JP3271459B2 - Immersion type optical sensor and its automatic calibration method - Google Patents

Immersion type optical sensor and its automatic calibration method

Info

Publication number
JP3271459B2
JP3271459B2 JP01488495A JP1488495A JP3271459B2 JP 3271459 B2 JP3271459 B2 JP 3271459B2 JP 01488495 A JP01488495 A JP 01488495A JP 1488495 A JP1488495 A JP 1488495A JP 3271459 B2 JP3271459 B2 JP 3271459B2
Authority
JP
Japan
Prior art keywords
liquid
calibration
optical sensor
measured
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01488495A
Other languages
Japanese (ja)
Other versions
JPH07294430A (en
Inventor
公平 井上
時喜雄 大戸
靖史 財津
健治 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP01488495A priority Critical patent/JP3271459B2/en
Publication of JPH07294430A publication Critical patent/JPH07294430A/en
Application granted granted Critical
Publication of JP3271459B2 publication Critical patent/JP3271459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、上下水処理プラント,
化学プラントおよび環境計測などに用いられる浸漬型光
学センサとその自動校正方法に関する。
The present invention relates to a sewage treatment plant,
The present invention relates to an immersion-type optical sensor used for a chemical plant and environmental measurement, and an automatic calibration method thereof.

【0002】[0002]

【従来の技術】浸漬型光学センサは、光センサ測定部を
被測定液中に直接浸漬させ、光源からの光束を被測定液
に投光し、被測定液の成分により吸光または散乱されて
減衰した光量を測定するものである。その他に光センサ
測定部を直接液体試料中に浸漬せずに用いるフローセル
型の光学センサもあるが、一般に、光学センサは、光を
被測定液に照射したときの透過光量または被測定液成分
による吸収、散乱により減衰した光量を測定するもので
あるから、投光側と受光側の光学窓の汚れが測定誤差の
原因となる。したがって、通常、光学センサは、測定値
補正として定期的な校正が必要となり、しかも、その校
正操作は、被測定液の測定系におけると同一の条件下で
行なうことが望ましい。
2. Description of the Related Art In an immersion type optical sensor, an optical sensor measuring section is directly immersed in a liquid to be measured, and a light beam from a light source is projected on the liquid to be measured, and is attenuated by being absorbed or scattered by components of the liquid to be measured. The measured light amount is measured. In addition, there is a flow cell type optical sensor that uses the optical sensor measurement unit without directly immersing it in the liquid sample, but in general, the optical sensor depends on the amount of transmitted light or the component of the liquid to be measured when the liquid to be measured is irradiated with light. Since the amount of light attenuated by absorption and scattering is measured, dirt on the optical windows on the light emitting side and the light receiving side causes a measurement error. Therefore, the optical sensor usually needs to be periodically calibrated as a measurement value correction, and it is desirable that the calibration operation is performed under the same conditions as in the measurement system of the liquid to be measured.

【0003】例えば、直接浸漬型でないフローセル型の
光学センサにおける校正は、次のようにして行なってい
る。図9はその校正方法を説明するために、フローセル
27を側面からみた模式図であり、図9において、校正
時に三方弁28を用いて、被測定液29を校正液30に
切り替えることにより、矢印方向に校正液30が流れ、
フローセル27内に校正液30を送り、校正を行なって
いる。太い矢印はフローセル27内を通る光路を表わ
す。
For example, calibration in a flow cell type optical sensor which is not a direct immersion type is performed as follows. FIG. 9 is a schematic view of the flow cell 27 viewed from the side for explaining the calibration method. In FIG. 9, the liquid to be measured 29 is switched to the calibration liquid 30 by using the three-way valve 28 during calibration. Calibration fluid 30 flows in the direction
The calibration liquid 30 is sent into the flow cell 27 to perform calibration. A thick arrow indicates an optical path passing through the inside of the flow cell 27.

【0004】しかし、成分の時間変化が速い被測定液を
対象とする測定、または実プラントでリアルタイム測定
に用いられる直接浸漬型の光学センサでは、被測定液中
で直接自動校正を行なうことが困難であるから、校正の
都度、光センサ測定部を測定系外に移して校正を行なわ
ざるを得ないのが実状である。
However, it is difficult for a direct immersion type optical sensor used for measurement of a liquid to be measured whose components change rapidly with time or real-time measurement in an actual plant to directly perform automatic calibration in the liquid to be measured. Therefore, every time calibration is performed, the optical sensor measurement unit must be moved out of the measurement system to perform calibration.

【0005】[0005]

【発明が解決しようとする課題】上記の如く、直接浸漬
型の光学センサは、校正時に光センサ測定部を測定系外
に取り出して行なわねばならないために、次のような問
題がある。 測定系外における校正であることから、測定時と使
用時との条件が異なる。
As described above, the direct immersion type optical sensor has the following problems because the optical sensor measurement section must be taken out of the measurement system during calibration. Since the calibration is performed outside the measurement system, the conditions during measurement and during use are different.

【0006】 校正の都度、光センサ測定部を校正液
内へ移し換える操作が煩雑で時間がかかる。 本発明は、上述の問題を解決するためになされたもので
あり、その目的は、測定系中で自動的に光センサを校正
し、併せて、送液経路中の気泡の発生と光センサ測定部
への気泡の侵入を防ぐことができる浸漬型光学センサと
その自動校正方法を提供することにある。
[0006] Every time calibration is performed, the operation of transferring the optical sensor measurement unit into the calibration liquid is complicated and time-consuming. SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to automatically calibrate an optical sensor in a measurement system, and to simultaneously generate air bubbles in a liquid supply path and measure an optical sensor. It is an object of the present invention to provide an immersion type optical sensor capable of preventing air bubbles from entering a part and an automatic calibration method thereof.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明の浸漬型光学センサは、光センサ測定部
に、対向する面上の照射窓と受光窓の間に光路を形成す
る切り欠き部を有するコ字形センサヘッド、または円柱
形センサヘッドを有し、コ字形センサヘッドは、これに
開閉可能な2枚のL字形遮蔽板を取り付け、その動作に
よって光路を遮蔽してセンサヘッドを密閉状態にし、円
柱形センサヘッドは、その側面を覆って滑動する遮蔽筒
により、センサヘッドを密閉状態にすることが可能であ
り、この浸漬型光学センサの校正に当たっては、センサ
ヘッドを密閉状態にした後、このセンサヘッド内へ校正
液を注入し、試料液が校正液で置換されたことを自動的
に検知し、光センサ測定部が試料液中に浸漬されたまま
自動的に校正を行なうものである。
In order to solve the above problems, an immersion type optical sensor according to the present invention forms an optical path between an irradiation window and a light receiving window on an opposing surface in an optical sensor measuring section. It has a U-shaped sensor head having a notch or a cylindrical sensor head. The U-shaped sensor head has two L-shaped shielding plates that can be opened and closed, and the optical path is shielded by the operation thereof. The sensor head can be sealed by a shielding cylinder that slides over the side surface of the cylindrical sensor head, and the sensor head can be sealed when the immersion optical sensor is calibrated. After that, the calibration liquid is injected into this sensor head, and it is automatically detected that the sample liquid has been replaced with the calibration liquid, and the calibration is automatically performed while the optical sensor measurement unit is immersed in the sample liquid. Do It is intended.

【0008】校正液を注入する送液経路は、送液ポンプ
に接続してタンクに貯留する校正液を送り出す第1の送
液管と、送液ポンプとセンサヘッドに形成した校正液注
入口とを接続する第2の送液管と、被測定液面から離れ
た位置で第2の送液管の分岐点から分岐する分岐管と、
この分岐管に接続する開閉弁からなる。この送液経路は
上記のほかに、第1の送液管と、被測定液面から離れた
位置に設けた密閉容器と、一端を送液ポンプに接続し他
端を密閉容器内に挿入して取り付ける第2の送液管と、
一端を密閉容器内に挿入して取り付け他端をセンサヘッ
ドに形成した校正液注入口に接続した第3の送液管と、
一端を密閉容器内に挿入して取り付け他端近傍に開閉弁
を備えた通気管から構成することもできるが、このとき
密閉容器内に挿入する各管の端面は、床面に対して垂直
な方向に通気管、第2の送液管、第3の送液管の順に高
位置にあるように配置する必要がある。
[0008] The liquid supply path for injecting the calibration liquid is a first liquid supply pipe connected to the liquid supply pump for supplying the calibration liquid stored in the tank, a liquid supply pump and a calibration liquid inlet formed in the sensor head. And a branch pipe branching from a branch point of the second liquid feed pipe at a position distant from the liquid surface to be measured.
It consists of an on-off valve connected to this branch pipe. In addition to the above, the liquid feeding path includes a first liquid feeding pipe, a sealed container provided at a position distant from the liquid surface to be measured, and one end connected to the liquid feeding pump and the other end inserted into the sealed container. A second liquid supply pipe attached by
A third liquid feed pipe having one end inserted into the closed vessel and the other end connected to a calibration liquid inlet formed in the sensor head;
One end may be inserted into the closed vessel and attached to the other end, and may be constituted by a vent pipe provided with an on-off valve near the other end.In this case, the end face of each pipe inserted into the closed vessel is perpendicular to the floor surface. It is necessary to arrange the vent pipe, the second liquid feed pipe, and the third liquid feed pipe in the direction so as to be at higher positions in this order.

【0009】そして、これら開閉弁を制御するために、
弁を閉じる動作と、駆動手段がセンサヘッドのL字形遮
蔽板または遮蔽筒を閉じる動作との間に、任意の制御待
機時間が設定可能であり、かつ駆動手段がL字形遮蔽板
を開ける動作と同時に弁を開くことが可能なシーケンス
回路をセンサ本体に備えている。
In order to control these on-off valves,
An arbitrary control standby time can be set between the operation of closing the valve and the operation of the driving unit closing the L-shaped shielding plate or the shielding cylinder of the sensor head, and the operation of the driving unit opening the L-shaped shielding plate. A sequence circuit capable of simultaneously opening the valve is provided in the sensor body.

