this as a management data.

」ノ、上は圧力計、流量計にPH検出器、密度検出器を
組合せだ例であるが、同様に電導度検出器(或いは比抵
抗値検出器)粘度検出器或いは弾性波測定引音波測定器
(或いは超音波測定器)を組合す串も出来る。
The above is an example of a combination of a pressure gauge, a flow meter, a PH detector, and a density detector, but it is also possible to use a conductivity detector (or specific resistance value detector), viscosity detector, elastic wave measurement, and sonic wave measurement. You can also make a skewer by combining a device (or an ultrasonic measuring device).

このうち電導塵(u U / cm )は水中に溶存イ
オンが多いと値が大きくなり、溶存イオンが少ないと値
が小さくなり、その程度は個々のイオンによっても異な
るが、溶存イオンが一種であっても多種であっても、そ
の構成比が一定であれば溶存物質(イオン状の)の濃度
と電導塵との間には比例関係がほぼ成立する。
Among these, the value of conductive dust (u U / cm ) increases when there are many dissolved ions in water, and decreases when there are few dissolved ions.The degree differs depending on the individual ions, but if there is only one type of dissolved ion, Even if there are many types of dissolved substances, if the composition ratio is constant, a proportional relationship will almost be established between the concentration of dissolved substances (ionic) and conductive dust.

従って電導塵を測定すれば、成分の種類や濃度も推定出
来、このことは特に水ガラスグラウトでは有効である。
Therefore, by measuring conductive dust, the type and concentration of the components can be estimated, and this is particularly effective for water glass grout.

例えば水ガラス濃度と電導塵の関係を表−1に示す、1 表1 これより電導塵(比抵抗値も同様)は化学的特性を表わ
す係数ともなり、注入液の配合成分の濃度を表わす係数
にもなる事がわかる。
For example, the relationship between water glass concentration and conductive dust is shown in Table 1.1 Table 1 From this, conductive dust (same as the specific resistance value) is also a coefficient representing chemical properties, and is a coefficient representing the concentration of the ingredients of the injection liquid. It turns out that it also becomes.

また水ガラス(3号水ガラス原液)における粘度と濃度
の関係を第11図に示す。
Furthermore, the relationship between viscosity and concentration in water glass (No. 3 water glass stock solution) is shown in FIG.

これより粘度は注入液の配合成分の濃度ケ表わす係数に
なる事がわかる。
From this, it can be seen that viscosity is a coefficient representing the concentration of the ingredients of the injection solution.

寸だ弾性波測定値や音波(或いは超音波)測定値は液体
の密度に関係してくるので、これらも注入液の配合成分
の濃度を表わす係数となり得る。
Since the measured values of elastic waves and the measured values of sonic waves (or ultrasonic waves) are related to the density of the liquid, these can also be used as coefficients representing the concentration of the components of the injection liquid.

なお、Pi(値、電気伝導度、比抵抗値、密度、粘度等
の注入液の特性値を測定する検出器は配合槽から注入管
に至る経路の任意の個所に配設する事が出来、また主材
管路、反応剤管路の両方あるいはいずれか一方、或いは
主材と反応剤の混合液の管路に位置せしめてもよい。
Note that the detector that measures the characteristic values of the injected liquid, such as Pi (value, electrical conductivity, specific resistance value, density, and viscosity), can be installed at any location along the route from the mixing tank to the injection pipe. Further, it may be located in either or both of the main material pipe and the reactant pipe, or in the pipe for the mixed liquid of the main material and the reactant.

まだ、注入圧による加圧下で測定が困難な場合は管路か
らでた枝管内或いは枝管につながる容器中に配設しても
よく、特にP、検出器はこのようにしだ方がよい。
If measurement is still difficult under pressure due to injection pressure, it may be arranged in a branch pipe extending from the pipe line or in a container connected to the branch pipe, and it is particularly preferable to arrange P and the detector in this manner.

以上のとおり、本発明1は施工管理のみならず、施工品
質の管理にも有効であり、実用上極めて有用な発明であ
る。
As described above, the present invention 1 is effective not only for construction management but also for construction quality management, and is a practically extremely useful invention.

【図面の簡単な説明】 第1図は水ガラス濃度と、PH値と、ゲル化時間との関
係を表わしだグラフを示し、第2図は水ガラス濃度と密
度との関係を表わしだグラフを示し、第3図(a)、(
b)、(c)はそれぞれPH値、密度0、注入圧力CP
)および流量(Qを時間■に対応して同時に表示した本
発明にかかる注入管理方法の具体例を示し、第4図(a
)は本発明に使用する放射線透過形濃度測定装置の縦断
面図、第4図(b)は第4図(a)II −■線よりみ
た断面図、第4図(c)はガンマ線透過形密度計の計数
率と溶液の密度(濃度)との相関関係を示す図、第4図
(d)は中性子線透過膨水分計の計数率と溶液の水分量
との相関関係を示す図、第4図(e)は同じく計数率と
溶液の濃度との相関関係を示す図、第5図は本発明妬使
用する他の放射線反射形濃度測定装置の断面図、第6図
、第7図、第8図、第9図、第10図はそれぞれ濃度測
定装置ならびにPH検出器を流量計、圧力計とともに用
いた本発明にかかる注入管理方法の各−実施例のブロッ
ク図を示す。第11図は水ガラスの濃度と密度の関係を
表わすグラフを示す。 1・・・管体、  2・・フランジ、3・・・放射線源
、4・・・放射線検出器、 5・・・°放射線速へい材
、6・・・高圧電源、  7・・・計数・演算器、  
8・・・容器、9・・・放射線透過形濃度測定装置、1
0・・放射線反射形濃度測定装置、  11・・・容器
、  12・・・記録器、1:つ・・・A液槽、14・
・・B液槽、15・・・混合槽、lt]、 1lia、
 1bb・・・圧入ポンプ、17・・・流量計、18・
・・圧力計、19・・・注入管、20・・・演算処理装
置(CP[Jバ2+、22,29.:30,3]、32
  弁、23・・・Y字管、24・・・ブラッシングミ
キサ、25.26・・・戻シ管、27・・二重注入管、
28・・・二重管、スイベル、33・・・PH検出器、
34・・・分枝管。 特許出願人  強化土エンジニャリング株式会社沸2図 Nazo 3.215i02 tl−’1−r−々9 答9図 「 て) (C) 菩q圏 隻?5圏 筈11図 sa、zo i、zy 5ioz J及(?72〜う 手続補正音(り戊) 特許庁長官 、若才多 /41  た  殿峙勃57J
f峙行沈り辛//、9θθ/澤事件との関係  特許出
願人
[Brief explanation of the drawings] Figure 1 shows a graph showing the relationship between water glass concentration, PH value, and gelation time, and Figure 2 shows a graph showing the relationship between water glass concentration and density. Figure 3(a), (
b) and (c) are PH value, density 0, and injection pressure CP, respectively.
) and flow rate (Q) are displayed simultaneously corresponding to time ■.
) is a longitudinal cross-sectional view of the radiographic concentration measuring device used in the present invention, FIG. 4(b) is a cross-sectional view taken from line II-■ in FIG. 4(a), and FIG. 4(c) is a gamma-ray transmitting type. Figure 4(d) is a diagram showing the correlation between the counting rate of the densitometer and the density (concentration) of the solution. FIG. 4(e) is a diagram showing the correlation between the counting rate and the concentration of the solution, FIG. 5 is a cross-sectional view of another radiation reflection type concentration measuring device used in the present invention, FIGS. 6, 7, FIG. 8, FIG. 9, and FIG. 10 respectively show block diagrams of embodiments of the injection management method according to the present invention using a concentration measuring device and a PH detector together with a flow meter and a pressure gauge. FIG. 11 shows a graph showing the relationship between the concentration and density of water glass. 1...Pipe body, 2...Flange, 3...Radiation source, 4...Radiation detector, 5...° radiation fastening material, 6...High voltage power supply, 7...Counting arithmetic unit,
8... Container, 9... Radiographic concentration measuring device, 1
0...Radiation reflection type concentration measuring device, 11...Container, 12...Recorder, 1:...A liquid tank, 14...
...B liquid tank, 15...mixing tank, lt], 1lia,
1bb...pressure pump, 17...flow meter, 18.
... Pressure gauge, 19 ... Injection pipe, 20 ... Arithmetic processing unit (CP [J bar 2+, 22, 29.: 30, 3], 32
Valve, 23... Y-shaped pipe, 24... Brushing mixer, 25.26... Return pipe, 27... Double injection pipe,
28...Double tube, swivel, 33...PH detector,
34...Branch pipe. Patent Applicant Reinforced Soil Engineering Co., Ltd. Figure 2 Nazo 3.215i02 tl-'1-r-9 Answer Figure 9 te) (C) Boq area ship? 5 area should Figure 11 sa, zo i, zy 5ioz J and (?72~U procedural amendment sound (riho) Commissioner of the Patent Office, Wakasaita /41 ta Tonochibo 57J
f-chigo-sinkarishin//, 9θθ/Relationship with the Sawa incident Patent applicant

Claims (1)

【特許請求の範囲】[Claims] 地盤中に注入液を注入して該地盤を固結するに際して、
前記注入液の注入時間に対応して前記注入液の注入圧力
と流量を表示することによシ前記圧入を管理する注入管
理方法において、前記注入圧力および流量の表示に加え
て前記注入液の化学的特性を表わす係数、および/また
は注入液の配合成分濃度を表わす係数を前記注入圧力お
よび流量の表示と同時に表示して注入を管理することを
特徴とする注入管理方法。
When injecting liquid into the ground to solidify the ground,
In the injection management method for managing the injection by displaying the injection pressure and flow rate of the injection liquid corresponding to the injection time of the injection liquid, in addition to displaying the injection pressure and flow rate, the chemistry of the injection liquid is displayed. 1. An injection management method, characterized in that the injection is managed by displaying a coefficient representing a characteristic characteristic and/or a coefficient representing a concentration of a component of the injection liquid simultaneously with the display of the injection pressure and flow rate.
JP11900782A 1982-07-08 1982-07-08 Control of injection work Pending JPS5910609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11900782A JPS5910609A (en) 1982-07-08 1982-07-08 Control of injection work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11900782A JPS5910609A (en) 1982-07-08 1982-07-08 Control of injection work