【0010】[0010]

【作用】以上のようにして、置換された校正液により減
衰される光量を測定し、密閉されたセンサヘッド内が校
正液で満たされた状態を、減衰率の経時的な変化率が
0、もしくはあらかじめ設定した値になることで判断す
ることにより、試料液から校正液への置換の終点を明確
に検出することができるようになる。また、センサヘッ
ド内が校正液で満たされたと判断した後、所定回数の測
定で得た全ての減衰率の変動係数を計算し、計算の結果
得られた変動係数が所定の設定値以下であれば、全ての
測定値から計算される減衰率の平均値を校正値として採
用し、変動係数が所定の設定値を超えるときは、全ての
測定値の標準偏差σを計算して、平均値±3σの範囲に
ある全ての測定値の減衰率の平均値を校正値として採用
することにより、気泡などの影響に起因する以上データ
を削除することができる。
As described above, the amount of light attenuated by the replaced calibration liquid is measured, and the state in which the inside of the sealed sensor head is filled with the calibration liquid is determined by the following equation. Alternatively, the end point of the replacement from the sample solution to the calibration solution can be clearly detected by making the determination based on the value set in advance. Further, after determining that the inside of the sensor head is filled with the calibration liquid, the variation coefficients of all attenuation rates obtained by the predetermined number of measurements are calculated, and the variation coefficient obtained as a result of the calculation is equal to or less than a predetermined set value. For example, the average value of the attenuation rates calculated from all the measured values is adopted as the calibration value, and when the coefficient of variation exceeds a predetermined set value, the standard deviation σ of all the measured values is calculated, and the average value ± By adopting the average value of the attenuation rates of all the measured values within the range of 3σ as the calibration value, it is possible to delete data due to the influence of bubbles or the like.

【0011】また、前述の送液経路の構成については、
送液管内を校正液で満たした状態で長時間放置すると、
管内に微細な気泡が発生シテ管壁面に付着し、この付着
気泡を校正液を送るだけで完全に追い出すのは困難であ
るから、校正中のセンサヘッド密閉部に気泡が混入する
という可能性に対してなされたものであり、以下のよう
に作用する。
Further, regarding the configuration of the above-mentioned liquid feeding path,
If you leave the liquid supply tube filled with the calibration solution for a long time,
Fine bubbles are generated in the tube and adhere to the wall of the shite tube, and it is difficult to completely remove the adhered bubbles just by sending the calibration liquid.Therefore, there is a possibility that bubbles may enter the sensor head closed part during calibration. This is done for the following.

【0012】校正終了後に分岐管に設けた開閉弁を開
き、サイホン効果を利用してセンサヘッドまでの送液管
内を空気で置き換えた後、校正の際に開閉弁を閉じ、改
めて校正液を送ることにより、管内における微細気泡の
発生を防ぎ、空気と校正液の置換が可能となる。また、
校正液を貯留するタンクと送液ポンプおよびこれに続く
分岐点までの管内は、完全に空気で置き換えることがで
きないので、密閉容器を設けてこれに上記のような三つ
の管を挿入設置し、管の端面に高低差をつけて、校正終
了後に開閉弁を開きサイホン効果を利用して、密閉容器
内およびセンサヘッドまでの送液管内を空気で置き換え
た後、校正の際に開閉弁を閉じ、改めて校正液を送るこ
とにより、密閉容器内および管内の微細気泡の発生を防
ぎ、空気と校正液の置換が可能となり、空気で置き換え
ることのできない管内に生ずる全ての気泡を、この密閉
容器で捕獲することができ、センサヘッドの密閉部への
気泡の混入を確実に防ぐ。
After the calibration is completed, the on-off valve provided on the branch pipe is opened, and the inside of the liquid supply pipe to the sensor head is replaced with air using the siphon effect. Then, at the time of calibration, the on-off valve is closed and the calibration liquid is sent again. This prevents the generation of microbubbles in the tube, and enables replacement of the calibration liquid with air. Also,
Since the inside of the pipe to the tank storing the calibration liquid and the feed pump and the branch point following it cannot be completely replaced with air, a closed vessel is provided and the three pipes as described above are inserted and installed in this, After making a difference in the height of the pipe end, open the on-off valve after the calibration is completed, use the siphon effect to replace the inside of the sealed container and the liquid feed pipe to the sensor head with air, and then close the on-off valve during calibration By sending the calibration liquid anew, it is possible to prevent the generation of microbubbles in the closed container and the tube, and to replace the calibration liquid with air.All air bubbles generated in the tube that cannot be replaced with air are removed by this closed container. It can be trapped and reliably prevent air bubbles from entering the sealed portion of the sensor head.

【0013】[0013]

【実施例】以下、本発明を実施例に基づき説明する。図
1は本発明による浸漬型光学センサの要部構成を示す模
式図である。図1では、光センサ測定部が被測定液2
中に浸漬された状態を斜視図で示しているが、被測定液
2外部は、光源や受光素子などを含む光センサ本体3
と、光センサ本体3に電気回路が接続されている系統
図として表わしている。以下に、この装置を用いた本発
明の方法とともに、図1を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a schematic diagram showing a main part configuration of an immersion type optical sensor according to the present invention. In FIG. 1, the optical sensor measurement unit 1 is a liquid 2 to be measured.
FIG. 3 is a perspective view showing a state of being immersed in the inside, and the outside of the liquid 2 to be measured is an optical sensor
And a system diagram in which the electric circuit 4 is connected to the optical sensor main body 3. FIG. 1 will be described below together with the method of the present invention using this apparatus.

【0014】図1において、被測定液2中に浸漬されて
いる部分の光センサ測定部は、下部にコ字形のセンサ
ヘッド5を有し、大きな矢印で描いた光6が、センサヘ
ッド5の対向する内面を形成する切り欠き部7を通っ
て、照射窓8と受光窓9との間に光路6aを形成する。
さらに、センサヘッド5に設けた2枚のL字形遮蔽板1
0に、それぞれ補助軸11aで連結された2本の駆動軸
11により、L字形遮蔽板10がセンサヘッド5の切り
欠き部7を側面から開閉可能にしている。
In FIG. 1, a portion of the optical sensor measuring section 1 which is immersed in the liquid 2 to be measured has a U-shaped sensor head 5 at a lower portion. An optical path 6a is formed between the irradiation window 8 and the light receiving window 9 through the notch 7 forming the opposing inner surface.
Further, two L-shaped shielding plates 1 provided on the sensor head 5 are provided.
The L-shaped shielding plate 10 allows the notch 7 of the sensor head 5 to be opened and closed from the side by two drive shafts 11 connected to each other by an auxiliary shaft 11a.

【0015】校正を必要とする所定のタイミングに、こ
の光学センサの測定に影響を与えないように、駆動軸1
1の上方にある例えばソレノイドコイルやピストン運動
するモーターなどの一次元的運動を行なう駆動機器(こ
こでは図示を省略)により、2本の駆動軸11を上下運
動させると、駆動軸11とL字形遮蔽板10を連結する
各補助軸11aの遮蔽板10側末端が、光路6aに対し
て遠ざかり、または近づくようになり、最も近づいたと
きに2枚の遮蔽板10の末端同士が合致する。即ち、2
枚のL字形遮蔽板10は、センサヘッド5との取り付け
部を支点として開閉し、校正時には、センサヘッド5の
切り欠き部7の側面を閉じて、光路6aを包み込むよう
に周辺の被測定液2を遮蔽し、センサヘッド5の切り欠
き部7は密閉状態となる。このとき、2枚のL字形遮蔽
板10同士の接触する端末面に、それぞれ滑らかなシー
ル材12を取り付け、遮蔽されたセンサヘッド5の切り
欠き部7へ被測定液2が浸入するのと、センサヘッド5
の切り欠き部7の外部へ後述する校正液14が漏れるの
を防ぐようにしている。
At a predetermined timing that requires calibration, the drive shaft 1 is controlled so as not to affect the measurement of the optical sensor.
When the two drive shafts 11 are moved up and down by a drive device (not shown here) that performs one-dimensional movement such as a solenoid coil or a piston-moving motor above the drive shaft 11, the drive shaft 11 and the L-shaped The ends of the auxiliary shafts 11a connecting the shielding plates 10 on the shielding plate 10 side move away from or approach the optical path 6a, and the ends of the two shielding plates 10 coincide with each other when they are closest to each other. That is, 2
The L-shaped shielding plates 10 are opened and closed with the mounting portion to the sensor head 5 as a fulcrum. During calibration, the side of the cutout 7 of the sensor head 5 is closed, and the surrounding liquid to be measured is wrapped around the optical path 6a. 2, the notch 7 of the sensor head 5 is closed. At this time, a smooth sealing material 12 is attached to each of the terminal surfaces where the two L-shaped shielding plates 10 come into contact with each other, and the liquid 2 to be measured enters the cutout 7 of the shielded sensor head 5. Sensor head 5
The leakage of the later-described calibration liquid 14 to the outside of the notch 7 is prevented.

【0016】ここで、被測定液2から離れて光センサ測
定部の外部にある送液ポンプ13を用い、校正液14
を、光センサ測定部内の注入管15から注入口16を
経由して、遮蔽されたセンサヘッド5の切り欠き部7へ
注入する。即ち、遮蔽されたセンサヘッド5の切り欠き
部7内は、被測定液2が校正液14で置換される。その
とき、校正液14の置換に伴って生ずる排出液17は、
光センサ測定部内の排出口18から排出管19を経
て、被測定液2の外部へ排出される。
Here, the calibration liquid 14 is separated from the liquid 2 to be measured by using the liquid pump 13 provided outside the optical sensor measurement section 1.
Is injected from the injection pipe 15 in the optical sensor measuring section 1 through the injection port 16 into the cutout 7 of the shielded sensor head 5. That is, the liquid 2 to be measured is replaced with the calibration liquid 14 in the cutout 7 of the shielded sensor head 5. At that time, the discharged liquid 17 generated by the replacement of the calibration liquid 14 is:
The liquid to be measured 2 is discharged from the discharge port 18 in the optical sensor measurement section 1 to the outside of the liquid 2 to be measured through the discharge pipe 19.

【0017】校正液14が注入されると同時に、光セン
サ測定部において、遮蔽されたセンサヘッド5の切り
欠き部7内にある被測定液2と校正液14の二つの液の
混在状態(光の減衰率)を測定し、この信号を信号線2
0により光センサ本体3に送り、光センサ測定部から
の光の減衰率の出力値を、光センサ本体3からアナログ
回路21によりアナログ変換し、さらにCPU・デジタ
ル回路22を介してデータ記憶装置23に記憶させる。
光センサ測定部の遮蔽されたセンサヘッド5の切り欠
き部7内が校正液14で満たされたことを、ここで得ら
れた減衰率測定値の経時的な変化率ΔE/Δtが0、ま
たはあらかじめ設定された値以下になったことにより、
CPU22が判断し、遮蔽されたセンサヘッド5の切り
欠き部7内が校正液14で満たされたと判断した後の減
衰率測定値を所定の数収集して、得られた全ての減衰率
測定値から、平均値AV ,標準偏差σ,変動係数CVを
CPU22が演算する。ここで、これらの演算結果か
ら、まず変動係数が1%以下であれば、全ての減衰率測
定値から計算される平均値AV1を校正値とする。
At the same time that the calibration liquid 14 is injected, the optical sensor measurement section 1 mixes the two liquids of the measurement liquid 2 and the calibration liquid 14 in the cut-out portion 7 of the shielded sensor head 5 ( (Attenuation rate of light) is measured, and this signal is
0 to the optical sensor main unit 3, the output value of the light attenuation rate from the optical sensor measuring unit 1 is converted from the optical sensor main unit 3 to analog by the analog circuit 21, and furthermore, the data storage device via the CPU / digital circuit 22 23.
The fact that the inside of the cut-out portion 7 of the shielded sensor head 5 of the optical sensor measurement section 1 is filled with the calibration liquid 14 indicates that the time-dependent change rate ΔE / Δt of the obtained attenuation rate measurement value is 0, Or, when it falls below the preset value,
A predetermined number of attenuation rate measurement values are collected after the CPU 22 determines that the inside of the cutout portion 7 of the shielded sensor head 5 is filled with the calibration liquid 14, and all obtained attenuation rate measurement values are obtained. , The CPU 22 calculates the average value A V , the standard deviation σ, and the variation coefficient CV. Here, based on the results of these calculations, if the variation coefficient is 1% or less, the average value AV1 calculated from all the measured attenuation factors is used as the calibration value.

【0018】この変動係数が1%を超える場合は、AV1
±3σの範囲にある全ての減衰率測定値の平均値AV2
再演算して校正値とする。校正値の決定後、送液ポンプ
13による遮蔽されたセンサヘッド5の欠き部7内への
校正液14の送液を中止し、図示を省略した駆動機器に
より駆動軸11を操作して、2枚のL字形遮蔽板10を
開き、被測定液2の測定状態とする。
If the coefficient of variation exceeds 1%, A V1
The average value A V2 of all measured attenuation rates in the range of ± 3σ is recalculated and used as a calibration value. After the determination of the calibration value, the feeding of the calibration liquid 14 into the shielded notch 7 of the sensor head 5 by the liquid feeding pump 13 is stopped, and the driving shaft 11 is operated by a driving device (not shown) to operate the driving shaft 11. The L-shaped shielding plates 10 are opened, and the state of the liquid 2 to be measured is set.

【0019】図2は、校正時の減衰率の経時変化を示す
線図であり、図2中のaは校正液14の注入開始点,b
は減衰率の変化率ΔE/Δtが所定の値以下になった
点,cは校正液14の注入終了点を表わす。図3は図2
中のb−c間の減衰率の経時変化を拡大して示した線図
であり、b−c間の減衰率を統計的に演算処理すること
により、校正値を決定することができる。
FIG. 2 is a diagram showing the change over time of the attenuation rate at the time of calibration. In FIG.
Denotes a point at which the rate of change of the attenuation rate ΔE / Δt becomes equal to or less than a predetermined value, and c denotes a point at which the injection of the calibration liquid 14 ends. FIG. 3 is FIG.
FIG. 4 is a diagram showing, in an enlarged manner, a temporal change of an attenuation rate between bc in FIG. 3, and a calibration value can be determined by statistically calculating the attenuation rate between bc.

【0020】次に、光センサ測定部のセンサヘッド5
を円柱形とした装置について説明する。図4は、この装
置の主としてセンサヘッド5aの構成を示す外観図であ
り、図4(a)は被測定液の測定時,図4(b)は校正
時の状態を表わしている。図4のセンサヘッド5aは、
切り欠き部7aを有し、ここに光路6bを形成すること
は、図1に示したセンサヘッド5の場合と同様である。
ここで、校正を必要とする所定のタイミングに、センサ
ヘッド5aの内部に設置し、一部剥離状態で示したソレ
ノイドコイル24により発生させたソレノイドで、セン
サヘッド5aの一端に被せてある遮蔽筒25に連結した
2本の駆動軸26を一次元的に移動させる。これによっ
て、校正時には、は遮蔽筒25をセンサヘッド5aの切
り欠き部7a方向にスライドさせ、遮蔽筒25で切り欠
き部7aを閉じることにより、センサヘッド5a全体を
密閉することができる。このようにして、図4(a)の
被測定液の測定時、即ちセンサヘッド5aの開放状態か
ら、図4(b)の校正時、即ちセンサヘッド5aの遮蔽
状態へと移行させるが、このとき、遮蔽筒25の端面に
滑らかなシール材12を取り付けておき、遮蔽筒25が
相手と接触する面を密にし、遮蔽されたセンサヘッド5
aの切り欠き部7a内へ排出液17が浸入するのと、セ
ンサヘッド5aの外部へ校正液14が漏れるのを防ぐよ
うにする。
Next, the sensor head 5 of the optical sensor measuring section 1
A device having a cylindrical shape will be described. FIGS. 4A and 4B are external views mainly showing the configuration of the sensor head 5a of the device, wherein FIG. 4A shows a state at the time of measuring the liquid to be measured, and FIG. 4B shows a state at the time of calibration. The sensor head 5a of FIG.
Having the notch 7a and forming the optical path 6b therein is similar to the case of the sensor head 5 shown in FIG.
Here, at a predetermined timing that requires calibration, a shield cylinder which is installed inside the sensor head 5a and is generated by the solenoid coil 24 shown in a partially peeled state and is placed on one end of the sensor head 5a. The two drive shafts 26 connected to 25 are moved one-dimensionally. Thus, at the time of calibration, the shield cylinder 25 is slid in the direction of the notch 7a of the sensor head 5a, and the notch 7a is closed by the shield cylinder 25, whereby the entire sensor head 5a can be hermetically sealed. In this way, the state of the liquid to be measured shown in FIG. 4A is shifted from the open state of the sensor head 5a to the calibration state of FIG. 4B, that is, the sensor head 5a is closed. At this time, a smooth sealing material 12 is attached to the end surface of the shielding cylinder 25 to make the surface where the shielding cylinder 25 comes into contact with the partner dense, and the shielded sensor head 5 is closed.
The liquid 17 is prevented from penetrating into the notch 7a, and the leakage of the calibration liquid 14 to the outside of the sensor head 5a.

【0021】次いで、ここには図示していない送液ポン
プを用い、注入管15aを通して注入口16aから、校
正液14を遮蔽されたセンサヘッド5aの切り欠き部7
a内へ注入し、校正液14の注入に伴って生ずる排出液
17は、排出口18aから排出管19aを経由して、測
定系外へ排出する。以後の校正値を決定する操作は、図
1で説明した通りである。また、校正値を決定した後、
被測定液の測定に戻すのは、上記の手順を逆に行なえば
よい。
Next, a notch 7 of the sensor head 5a in which the calibration liquid 14 is shielded from the injection port 16a through the injection pipe 15a using a liquid feed pump (not shown).
a, and the drainage liquid 17 that is generated with the injection of the calibration liquid 14 is discharged from the measurement system via the discharge port 18a via the discharge pipe 19a. The subsequent operation of determining the calibration value is as described with reference to FIG. After determining the calibration value,
To return to the measurement of the liquid to be measured, the above procedure may be reversed.

【0022】以上のように、2枚のL字形遮蔽板10を
用いて、コ字形のセンサヘッド5を遮蔽し密閉状態を形
成する場合は、遮蔽する部分の容量が比較的小さいの
で、光センサ測定部をコンパクトにすることが可能で
あり、これに対して、円柱形のセンサヘッド5aを遮蔽
筒25を用いて密閉するのは、遮蔽する部分の容量が比
較的大きく、校正液14の使用量は増えるが、遮蔽筒2
5自体の移動範囲が少ないので、その駆動操作が非常に
単純であるという利点がある。
As described above, when the U-shaped sensor head 5 is shielded by using the two L-shaped shielding plates 10 to form a closed state, the capacity of the shielded portion is relatively small. The measurement unit 1 can be made compact. On the other hand, when the cylindrical sensor head 5a is sealed using the shielding cylinder 25, the capacity of the shielding part is relatively large, Although the amount of use increases, the shielding cylinder 2
Since the moving range of the 5 itself is small, there is an advantage that its driving operation is very simple.

【0023】さらに、校正液の成分が被測定液に影響を
及ぼさない場合に限り、校正時に次のようにして、遮蔽
されたセンサヘッドの切り欠き部から液を排出すること
ができる。図5は、前述の図1のL字形遮蔽板10を持
つ装置を例として、校正液の供給に伴って生ずる排出液
17を、被測定液内に排出する手段を示す模式図であ
る。図5において、図示を省略した駆動機構により、2
枚のL字形遮蔽板10を閉じ、光路を遮蔽密閉した後、
遮蔽されたセンサヘッド5の切り欠き部7内に、校正液
14を注入管15を通して注入口16から、被測定液と
置換されるまで連続的に注入する。そして、排出液17
は、一方のL字形遮蔽板10にあけた排出口18bを通
して、遮蔽されたセンサヘッド5の外部へ排出させる。
このようにして校正液14を連続的に注入することによ
り、被測定液がセンサヘッド5内に混入するのを防ぐこ
とができる。
Further, only when the components of the calibration liquid do not affect the liquid to be measured, the liquid can be discharged from the shielded notch of the sensor head during calibration as follows. FIG. 5 is a schematic view showing, as an example, the device having the L-shaped shielding plate 10 of FIG. 1 described above, which discharges the discharge liquid 17 generated with the supply of the calibration liquid into the liquid to be measured. In FIG. 5, the driving mechanism (not shown)
After closing the L-shaped shielding plates 10 and shielding and sealing the optical path,
The calibration liquid 14 is continuously injected into the shielded notch 7 of the sensor head 5 through the injection pipe 15 from the injection port 16 until the liquid to be measured is replaced. And the effluent 17
Is discharged to the outside of the shielded sensor head 5 through a discharge port 18b opened in one L-shaped shielding plate 10.
By continuously injecting the calibration liquid 14 in this manner, the liquid to be measured can be prevented from entering the sensor head 5.