Publications (1)

Publication Number Publication Date
JPS5910609A true JPS5910609A (en) 1984-01-20

Family

ID=14750682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11900782A Pending JPS5910609A (en) 1982-07-08 1982-07-08 Control of injection work

Country Status (1)

Country Link
JP (1) JPS5910609A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157713A (en) * 1984-08-30 1986-03-24 Toto Denki Kogyo Kk Recorder for injection of grout
US6874976B2 (en) * 2003-02-21 2005-04-05 Kyokado Engineering Co., Ltd. Multipoint grouting method and apparatus therefor
KR100970497B1 (en) 2009-12-31 2010-07-16 주식회사 한국 지오텍 Method for managing knowledge-based injection construction using automatic grouting system
JP2017137630A (en) * 2016-02-01 2017-08-10 太洋基礎工業株式会社 Chemical injection system and chemical injection method using the same
JP2019105095A (en) * 2017-12-13 2019-06-27 日特建設株式会社 Evaluation method and evaluation system
JP2020105289A (en) * 2018-12-26 2020-07-09 大成建設株式会社 Manufacturing system of soil improvement material and manufacturing method of soil improvement material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554390A (en) * 1978-10-14 1980-04-21 Kyokado Eng Co Ltd Grouting
JPS5652217A (en) * 1979-10-03 1981-05-11 Toto Denki Kogyo Kk Management device for grouting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554390A (en) * 1978-10-14 1980-04-21 Kyokado Eng Co Ltd Grouting
JPS5652217A (en) * 1979-10-03 1981-05-11 Toto Denki Kogyo Kk Management device for grouting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157713A (en) * 1984-08-30 1986-03-24 Toto Denki Kogyo Kk Recorder for injection of grout
JPH033771B2 (en) * 1984-08-30 1991-01-21 Toto Denki Kogyo Kk
US6874976B2 (en) * 2003-02-21 2005-04-05 Kyokado Engineering Co., Ltd. Multipoint grouting method and apparatus therefor
KR100970497B1 (en) 2009-12-31 2010-07-16 주식회사 한국 지오텍 Method for managing knowledge-based injection construction using automatic grouting system
JP2017137630A (en) * 2016-02-01 2017-08-10 太洋基礎工業株式会社 Chemical injection system and chemical injection method using the same
JP2019105095A (en) * 2017-12-13 2019-06-27 日特建設株式会社 Evaluation method and evaluation system
JP2020105289A (en) * 2018-12-26 2020-07-09 大成建設株式会社 Manufacturing system of soil improvement material and manufacturing method of soil improvement material

Similar Documents

Publication Publication Date Title
DE3141225A1 (en) METHOD AND DEVICE FOR DETERMINING THE MASS FLOW OF A FLOWING MEDIUM
JPS5910609A (en) Control of injection work
Mitchell et al. [69] Measurement of→ H+/O in mitochondria and submitochondrial vesicles
Pethybridge et al. Equilibria in aqueous solutions of iodic acid
US6706527B2 (en) Automated fluid analysis apparatus and techniques
JPH0362845B2 (en)
JP3685887B2 (en) Preparation method of mixed solution of electrolyte and non-electrolyte
JPS58204212A (en) Measurer for concentration of grout for ground and grout injection work therewith
JP4490184B2 (en) Grout injection controller
JP6990006B2 (en) Evaluation method and evaluation system
Lane et al. Indicator dilution measurement of mean transit time and flow in a straight tube
JP2705247B2 (en) How to measure free chlorine
US5137365A (en) Water metering system for concrete mixer
Nguyen et al. An analysis of current quantitative approaches to the treatment of severe symptomatic SIADH with intravenous saline therapy.
CN217368443U (en) Water nitrite detection sample's save set
JP3271459B2 (en) Immersion type optical sensor and its automatic calibration method
Collins et al. Viscosity and self-diffusion in benzene-cyclohexane mixtures
JPS63193019A (en) Apparatus for measuring liquid fluid
JPH0745219Y2 (en) Dialysate preparation equipment
Hodnett et al. Neutron probe standards: transport shields or a large drum of water?
Roy et al. Application of sparging to the automated ion selective electrode determination of Kjeldahl nitrogen
JPH0439907B2 (en)
Sisterson et al. pH measurements of rain
WO2019035708A1 (en) A chemical mixing system
Hello Improved capillary direct current cell suitable for conductometric titrations