【0024】以上述べたように、本発明により、光セン
サ測定部を被測定液に浸漬したままの状態で、被測定液
から校正液への置換が可能であり、しかも、自動的に校
正値を測定し始める時点を明確にすることができる。と
ころで、この浸漬型光学センサの校正液を注入する送液
経路は、送液管内に校正液を満たした状態で長時間放置
すると、管内に発生した微細な気泡が管壁面に付着し
て、校正液を送るだけでは発生した気泡を完全に取り出
すことが困難であり、校正中のセンサヘッドの密閉部に
気泡が混入して測定誤差を生ずるという可能性があり、
これに対処するためになされた本発明の浸漬型光学セン
サを図6を参照して説明する。
As described above, according to the present invention, the measurement liquid can be replaced with the calibration liquid while the optical sensor measurement section is immersed in the measurement liquid, and the calibration value can be automatically adjusted. Can start to be measured. By the way, in the liquid supply path for injecting the calibration liquid of this immersion type optical sensor, if the liquid supply pipe is left for a long time with the calibration liquid filled, fine bubbles generated in the pipe adhere to the pipe wall surface, It is difficult to completely remove the generated bubbles only by sending the liquid, and there is a possibility that bubbles may be mixed into the sealed part of the sensor head during calibration, causing a measurement error,
An immersion-type optical sensor according to the present invention which has been made to deal with this will be described with reference to FIG.

【0025】図6は、主としてこの装置の校正液の送液
経路の構成を示す模式図であり、校正液の送液経路に開
閉弁を備えた分岐管を持つ本発明の浸漬型光学センサを
表わすものである。図6の図1と共通する部分は同一符
号を用いてあるが、図6中の光センサ測定部,光セン
サ本体3aに接続される電気回路については、図1の
場合と同様であるから、簡略にしてある。
FIG. 6 is a schematic diagram mainly showing the configuration of a calibration solution sending path of this apparatus. The immersion type optical sensor of the present invention having a branch pipe provided with an on-off valve in the calibration solution sending path is shown in FIG. It represents. 6 are denoted by the same reference numerals, but the optical sensor measuring unit 1 and the electric circuit 4 connected to the optical sensor main body 3a in FIG. 6 are the same as those in FIG. Therefore, it is simplified.

【0026】図6において、被測定液2の外部にある校
正液タンク31中には、校正液14を貯留してあり、こ
の校正液14の送液経路における第1の送液管32は、
校正液タンク31内から送液ポンプ13に接続され、こ
の送液ポンプ13以降の送液経路となる第2の送液管3
3は、被測定液2に浸漬されているコ字形センサヘッド
5に属する校正液14の注入口16に接続される。第2
の送液管33は、図1では注入管16として示したもの
に相当する。被測定液2に浸漬されない個所の第2の送
液管33の途中に位置する分岐点34には、分岐管35
を接続してあり、この経路に制御可能な開閉弁36を設
け、この開閉弁36は、弁を閉じることにより、校正液
14の送液経路を、コ字形センサヘッド5と分岐管35
との二方向から、コ字形センサヘッド5のみの一方向へ
変更することができ、さらに開閉弁36を開くことによ
り、送液管内を大気開放とすることができる。
In FIG. 6, a calibration liquid 14 is stored in a calibration liquid tank 31 outside the liquid 2 to be measured, and a first liquid supply pipe 32 in the liquid supply path of the calibration liquid 14
The second liquid feed pipe 3 connected from the inside of the calibration liquid tank 31 to the liquid feed pump 13 and serving as a liquid feed path after the liquid feed pump 13
3 is connected to the inlet 16 of the calibration liquid 14 belonging to the U-shaped sensor head 5 immersed in the liquid 2 to be measured. Second
The liquid supply pipe 33 corresponds to the one shown as the injection pipe 16 in FIG. A branch pipe 35 is provided at a branch point 34 located in the middle of the second liquid feed pipe 33 at a location not immersed in the liquid 2 to be measured.
A controllable on-off valve 36 is provided in this path, and the on-off valve 36 closes the valve to change the liquid supply path of the calibration liquid 14 to the U-shaped sensor head 5 and the branch pipe 35.
Can be changed from the two directions to only the U-shaped sensor head 5 in one direction. Further, by opening the on-off valve 36, the inside of the liquid sending pipe can be opened to the atmosphere.

【0027】また、コ字形センサヘッド5を有する光セ
ンサ測定部,センサヘッド5の切り欠き部7を遮蔽す
る機構,光センサ本体3aおよびこれに接続される電気
回路は、図1の通りであるから、ここでは説明を省略
するが、開閉弁36の開閉制御は、光センサ本体3a内
にあるシーケンス回路37により、自動的に後述するタ
イミングに行なうことができるようにしてある。
The optical sensor measuring section 1 having the U-shaped sensor head 5, the mechanism for shielding the notch 7 of the sensor head 5, the optical sensor main body 3a, and the electric circuit 4 connected thereto are as shown in FIG. Therefore, although the description is omitted here, the opening / closing control of the opening / closing valve 36 can be automatically performed at a later-described timing by the sequence circuit 37 in the optical sensor main body 3a.

【0028】ここで、図6に示す装置を用いた本発明の
自動校正方法について、図7を併用参照して説明する。
図7(a)〜(d)は、送液経路内の校正液14の送液
状態を時系列的に示す模式図であり、送液管内に斜線を
施した部分は、校正液14で満たされている領域である
ことを表わしている。はじめに、図7(a)は、被測定
液2の通常の測定状態を示している。このとき、図6の
送液経路では、送液ポンプ13は静止状態にあり、かつ
分岐管35途中の開閉弁36は開いている状態であり、
校正液14は、第1の送液管32および第2の送液管3
3途中の分岐点34の位置まで達した状態にある。
Here, the automatic calibration method of the present invention using the apparatus shown in FIG. 6 will be described with reference to FIG.
7 (a) to 7 (d) are schematic diagrams showing a time series of the state of the calibration liquid 14 in the liquid supply path. The hatched portion in the liquid supply pipe is filled with the calibration liquid 14. This indicates that the area has been set. First, FIG. 7A shows a normal measurement state of the liquid 2 to be measured. At this time, in the liquid feed path of FIG. 6, the liquid feed pump 13 is in a stationary state, and the on-off valve 36 in the middle of the branch pipe 35 is in an open state.
The calibration liquid 14 includes the first liquid supply pipe 32 and the second liquid supply pipe 3
The state has reached the position of the branch point 34 in the middle of three.

【0029】そこで、校正のタイミングに校正動作を開
始した状態を示しているのが図7(b)である。このと
き図6の送液経路では、校正開始と同時に送液ンプ13
の作動によって、校正液14は分岐点34からコ字形セ
ンサヘッド5、および分岐管35の二方向へ徐々に送液
される。これに伴い、第2の送液管33および分岐管3
5内の空気は、校正液14の注入口16および分岐管3
5の末端から、送液経路外へ徐々に送り出される。
FIG. 7B shows a state in which the calibration operation is started at the timing of the calibration. At this time, in the liquid feeding path shown in FIG.
, The calibration liquid 14 is gradually fed from the branch point 34 in two directions of the U-shaped sensor head 5 and the branch pipe 35. Accordingly, the second liquid feed pipe 33 and the branch pipe 3
The air in 5 is supplied to the inlet 16 of the calibration liquid 14 and the branch pipe 3.
From the end of 5, the liquid is gradually fed out of the liquid feeding path.

【0030】さらに図7(c)に示すように、校正液1
4を送液を行なうことにより、分岐管35内の空気が開
閉弁36の個所まで全て送り出され、同時に校正液14
が開閉弁36の所まで達した状態となる。このとき図6
の送液経路では、光センサ本体3a内のシーケンス回路
37の制御信号により、この開閉弁36を閉じて、校正
液14の送液を分岐点34からコ字形センサヘッド5の
方向のみに切り替える。これに伴い、継続する校正液1
4の送液により、第2の送液管33内の空気は、完全に
校正液14の注入口16から送り出される。
Further, as shown in FIG.
4, the air in the branch pipe 35 is all sent to the on-off valve 36, and at the same time, the calibration liquid 14 is supplied.
Has reached the opening / closing valve 36. At this time, FIG.
In the liquid supply path, the on-off valve 36 is closed by the control signal of the sequence circuit 37 in the optical sensor main body 3a, and the supply of the calibration liquid 14 is switched only from the branch point 34 to the U-shaped sensor head 5. The calibration solution 1
By the liquid feeding of 4, the air in the second liquid feeding pipe 33 is completely sent out from the inlet 16 of the calibration liquid 14.

【0031】そして、図7(d)に示すように、第2の
送液管33内の空気が、完全に校正液14に置き換わ
り、さらに校正液14の注入口16から排出される空気
が、センサヘッド5の切り欠き部7からも全て排除され
た状態となる。このとき図6のシーケンス回路37に
は、あらかじめ、校正動作開始から図7(d)までの所
要時間が設定してあり、この設定時間の経過直後に、シ
ーケンス回路37からの信号により、センサヘッド5の
L字形遮蔽板10の駆動手段(図示を省略、以下同様)
の動作が開始される。即ち、センサヘッド5のL字形遮
蔽板10を閉じる方向に駆動手段が作動し、センサヘッ
ド5の切り欠き部7は、密閉状態となる。同時に、送液
ンプ13の作動によって、この切り欠き部7内に注入口
16から校正液14を注入する。以後の欠き部7内の校
正液14への置換完了と校正値を自動的に決定する操作
までは、図1で説明したのと同じである。
Then, as shown in FIG. 7D, the air in the second liquid supply pipe 33 is completely replaced by the calibration liquid 14, and the air discharged from the inlet 16 of the calibration liquid 14 is The sensor head 5 is also completely removed from the notch 7. At this time, the time required from the start of the calibration operation to the time shown in FIG. 7D is set in the sequence circuit 37 in FIG. 6 in advance. 5 means for driving the L-shaped shielding plate 10 (not shown, the same applies hereinafter)
Operation is started. That is, the driving means operates in the direction in which the L-shaped shielding plate 10 of the sensor head 5 is closed, and the notch 7 of the sensor head 5 is closed. At the same time, the calibration liquid 14 is injected into the cutout 7 from the injection port 16 by the operation of the liquid feeding pump 13. The subsequent operations up to the completion of the replacement with the calibration liquid 14 in the notch 7 and the operation of automatically determining the calibration value are the same as those described with reference to FIG.

【0032】このようにして、校正値を決定した後送液
ポンプ13を停止し、センサヘッド5のL字形遮蔽板1
0を開く方向に駆動手段を作動させる。このとき、シー
ケンス回路37からの制御信号により、開閉弁36を開
き送液経路は大気開放となる。これに伴い、分岐管35
内の校正液14と被測定液2と水位差によって、分岐管
35および第2の送液管33の校正液14が注入口16
から被測定液2中へ排出され、分岐管35と第2の送液
管33の内部が空気で置換され、校正が終了し、被測定
液2の通常の測定状態[図7(a)]に復帰する。
After the calibration value is determined in this manner, the liquid feed pump 13 is stopped, and the L-shaped shielding plate 1 of the sensor head 5 is stopped.
Activate the drive means in the direction to open 0. At this time, the on-off valve 36 is opened by the control signal from the sequence circuit 37, and the liquid feed path is opened to the atmosphere. Accordingly, the branch pipe 35
Due to the water level difference between the calibration liquid 14 and the liquid 2 to be measured, the calibration liquid 14 in the branch pipe 35 and the second
Is discharged into the liquid 2 to be measured, the inside of the branch pipe 35 and the inside of the second liquid supply pipe 33 are replaced with air, the calibration is completed, and the normal measurement state of the liquid 2 to be measured [FIG. Return to.

【0033】送液経路はこの他に次のように構成するこ
ともできる。図8は、校正液の送液経路に、密閉容器と
開閉弁を持つ通気管を備えた本発明の浸漬型光学センサ
について、主として校正液の送液経路の構成を示す模式
図であり、図1,図6と共通する部分は同一符号を用い
てあるが、被測定液に浸漬されているセンサ測定部
は、図1,図6と同じであるから、図8では図示を省略
してある。
In addition, the liquid feeding path should be configured as follows.
Can also be. FIG. 8 shows a closed vessel in
Immersion type optical sensor of the present invention equipped with a vent pipe having an on-off valve
Is a schematic diagram showing the configuration of the calibration solution sending path
It is a figure, and the part common to FIG. 1, FIG. 6 uses the same code | symbol.
The sensor measurement section is immersed in the liquid to be measured.1
Is the same as FIGS. 1 and 6, and is not shown in FIG.
I have.

【0034】図8において、この装置は図6に示した分
岐管35に対応するものとして、次に述べる三つの管が
挿入された密閉容器39を用いている。即ち、被測定液
2の外部に配置された校正液タンク31に校正液14を
貯留しておき、この校正液14の送液経路は、第1の送
液管38が校正液タンク31内から送液ポンプ13に接
続され、また、送液ポンプ13からコ字形センサヘッド
5の校正液14の注入口16(ここでは図示を省略)に
至る経路の途中で、被測定液2に浸漬されない個所に密
閉容器39を設けてあり、第2の送液管40が送液ポン
プ13から密閉容器39に至る経路であり、第3の送液
管41が密閉容器39から図示を省略した注入口16に
至る経路である。さらに、この密閉容器39には、制御
可能な開閉弁36を備えた通気管42を挿入設置してい
る。
Referring to FIG. 8, this apparatus uses a closed container 39 into which three pipes described below are inserted, corresponding to the branch pipe 35 shown in FIG. That is, the calibration liquid 14 is stored in the calibration liquid tank 31 arranged outside the liquid 2 to be measured, and the liquid supply path of the calibration liquid 14 is such that the first liquid supply pipe 38 is connected to the inside of the calibration liquid tank 31. A part that is connected to the liquid feed pump 13 and that is not immersed in the liquid 2 to be measured in the middle of the path from the liquid feed pump 13 to the inlet 16 (not shown here) of the calibration liquid 14 of the U-shaped sensor head 5. A second liquid feed pipe 40 is a path from the liquid feed pump 13 to the closed vessel 39, and a third liquid feed pipe 41 is connected to the inlet 16 (not shown) from the closed vessel 39. It is a route to reach. Furthermore, a ventilation pipe 42 having a controllable on-off valve 36 is inserted and installed in the closed container 39.

【0035】ここで、密閉容器39に挿入されている通
気管42,第2の送液管40,および第3の送液管41
の三つの管の挿入部の自由端末は、この順に床面に対し
て垂直な方向に高位置を占めており、校正液14の送液
の際、第2の送液管40を通って密閉容器39へ混入し
た気泡は、この密閉容器39で確実に捕獲され、第3の
送液管41には気泡が進入することができないようにし
てある。
Here, the vent pipe 42, the second liquid feed pipe 40, and the third liquid feed pipe 41 inserted into the closed container 39.
The free ends of the insertion portions of the three tubes occupy a high position in the direction perpendicular to the floor surface in this order, and when the calibration solution 14 is sent, it passes through the second solution sending tube 40 and is closed. The air bubbles mixed into the container 39 are surely captured by the closed container 39 so that the air bubbles cannot enter the third liquid supply pipe 41.

【0036】通気管42に設けた開閉弁36を閉じるこ
とにより、密閉容器39からの送液経路を、第3の送液
管41と通気管42との二方向から、第3の送液管41
のみの一方向へ変更することができ、一方、開閉弁36
を開くことにより、送液管内を大気開放にすることがで
きる。なお、コ字形センサヘッド5を有する光センサ測
定部(図示を省略),センサヘッド5の切り欠き部7
を遮蔽する機構(図示を省略),光センサ本体3a,電
気回路(図示を省略)については図1と同様であるか
ら、ここでは説明を省略するが、開閉弁36の制御は光
センサ本体3a内に設けたシーケンス回路37により、
自動的に後述するタイミングで行なうことができるよう
にしてある。
By closing the on-off valve 36 provided in the ventilation pipe 42, the liquid feeding path from the closed container 39 is moved from the third liquid feeding pipe 41 and the ventilation pipe 42 to the third liquid feeding pipe. 41
Only one direction can be changed, while the on-off valve 36
By opening, the inside of the liquid sending pipe can be opened to the atmosphere. It should be noted that the optical sensor measuring section 1 having the U-shaped sensor head 5 (not shown), the notch 7 of the sensor head 5
The mechanism for shielding the light, the optical sensor main body 3a, and the electric circuit 4 (omitted from the drawing) are the same as those in FIG. By the sequence circuit 37 provided in 3a,
This can be performed automatically at the timing described later.

【0037】さて、このような図8に示す装置を用いた
本発明の自動校正方法は、既に述べた図6に示す装置の
方法と殆ど同じであるから、ここでは、図6と図8を参
照して、両者の相違点のみを述べることにする。図6の
装置では、校正液タンク31から分岐点34までの送液
管内は、常時、校正液14で満たされた状態にある。し
たがって、校正液タンク31から分岐点34までの空気
で置換することのできない管内に発生した微細気泡は、
校正の際に密閉状態のセンサヘッド5へ混入する可能性
がある。
The automatic calibration method of the present invention using the apparatus shown in FIG. 8 is almost the same as the method of the apparatus shown in FIG. 6 described above. For reference, only the differences between the two will be described. In the apparatus shown in FIG. 6, the inside of the liquid feed pipe from the calibration liquid tank 31 to the branch point 34 is always filled with the calibration liquid 14. Therefore, the fine bubbles generated in the pipe that cannot be replaced with air from the calibration liquid tank 31 to the branch point 34 are:
At the time of calibration, it may be mixed into the sensor head 5 in a closed state.

【0038】そこで、図8の装置では、校正の際の送液
ポンプ13の作動開始から校正値を決定するまでの間
に、空気で置き換えることができない管内から送りださ
れた全ての気泡を、密閉容器39によって捕獲する。ま
た、校正液14が開閉弁36に達したタイミングに開閉
弁36を閉じ、さらに、校正値が決定した後、開閉弁3
6を開くことにより、送液管内を大気開放として通気管
42から空気を進入させる。これにより、密閉容器39
および第3の送液管41内の校正液14は、センサヘッ
ド5の注入口16(図示を省略)から排出され、同時に
送液経路内は、空気で置き換えられ校正が終了する。
Therefore, in the apparatus shown in FIG. 8, during the period from the start of operation of the liquid feed pump 13 at the time of calibration to the determination of the calibration value, all air bubbles sent out of the pipe which cannot be replaced with air are removed. It is captured by the closed container 39. Further, at the timing when the calibration liquid 14 reaches the on-off valve 36, the on-off valve 36 is closed, and after the calibration value is determined, the on-off valve 3
By opening 6, the inside of the liquid sending pipe is opened to the atmosphere, and air enters through the vent pipe 42. Thereby, the closed container 39
The calibration liquid 14 in the third liquid supply pipe 41 is discharged from the inlet 16 (not shown) of the sensor head 5, and at the same time, the inside of the liquid supply path is replaced with air to complete the calibration.

【0039】以上述べたように、本発明では、校正の都
度、送液経路内を空気から校正液に置き換えることが可
能であり、発生した気泡を確実に捕獲することができ
る。したがって、校正液を送りだすに当たって、密閉状
態となったセンサ測定部の切り欠き部への気泡の混入を
完全に防止することにより、密閉部内を効果的に校正液
で置換し、極めて信頼性の高い校正を得ることができ
る。
As described above, in the present invention, the air in the liquid feeding path can be replaced with the calibration liquid every time calibration is performed, and the generated bubbles can be reliably captured. Therefore, when sending out the calibration liquid, by completely preventing air bubbles from entering the cutout part of the sensor measurement unit in the sealed state, the inside of the sealed part is effectively replaced with the calibration liquid, and extremely highly reliable. Calibration can be obtained.

【0040】[0040]

【発明の効果】浸漬型光学センサは、従来、校正の都
度、光センサ測定部を別の所へ移し換えて行なうという
煩雑な問題があったが、本発明の浸漬型光学センサは、
光センサ測定部のセンサヘッド、またはその側面を利用
して、簡単な駆動軸動作により、所定の校正時に限り、
光路を含む光センサ測定部のセンサヘッドを遮蔽し密閉
状態となし、光センサ測定部を被測定液に浸漬したま
ま、その遮蔽部内を効果的かつ自動的に被測定液を校正
液に置換することができる。
As described above, the immersion type optical sensor has a complicated problem that the optical sensor measurement unit is moved to another place every time calibration is performed.
Using the sensor head of the optical sensor measurement unit or its side surface, simple drive shaft operation, only at the time of predetermined calibration,
The sensor head of the optical sensor measurement unit including the optical path is shielded and sealed, and the optical sensor measurement unit is effectively and automatically replaced with the calibration liquid inside the shield while the optical sensor measurement unit is immersed in the liquid to be measured. be able to.

【0041】この浸漬型光学センサを校正するに当たっ
ては、遮蔽され密閉状態となったセンサ測定部の切り欠
き部に校正液を注入して、遮蔽された部分の被測定液が
校正液で置換されたことを明確に検出することができ、
校正液で満たされたと判断した状態の光の減衰率データ
を統計的に処理することにより、気泡などに起因する異
常値を排除し、信頼度の高い校正値を自動的に決定する
ことができる。
In calibrating the immersion type optical sensor, a calibration solution is injected into a cutout portion of the shielded and sealed sensor measurement section, and the solution to be measured in the shielded portion is replaced with the calibration solution. Can be clearly detected,
Statistical processing of light decay rate data in the state determined to be filled with the calibration solution eliminates abnormal values caused by bubbles and the like, and automatically determines a highly reliable calibration value. .

【0042】以上のことから、本発明の浸漬型光学セン
サを用いるとき、従来、困難とされていた測定系内に設
置したままで校正を行なうことが実現可能となり、その
結果、校正の都度、センサ測定部を外部に移し換えると
いう煩雑さを取り除き、これに多大の時間を要すること
なく、効率よく自動的かつ信頼性の高い校正を行なうこ
とができるようになった。
From the above, when the immersion optical sensor of the present invention is used, it is possible to perform calibration while being installed in a measurement system, which has been considered difficult, and as a result, every time calibration is performed, The complexity of transferring the sensor measurement unit to the outside has been eliminated, and the calibration can be performed efficiently and automatically with high reliability without requiring much time.

【0043】さらに、この浸漬型光学センサの校正液を
注入する送液経路は、送液管内を校正液で満たした状態
を長い間放置すると、管内に発生し微細な気泡が管壁面
に付着して、校正液を送るだけでは発生した気泡を完全
に取り出すことが困難であり、校正中のセンサヘッドの
密閉部に気泡が混入して、測定誤差を生ずるという可能
性に対し、本発明では、校正値の決定後に送液経路中の
分岐管に設けた開閉弁を開き、サイホン効果を利用し
て、センサヘッドまでの送液管内を空気で置き換えた
後、校正の際に開閉弁を閉じ、改めて校正液を送ること
により、送液管内における微細気泡の発生を防ぎ、管内
の空気と校正液の置換を可能とした。
Further, in the liquid supply path for injecting the calibration liquid of the immersion type optical sensor, if the state in which the liquid supply pipe is filled with the calibration liquid is left for a long time, fine bubbles are generated in the pipe and fine bubbles adhere to the pipe wall surface. However, it is difficult to completely remove the generated air bubbles only by sending the calibration liquid, and the air bubbles may be mixed into the sealed portion of the sensor head being calibrated, thereby causing a measurement error. After determining the calibration value, open the on-off valve provided in the branch pipe in the liquid feed path, use the siphon effect to replace the inside of the liquid feed pipe to the sensor head with air, then close the open / close valve at the time of calibration, By sending the calibration liquid anew, the generation of microbubbles in the liquid supply tube was prevented, and the air in the tube was replaced with the calibration liquid.

【0044】また、校正液タンクと送液ポンプ、分岐点
までの送液管内が、完全には空気で置き換えることがで
きないことに対して、送液経路の分岐点に相当するもの
として密閉容器を設け、この密閉容器に挿入する送液管
を、開閉弁を備えた通気管,送液ポンプに接続した送液
管,センサヘッドの校正液注入口に接続する送液管と
し、この三つの管の密閉容器挿入部の自由端末を、この
順に高位置とすることにより、校正値決定後に、通気管
に設けた開閉弁を開き、サイホン効果を利用して、密閉
容器内およびセンサヘッドまでの送液管を空気で置き換
えた後、校正の際に開閉弁を閉じ改めて校正液を送るよ
うにしたために、密閉容器内および管内における微細気
泡の発生を防ぎ、管内の空気と校正液の置換が可能とな
り、しかも空気で置き換えることのできない管内に発生
する気泡を含めた全ての気泡を、この密閉容器で捕捉す
ることができるから、センサヘッドの密閉部への気泡の
混入を確実に防ぎ、校正液の置換を効率よく行なうこと
ができるようになった。
In addition, since the inside of the liquid supply pipe to the calibration liquid tank, the liquid supply pump, and the branch point cannot be completely replaced with air, an airtight container is assumed to correspond to the branch point of the liquid supply path. And a liquid feed pipe inserted into the closed container is a vent pipe having an open / close valve, a liquid feed pipe connected to a liquid feed pump, and a liquid feed pipe connected to a calibration liquid inlet of a sensor head. By setting the free terminal of the closed container insertion part to the higher position in this order, after the calibration value is determined, the open / close valve provided in the ventilation pipe is opened, and the inside of the closed container and the sensor head are sent to the sensor head using the siphon effect. After replacing the liquid tube with air, the on-off valve is closed during calibration and the calibration liquid is sent again, preventing the generation of fine bubbles in the sealed container and the tube, and replacing the air in the tube with the calibration liquid. And put it in the air All air bubbles, including air bubbles generated in tubes that cannot be replaced, can be captured by this closed container, so that air bubbles can be reliably prevented from entering the closed part of the sensor head, and replacement of the calibration solution can be performed efficiently. You can now do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による浸漬型光学センサの要部構成を示
す模式図
FIG. 1 is a schematic view showing a configuration of a main part of an immersion type optical sensor according to the present invention.

【図2】校正時の減衰率の経時変化を示す線図FIG. 2 is a diagram showing a change with time of an attenuation rate at the time of calibration;

【図3】図2の減衰率の経時変化を拡大して示した線図FIG. 3 is an enlarged diagram showing a change with time of the attenuation rate in FIG. 2;

【図4】センサヘッドを円柱形としたセンサ測定部の要
部構成を示し、それぞれ(a)は試料液測定時,(b)
は校正時の状態を表わす外観図
FIGS. 4A and 4B show a main configuration of a sensor measuring unit having a cylindrical sensor head, wherein FIG.
Is an external view showing the state at the time of calibration

【図5】図1とは異なる排出液の排出手段を示すセンサ
ヘッドの側面図
FIG. 5 is a side view of the sensor head showing a discharge means for discharging liquid different from FIG. 1;

【図6】校正液の送液経路に分岐管を持つ本発明の浸漬
型光学センサの要部構成を示す模式図
FIG. 6 is a schematic diagram showing a configuration of a main part of an immersion optical sensor according to the present invention having a branch pipe in a liquid supply path of a calibration liquid.

【図7】図6の送液経路における校正液の時系列的な送
液状態を示し、それぞれ(a)は通常の測定状態,
(b)は校正動作を開始した状態,(c)は校正液が開
閉弁の位置まで達した状態,(d)は送液管内の空気が
完全に校正液に置換した状態を表わす模式図
FIGS. 7A and 7B show a time-series liquid supply state of the calibration liquid in the liquid supply path of FIG. 6, wherein FIG.
(B) is a state in which the calibration operation has been started, (c) is a state in which the calibration liquid has reached the position of the on-off valve, and (d) is a schematic view showing a state in which the air in the liquid supply pipe has been completely replaced with the calibration liquid.

【図8】校正液の送液経路に密閉容器と通気管を備えた
本発明の浸漬型光学センサの要部構成を示す模式図
FIG. 8 is a schematic diagram showing a configuration of a main part of an immersion optical sensor according to the present invention having a closed vessel and a ventilation pipe in a passage for sending a calibration solution.

【図9】フローセル型光学センサの側面図FIG. 9 is a side view of a flow cell type optical sensor.

【符号の説明】 センサ測定部 2 被測定液 3 センサ本体 3a センサ本体 電気回路 5 センサヘッド 5a センサヘッド 6 光 6a 光路 6b 光路 7 切り欠き部 7a 切り欠き部 8 照射窓 9 受光窓 10 L字形遮蔽板 11 駆動軸 11a 補助軸 12 シール材 13 送液ポンプ 14 校正液 15 注入管 15a 注入管 16 注入口 16a 注入口 17 排出液 18 排出口 18a 排出口 18b 排出口 19 排出管 19a 排出管 20 信号線 21 アナログ回路 22 CPU・デジタル回路 23 データ記憶装置 24 ソレノイドコイル 25 遮蔽筒 26 駆動軸 27 フローセル 28 三方弁 29 試料液 30 校正液 31 校正液タンク 32 第1の送液管 33 第2の送液管 34 分岐点 35 分岐管 36 開閉弁 37 シーケンス回路 38 第1の送液管 39 密閉容器 40 第2の送液管 41 第3の送液管 42 通気管[Description of Signs] 1 Sensor measuring section 2 Liquid to be measured 3 Sensor main body 3a Sensor main body 4 Electric circuit 5 Sensor head 5a Sensor head 6 Light 6a Optical path 6b Optical path 7 Notch section 7a Notch section 8 Irradiation window 9 Light receiving window 10 L V-shaped shielding plate 11 Drive shaft 11a Auxiliary shaft 12 Seal material 13 Liquid feed pump 14 Calibration liquid 15 Injection pipe 15a Injection pipe 16 Inlet 16a Inlet 17 Drain 18 Discharge 18a Discharge 18b Discharge 19 Drain 19a Discharge 20 Signal line 21 Analog circuit 22 CPU / digital circuit 23 Data storage device 24 Solenoid coil 25 Shielding cylinder 26 Drive shaft 27 Flow cell 28 Three-way valve 29 Sample liquid 30 Calibration liquid 31 Calibration liquid tank 32 First liquid supply pipe 33 Second transmission Liquid pipe 34 Branch point 35 Branch pipe 36 On-off valve 37 Sequence circuit 38 Feeding tube 39 sealed container 40 the second liquid supply pipe 41 of one third fluid feeding pipe 42 vent tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 健治 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭56−16851(JP,A) 特開 昭55−152444(JP,A) 実開 昭56−79847(JP,U) 実開 昭59−100251(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kenji Harada 1-1-1, Tanabeshinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (56) References JP-A-56-16851 (JP, A) Sho 55-152444 (JP, A) Shokai Sho 56-79847 (JP, U) Shokai Sho 59-100251 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21 / 00-21/61 Practical file (PATOLIS) Patent file (PATOLIS)

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光センサ測定部を試料液中に直接浸漬さ
せ、光源部からの光束を被測定液に投光し、被測定液の
成分により吸光または散乱されて減衰した光量を自動測
定する浸漬型光学センサであって、光センサ測定部は、
対向する面上の照射窓と受光窓の間に光路を形成する切
り欠き部を有するコ字形センサヘッドと、このセンサヘ
ッドに光路と平行に取り付け、被測定液から光路を遮蔽
しセンサヘッドの切り欠き部を密閉状態にする開閉可能
な2枚のL字形遮蔽板と、これら各L字形遮蔽板に取り
付けて各L字形遮蔽板を開閉させる少なくとも一つの駆
動軸と補助軸を持つ駆動手段とを有し、かつ被測定液の
外部から光センサ測定部を通り密閉されたセンサヘッド
の切り欠き部に校正液を注入する送液ポンプと送液経
路、および校正液の注入に伴って生ずる排出液を密閉さ
れたセンサヘッドの切り欠き部から外部へ取り出す排出
経路とを備えることを特徴とする浸漬型光学センサ。
1. An optical sensor measuring section is immersed directly in a sample liquid, a light beam from a light source section is projected on the liquid to be measured, and the amount of light absorbed or scattered and attenuated by the components of the liquid to be measured is automatically measured. An immersion type optical sensor, wherein the optical sensor measuring unit is
A U-shaped sensor head having a notch that forms an optical path between the irradiation window and the light receiving window on the opposing surface, and a sensor head that is attached to this sensor head in parallel with the optical path to shield the optical path from the liquid to be measured and cut the sensor head Two openable and closable L-shaped shielding plates for closing the notch portion, and driving means having at least one drive shaft and an auxiliary shaft attached to each of the L-shaped shielding plates for opening and closing each of the L-shaped shielding plates. A liquid supply pump and a liquid supply path for injecting the calibration liquid into the cutout of the sealed sensor head from outside the liquid to be measured, passing through the optical sensor measurement unit, and a drainage liquid caused by the injection of the calibration liquid. And a discharge path for taking out the air from the cutout portion of the sealed sensor head to the outside.
【請求項2】請求項1記載の浸漬型光学センサにおい
て、駆動手段は光センサの測定部から安定な測定可能な
位置まで離れた個所に設けることを特徴とする浸漬型光
学センサ。
2. An immersion type optical sensor according to claim 1, wherein the driving means is provided at a position separated from a measuring portion of the optical sensor to a stable measurable position.
【請求項3】請求項1または2記載の浸漬型光学センサ
において、排出液を送り出す少なくとも一つの排出口を
L字形遮蔽板に形成したことを特徴とする浸漬型光学セ
ンサ。
3. An immersion type optical sensor according to claim 1, wherein at least one discharge port for sending out the discharge liquid is formed in an L-shaped shielding plate.
【請求項4】請求項1ないし3記載の浸漬型光学センサ
において、送液経路は、送液ポンプに接続してタンクに
貯留する校正液を送り出す第1の送液管と、送液ポンプ
とセンサヘッドに形成した校正液注入口とを接続する第
2の送液管と、被測定液面から離れた位置で第2の送液
管の分岐点から分岐する分岐管と、この分岐管に接続す
る制御可能な開閉弁からなることを特徴とする浸漬型光
学センサ。
4. The immersion type optical sensor according to claim 1, wherein the liquid supply path is a first liquid supply pipe connected to the liquid supply pump to supply the calibration liquid stored in the tank, and a liquid supply pump. A second liquid feed pipe connecting the calibration liquid injection port formed in the sensor head, a branch pipe branched from a branch point of the second liquid feed pipe at a position distant from the liquid surface to be measured, and a branch pipe. An immersion-type optical sensor comprising a controllable on-off valve to be connected.
【請求項5】請求項1ないし4記載の浸漬型光学センサ
において、開閉弁の制御は、弁を閉じる動作と駆動手段
がL字形遮蔽板を閉じる動作との間に、任意の制御待機
時間が設定可能なシーケンス回路を用いて行なうことを
特徴とする浸漬型光学センサ。
5. An immersion type optical sensor according to claim 1, wherein the control of the on-off valve is performed by an arbitrary control standby time between the operation of closing the valve and the operation of the drive means closing the L-shaped shielding plate. An immersion-type optical sensor characterized in that the immersion-type optical sensor is performed using a configurable sequence circuit.
【請求項6】請求項1ないし4記載の浸漬型光学センサ
において、開閉弁の制御は、駆動手段がL字形遮蔽板を
開ける動作と同時に弁を開くことが可能なシーケンス回
路を用いて行なうことを特徴とする浸漬型光学センサ。
6. The immersion type optical sensor according to claim 1, wherein the control of the on-off valve is performed using a sequence circuit capable of opening the valve simultaneously with the operation of the drive means for opening the L-shaped shielding plate. An immersion type optical sensor characterized by the following.
【請求項7】請求項1ないし3記載の浸漬型光学センサ
において、送液経路は、送液ポンプに接続してタンクに
貯留する校正液を送り出す第1の送液管と、被測定液面
から離れた位置に設けた密閉容器と、一端を送液ポンプ
に接続し他端を密閉容器内に挿入して取り付ける第2の
送液管と、一端を密閉容器内に挿入して取り付け他端を
センサヘッドに形成した校正液注入口に接続した第3の
送液管と、一端を密閉容器内に挿入して取り付け他端近
傍に開閉弁を備えた通気管からなることを特徴とする浸
漬型光学センサ。
7. The immersion type optical sensor according to claim 1, wherein the liquid supply path is a first liquid supply pipe connected to a liquid supply pump to supply a calibration liquid stored in a tank, and a liquid surface to be measured. A sealed container provided at a position distant from the container, a second liquid feed pipe having one end connected to the liquid feed pump and the other end inserted into the sealed container and attached, and one end inserted and inserted into the sealed container. A third liquid feed pipe connected to a calibration liquid inlet formed in the sensor head, and a vent pipe provided with an open / close valve near the other end by inserting one end into a sealed container. Type optical sensor.
【請求項8】請求項1ないし3,7記載の浸漬型光学セ
ンサにおいて、密閉容器内に挿入した各管の端面は、床
面に対して垂直な方向に通気管、第2の送液管、第3の
送液管の順に高位置にあることを特徴とする浸漬型光学
センサ。
8. The immersion type optical sensor according to claim 1, wherein the end face of each pipe inserted into the closed container has a vent pipe and a second liquid feed pipe in a direction perpendicular to the floor surface. , An immersion type optical sensor which is located at a higher position in the order of the third liquid supply pipe.
【請求項9】請求項1ないし3,7ないし8記載の浸漬
型光学センサにおいて、開閉弁の制御は、弁を閉じる動
作と駆動手段がL字形遮蔽板を閉じる動作との間に、任
意の制御待機時間が設定可能なシーケンス回路を用いて
行なうことを特徴とする浸漬型光学センサ。
9. The immersion type optical sensor according to claim 1, wherein the control of the on-off valve is performed between an operation of closing the valve and an operation of the driving means closing the L-shaped shielding plate. An immersion type optical sensor characterized in that the control standby time is set using a sequence circuit which can be set.
【請求項10】請求項1ないし3,7ないし8記載の浸
漬型光学センサにおいて、開閉弁の制御は、駆動手段が
L字形遮蔽板を開く動作と同時に弁を開くことが可能な
シーケンス回路を用いて行なうことを特徴とする浸漬型
光学センサ。
10. The immersion type optical sensor according to claim 1, wherein the on / off valve is controlled by a sequence circuit capable of opening the valve at the same time as the driving means opens the L-shaped shielding plate. An immersion type optical sensor characterized in that the immersion type optical sensor is used.
【請求項11】光センサ測定部を被測定液中に直接浸漬
させ、光源部からの光束を試料液に投光し、被測定液の
成分により吸光または散乱されて減衰した光量を自動測
定する浸漬型光学センサであって、光センサ測定部は、
対向する面上の照射窓と受光窓の間に光路を形成する切
り欠き部を有する円柱形センサヘッドと、このセンサヘ
ッドの一端を覆い他端に向けて光路と平行に滑動して被
測定液から光路を遮蔽しセンサヘッドの切り欠き部を密
閉状態にする遮蔽筒と、センサヘッド内に設けた少なく
とも一つのソレノイド発生コイルと、遮蔽筒の側面に取
り付け発生したソレノイドによって遮蔽筒を滑動させる
少なくとも二つの駆動軸とを有し、かつ被測定液の外部
から光センサ測定部を通り密閉されたセンサヘッドの切
り欠き部に校正液を注入する送液ポンプと送液経路、お
よび校正液の注入に伴って生ずる排出液を密閉されたセ
ンサヘッドの切り欠き部から外部へ取り出す排出経路と
を備えることを特徴とする浸漬型光学センサ。
11. An optical sensor measuring section is immersed directly in a liquid to be measured, a light beam from a light source section is projected on a sample liquid, and an amount of light absorbed or scattered and attenuated by components of the liquid to be measured is automatically measured. An immersion type optical sensor, wherein the optical sensor measuring unit is
A cylindrical sensor head having a notch that forms an optical path between the irradiation window and the light receiving window on the opposing surface, and one end of the sensor head that covers one end of the sensor head and slides toward the other end in parallel with the optical path to be measured. A shielding tube that shields the optical path from the sensor head and seals the notch of the sensor head, at least one solenoid generating coil provided in the sensor head, and at least sliding the shielding cylinder by a solenoid attached to a side surface of the shielding cylinder. A liquid supply pump and a liquid supply path for injecting a calibration liquid into a cutout portion of a sealed sensor head that has two drive shafts and passes through the optical sensor measurement unit from outside the liquid to be measured, and injection of the calibration liquid And a discharge path for taking out a discharged liquid caused by the discharge from the cutout portion of the sealed sensor head to the outside.
【請求項12】請求項1ないし11記載の浸漬型光学セ
ンサの校正を行なうに当たり、被測定液中で光センサ測
定部の光路を遮蔽しセンサヘッドの切り欠き部を密閉状
態にした後、このセンサヘッドの切り欠き部へ校正液を
注入し、校正液の注入に伴って生ずる排出液を密閉され
たセンサヘッドの切り欠き部から外部へ取り出して被測
定液を校正液で置換し、その後密閉されたセンサヘッド
の切り欠き部が完全に校正液に置換されたことを自動的
に検知して、光センサ測定部が被測定液中に浸漬された
まま、自動的に校正を行なうことを特徴とする浸漬型光
学センサの自動校正方法。
12. When calibrating the immersion type optical sensor according to claim 1, the optical path of the optical sensor measuring section is shielded in the liquid to be measured, and the notch of the sensor head is sealed. Inject the calibration liquid into the notch of the sensor head, take out the drainage generated by the injection of the calibration liquid out of the sealed sensor head, replace the liquid to be measured with the calibration liquid, and then seal Automatically detects that the cut-out part of the sensor head is completely replaced with the calibration liquid, and automatically performs calibration while the optical sensor measurement part is immersed in the liquid to be measured. Automatic calibration method for immersion type optical sensors.
【請求項13】請求項12記載の方法において、密閉さ
れたセンサヘッドの切り欠き部が校正液で満たされた状
態を、光の減衰率の経時的な変化率が0もしくはあらか
じめ設定された値になることにより判断し、その後所定
回数の測定で得た全ての光の減衰率から変動係数を計算
し、変動係数が所定の設定値以下のとき全ての測定値か
ら計算される光の減衰率の平均値を校正値とし、変動係
数が所定の設定値を超えるとき全ての測定値の標準偏差
σを計算して、平均値±3σの範囲にある全ての測定値
の減衰率の平均値を校正値とすることを特徴とする浸漬
型光学センサの自動校正方法。
13. The method according to claim 12, wherein the state in which the notched portion of the sealed sensor head is filled with the calibration liquid is such that the change rate of the light attenuation rate over time is 0 or a predetermined value. , And then calculate the variation coefficient from the attenuation rates of all the lights obtained by the predetermined number of measurements. When the variation coefficient is equal to or less than the predetermined set value, the attenuation rate of the light calculated from all the measured values Is used as the calibration value, and when the variation coefficient exceeds a predetermined set value, the standard deviation σ of all the measured values is calculated, and the average value of the attenuation rates of all the measured values within the range of the average value ± 3σ is calculated. An automatic calibration method for an immersion optical sensor, wherein the calibration value is a calibration value.
【請求項14】請求項1ないし6記載の浸漬型光学セン
サの校正を行なうに当たり、まず送液ポンプを作動して
校正液を第2の送液管の分岐点からセンサヘッドおよび
分岐管に送って第2の送液管内および分岐管内の空気を
送り出し、分岐管内を校正液で置換した後開閉弁を閉
じ、さらに第2の送液管内の空気を完全に送り出してセ
ンサヘッドの切り欠き部から空気を排除した後、駆動手
段によりL字形遮蔽板を閉じ切り欠き部を密閉してその
中に校正液を注入し、これに伴い生ずる排出液を外部に
取り出して切り欠き部内の被測定液が完全に校正液で置
換されたことを自動的に検知し、光センサ測定部が被測
定液中に浸漬されたまま自動的に校正を行ない、その後
送液ポンプの作動を停止して駆動手段によりL字形遮蔽
板を開けるとともに開閉弁を開き、水位差によって第2
の送液管内の校正液面と被測定液面とが同水準になるま
で分岐管内および第2の送液管内の校正液を被測定液中
に排出することを特徴とする浸漬型光学センサの自動校
正方法。
14. When calibrating the immersion type optical sensor according to any one of claims 1 to 6, first, the liquid supply pump is operated to supply the calibration liquid from the branch point of the second liquid supply pipe to the sensor head and the branch pipe. To send out the air in the second liquid feed pipe and the branch pipe, replace the inside of the branch pipe with the calibration liquid, close the on-off valve, and completely send out the air in the second liquid feed pipe to cut out the notch of the sensor head. After removing the air, the driving means closes the L-shaped shielding plate, seals the notch, injects the calibration liquid into the notch, and takes out the discharged liquid accompanying this to the outside to remove the liquid to be measured in the notch. It is automatically detected that the liquid has been completely replaced with the calibration liquid, the calibration is automatically performed while the optical sensor measuring unit is immersed in the liquid to be measured, and then the operation of the liquid supply pump is stopped and the driving means is used. Open the L-shaped shielding plate Open closed, second by water level difference
An immersion type optical sensor characterized in that the calibration liquid in the branch pipe and the second liquid transmission pipe is discharged into the liquid to be measured until the level of the calibration liquid in the liquid feeding pipe and the level of the liquid to be measured are at the same level. Automatic calibration method.
【請求項15】請求項1ないし3,7ないし10記載の
浸漬型光学センサの校正を行なうに当たり、まず送液ポ
ンプを作動して校正液を第1,第2の送液管を通して密
閉容器に送って密閉容器内および第3の送液管内の空気
を送り出し、密閉容器内の校正液面が第2の送液管端面
に達した後開閉弁を閉じ、さらに第3の送液管内の空気
を完全に送り出してセンサヘッドの切り欠き部から空気
を排除した後、駆動手段によりL字形遮蔽板を閉じ切り
欠き部を密閉しその中に校正液を注入し、これに伴い生
ずる排出液を外部に取り出して切り欠き部内の被測定液
が完全に校正液で置換されたことを自動的に検知し、光
センサ測定部が被測定液中に浸漬されたまま自動的に校
正を行ない、その後送液ポンプの作動を停止して駆動手
段によりL字形遮蔽板を開けるとともに開閉弁を開き、
水位差によって第3の送液管内の校正液面と被測定液面
とが同水準になるまで密閉容器内および第3の送液管内
の校正液を被測定液中に排出することを特徴とする浸漬
型光学センサの自動校正方法。
15. In calibrating the immersion type optical sensor according to claim 1, first, a liquid feed pump is operated to cause a calibration liquid to pass through the first and second liquid feed pipes into a closed container. The air in the closed vessel and the third liquid feed pipe is sent out, and after the calibration liquid level in the closed vessel reaches the end face of the second liquid feed pipe, the on-off valve is closed, and the air in the third liquid feed pipe is further opened. And completely remove the air from the notch of the sensor head, close the L-shaped shielding plate by the driving means, seal the notch, and inject the calibration liquid into the notch. And automatically detect that the solution to be measured in the notch has been completely replaced with the calibration solution, and automatically calibrate the optical sensor measurement unit while it is immersed in the solution to be measured, and then send it. The operation of the liquid pump is stopped and the L-shaped shield is Open the on-off valve with opening the plate,
The calibration liquid in the closed vessel and the third liquid supply pipe is discharged into the liquid to be measured until the liquid level in the third liquid supply pipe and the liquid to be measured are at the same level due to the water level difference. Automatic calibration method for immersion type optical sensors.
JP01488495A 1994-03-04 1995-02-01 Immersion type optical sensor and its automatic calibration method Expired - Fee Related JP3271459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01488495A JP3271459B2 (en) 1994-03-04 1995-02-01 Immersion type optical sensor and its automatic calibration method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-33982 1994-03-04
JP3398294 1994-03-04
JP01488495A JP3271459B2 (en) 1994-03-04 1995-02-01 Immersion type optical sensor and its automatic calibration method

Publications (2)

Publication Number Publication Date
JPH07294430A JPH07294430A (en) 1995-11-10
JP3271459B2 true JP3271459B2 (en) 2002-04-02

Family

ID=26350915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01488495A Expired - Fee Related JP3271459B2 (en) 1994-03-04 1995-02-01 Immersion type optical sensor and its automatic calibration method

Country Status (1)

Country Link
JP (1) JP3271459B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128722A (en) * 2006-11-17 2008-06-05 Kurabo Ind Ltd Method for quantifying color density of dye liquid
CN114526787B (en) * 2022-03-03 2023-01-31 广州机觉云物联科技有限公司 Device for prolonging online service life of liquid level sensor in easily-adhered slurry

Also Published As

Publication number Publication date
JPH07294430A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
CN104713994B (en) For the analytical equipment for the digestion parameter for determining fluid sample
US9927453B2 (en) Dispensing device and dispensing method
US7467890B2 (en) Portable chemical transfer/neutralizing containment system
US5337597A (en) Bubble emission volume quantifier
JP4775937B2 (en) Real-time control system for composition for lithography process using near-infrared spectrometer and control method therefor
EP1592524B1 (en) A method for determining the existence of obstructions in the passageways of a medical instrument
JP2000502439A (en) Inspection device for liquid samples
US4201477A (en) Suspended solids meter
JP3271459B2 (en) Immersion type optical sensor and its automatic calibration method
JP6225522B2 (en) Water quality measuring device
JP3283089B2 (en) Container cleaning device
EP0551981A1 (en) System for monitoring the radioactivity of liquid waste
US5908556A (en) Automatic ionic cleanliness tester
US20020050460A1 (en) Method and apparatus for calibrating a pH meter
JPH08226923A (en) Automatic analyzer
GB2068543A (en) Methods and apparatus for cleaning reaction vessels
JP3837350B2 (en) Sampling device
US5237856A (en) Bubble emission volume quantifier
US4383437A (en) Monitoring solids content of liquid sludges
JPS648785B2 (en)
US7441437B2 (en) Calibration rig
JPH1038795A (en) Optical fluid analyzer
JP2588302B2 (en) Sludge concentration measuring device
JP7471168B2 (en) Automatic analyzer and method for acquiring gear pump status of automatic analyzer
EP0519689A2 (en) Leak detection by observing bubbles in a liquid pool

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees