JP2020105289A - Manufacturing system of soil improvement material and manufacturing method of soil improvement material - Google Patents

Manufacturing system of soil improvement material and manufacturing method of soil improvement material Download PDF

Info

Publication number
JP2020105289A
JP2020105289A JP2018243636A JP2018243636A JP2020105289A JP 2020105289 A JP2020105289 A JP 2020105289A JP 2018243636 A JP2018243636 A JP 2018243636A JP 2018243636 A JP2018243636 A JP 2018243636A JP 2020105289 A JP2020105289 A JP 2020105289A
Authority
JP
Japan
Prior art keywords
liquid
solution
value
mixed
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018243636A
Other languages
Japanese (ja)
Inventor
秀岳 松井
Hidetake Matsui
秀岳 松井
裕泰 石井
Hiroyasu Ishii
裕泰 石井
祐介 忠野
Yusuke Tadano
祐介 忠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2018243636A priority Critical patent/JP2020105289A/en
Publication of JP2020105289A publication Critical patent/JP2020105289A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

To correspond to errors such as concentration of solution to blend, and to prepare a soil improvement material at a time in large quantities by using an agitation tank.SOLUTION: A manufacturing system includes: a mixed liquid agitation tank 3 preparing mixed liquid by agitating A liquid containing colloidal silica and acid, and B liquid containing silicate; theory pH calculation means 42 calculating theory pH value of the mixed liquid based on the amount of the A liquid supplied to the mixed liquid agitation tank 3, the amount of the B liquid supplied to the mixed liquid agitation tank 3, and the pH value of the A liquid and the pH value of the B liquid; and addition amount calculation means 43 calculating an addition amount of the B liquid to add to the mixed liquid agitation tank 3 based on a difference between the actual pH value and the theory pH value of the mixed liquid.SELECTED DRAWING: Figure 1

Description

本発明は、地盤改良材の製造システムおよび地盤改良材の製造方法に関する。 The present invention relates to a ground improvement material manufacturing system and a ground improvement material manufacturing method.

地盤掘削による土砂崩壊等を防止するための地盤改良の手段として、土粒子を薬液により固結させる工法が知られている。このような工法に用いる薬液には、液体の状態で土粒子間隙に浸透し、その後にゲル化するという機能が求められる。そのため、2種の薬液を用意し、両者を混合することにより、混合から一定時間後にゲル化させるという技術が用いられている。 As a method of soil improvement for preventing soil collapse due to soil excavation, a method of solidifying soil particles with a chemical solution is known. The chemical liquid used in such a construction method is required to have a function of penetrating into the space between soil particles in a liquid state and then gelling. Therefore, a technique is used in which two types of chemical liquids are prepared, and the two are mixed to cause gelation after a certain period of time from the mixing.

特許文献1には、供給パイプに設けられた質量流量計が検出する検出質量に基づいて、原液の超過質量を見越して、供給ポンプを急停止させて、水溶液槽に原液を所定質量だけ供給する地盤改良薬液の混合システムが開示されている。 In Patent Document 1, based on a detected mass detected by a mass flow meter provided in a supply pipe, the supply pump is suddenly stopped in anticipation of the excess mass of the stock solution, and a predetermined mass of the stock solution is supplied to the aqueous solution tank. A mixing system for ground improvement chemicals is disclosed.

特許文献2には、硫酸溶液が連続的に流れる第1〜第3の混合器それぞれにおいて水ガラス水溶液を供給して混合液を得る作液方法において、第3の混合器で水ガラスを供給する前に混合液のpHを計測し、当該pHに基づいて第3の混合器への水ガラスの供給量が微調整される水ガラス系注入材の連続的製造装置が開示されている。 In Patent Document 2, in a liquid production method of supplying a water glass aqueous solution to each of the first to third mixers in which a sulfuric acid solution continuously flows to obtain a mixed liquid, water glass is supplied to the third mixer. A continuous production apparatus for a water glass-based injecting material has been disclosed in which the pH of the mixed liquid is measured and the amount of water glass supplied to the third mixer is finely adjusted based on the pH.

特開2015−143449号公報JP, 2005-143449, A 実全昭61−183942号公報Japanese Utility Model Publication No. 61-183942

しかしながら、特許文献1の方法で対応可能な誤差は、送液量の誤差のみであり、混合する溶液の濃度やpH等が想定と異なっていた場合、望んだ機能の地盤改良材が得られない。特許文献2の方法では、計測したpHから水ガラスの供給量をどのように決定するのかが明らかにされていない。また、特許文献2の方法では、酸性溶液に対する水ガラス水溶液の供給流量を多量にすると、混合液が瞬時にゲル化してしまうため、時間あたりの作液量の増量が困難である。 However, the error that can be dealt with by the method of Patent Document 1 is only the error of the liquid feed amount, and if the concentration, pH, etc. of the solution to be mixed are different from those expected, the ground improvement material with the desired function cannot be obtained. .. In the method of Patent Document 2, it is not clarified how to determine the supply amount of water glass from the measured pH. Further, in the method of Patent Document 2, when the supply flow rate of the aqueous solution of water glass with respect to the acidic solution is increased, the mixed solution is instantly gelled, so that it is difficult to increase the amount of solution produced per hour.

以上のことから、本発明は、混合する溶液の濃度等の誤差に対応可能であり、かつ、攪拌槽を用いて一度に大量の地盤改良材を作液可能にすることを課題とする。 From the above, it is an object of the present invention to be able to cope with errors such as the concentration of the solution to be mixed, and to enable the production of a large amount of ground improvement material at one time using a stirring tank.

上記課題を解決するため、本発明に係る地盤改良材の製造システムは、コロイダルシリカと酸とを含有するA液と珪酸塩を含有するB液とを攪拌して混合液を作液する混合液攪拌槽と、前記混合液攪拌槽に供給された前記A液の量、前記混合液攪拌槽に供給された前記B液の量、前記A液のpH値および前記B液のpH値に基づいて、前記混合液の理論pH値を算出する理論pH算出手段と、前記混合液の実測pH値と前記理論pH値との差に基づいて、前記混合液攪拌槽に追加する前記B液の追加量を算出する追加量算出手段とを備える構成とした。 In order to solve the above-mentioned problems, a manufacturing method for a soil improvement material according to the present invention is a mixed solution for producing a mixed solution by stirring an A solution containing colloidal silica and an acid and a B solution containing a silicate. Based on a stirring tank and the amount of the liquid A supplied to the mixed liquid stirring tank, the amount of the liquid B supplied to the mixed liquid stirring tank, the pH value of the liquid A and the pH value of the liquid B. A theoretical pH calculating means for calculating a theoretical pH value of the mixed solution, and an additional amount of the B solution to be added to the mixed solution stirring tank based on a difference between an actually measured pH value of the mixed solution and the theoretical pH value. And an additional amount calculating means for calculating

本発明に係る地盤改良材の製造方法は、コロイダルシリカと酸とを含有するA液と珪酸塩を含有するB液とを攪拌して1次混合液を作液する1次攪拌工程と、前記1次攪拌工程で供給された前記A液の量、前記1次攪拌工程で供給された前記B液の量、前記A液のpH値および前記B液のpH値に基づいて、前記1次混合液の理論pH値を算出する第1理論pH算出工程と、前記1次混合液の実測pH値と前記理論pH値との差に基づいて、前記B液の1次追加量を算出する1次追加量算出工程と、前記1次混合液に前記1次追加量の前記B液を供給し、攪拌して2次混合液を作液する2次攪拌工程とを含むこととした。
かかる地盤改良材の製造システム、または、地盤改良材の製造方法によれば、上記A液や上記B液の濃度等が想定外の値になっていたとしても、最終成果物である混合液のpHを想定の値に調整し、意図した性能の地盤改良材を得ることができる。
The method for producing a ground improvement material according to the present invention comprises a primary stirring step of stirring a solution A containing colloidal silica and an acid and a solution B containing a silicate to prepare a primary mixed solution, and Based on the amount of the solution A supplied in the primary stirring step, the amount of the solution B supplied in the primary stirring step, the pH value of the solution A and the pH value of the solution B, the primary mixing A first theoretical pH calculation step of calculating a theoretical pH value of the liquid, and a primary calculation of a primary additional amount of the liquid B based on the difference between the measured pH value of the primary mixed liquid and the theoretical pH value. An additional amount calculation step and a secondary stirring step of supplying the primary additional amount of the solution B to the primary mixed solution and stirring to form a secondary mixed solution are included.
According to such a soil improvement material manufacturing system or a soil improvement material manufacturing method, even if the concentration of the solution A or the solution B has an unexpected value, the mixed solution of the final product is obtained. By adjusting the pH to an expected value, it is possible to obtain a ground improvement material with the intended performance.

さらに、本発明に係る地盤改良材の製造システムは、前記実測pH値と前記理論pH値との差に基づいて、前記B液を前記混合液攪拌槽に追加する際の追加速度を算出する追加速度算出手段を備えることが好ましい。
また、本発明に係る地盤改良材の製造方法は、前記実測pH値と前記理論pH値との差に基づいて、前記B液を前記1次混合液に追加する際の追加速度を算出する追加速度算出工程を含むことが好ましい。
かかる地盤改良材の製造システム、または、地盤改良材の製造方法によれば、追加するB液の速度(単位時間あたりの供給量)を制御することにより、地盤改良材のpHの誤差を低減することができる。
Furthermore, the manufacturing system for a soil improvement material according to the present invention, based on the difference between the measured pH value and the theoretical pH value, an additional speed for adding the solution B to the mixed solution stirring tank is calculated. It is preferable to include a speed calculation means.
In addition, the method for producing a soil improvement material according to the present invention has an additional feature of calculating an additional speed when adding the solution B to the primary mixed solution based on the difference between the measured pH value and the theoretical pH value. It is preferable to include a speed calculation step.
According to such a soil improvement material manufacturing system or the soil improvement material manufacturing method, the error of the pH of the soil improvement material is reduced by controlling the speed (supply amount per unit time) of the liquid B to be added. be able to.

さらに、本発明に係る地盤改良材の製造方法は、前記1次混合液の量、前記1次混合液の実測pH値、前記B液のpH、前記2次攪拌工程における前記B液の追加量に基づいて、前記2次混合液の理論pH値を算出する第2理論pH算出工程と、前記2次混合液の実測pH値と前記2次混合液の理論pH値との差に基づいて、前記2次混合液にさらに追加される前記B液の2次追加量を算出する2次追加量算出工程と、前記2次混合液に前記2次追加量の前記B液を供給し、攪拌して3次混合液を作液する3次攪拌工程とを含むことが好ましい。
かかる地盤改良材の製造方法によれば、B液を複数段階に分けて投入することにより、さらにpHの調整の精度を向上することができる。
Furthermore, the method for manufacturing a soil improvement material according to the present invention is the amount of the primary mixed solution, the measured pH value of the primary mixed solution, the pH of the B solution, and the additional amount of the B solution in the secondary stirring step. Based on the second theoretical pH calculation step of calculating the theoretical pH value of the secondary mixed solution, and the difference between the measured pH value of the secondary mixed solution and the theoretical pH value of the secondary mixed solution, A secondary additional amount calculating step of calculating a secondary additional amount of the liquid B to be further added to the secondary mixed liquid, and supplying and stirring the secondary additional amount of the liquid B to the secondary mixed liquid. It is preferable to include a third agitation step of preparing a third mixed solution.
According to such a method for manufacturing a soil improvement material, the accuracy of pH adjustment can be further improved by adding the liquid B in a plurality of stages.

本発明に係る地盤改良材の製造システムおよび製造方法は、混合する溶液の濃度等の誤差に対応可能であり、かつ、攪拌槽を用いて一度に大量の地盤改良材を作液することを可能にする。 The soil improvement material manufacturing system and method according to the present invention can cope with errors such as the concentration of the solution to be mixed, and can produce a large amount of soil improvement material at one time using a stirring tank. To

地盤改良材製造システムの概略図である。It is a schematic diagram of a soil improvement material manufacturing system. 地盤改良材の製造方法のフローである。It is a flow of the manufacturing method of the ground improvement material. 混合液攪拌槽における液量とpHの関係の経時変化のグラフである。It is a graph of the time-dependent change of the liquid amount and pH in a mixed liquid stirring tank.

以下、本発明の実施をするための形態を、適宜図面を参照しながら詳細に説明する。各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。なお、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, modes for carrying out the present invention will be described in detail with reference to the drawings as appropriate. The drawings are merely schematic representations so that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated examples. In each drawing, common or similar components are designated by the same reference numerals, and duplicate description thereof will be omitted.

[製造システム]
図1に本実施形態の地盤改良材製造システムSの概略図を示す。
本実施形態の地盤改良材製造システムSは、A液作液装置1と、B液作液装置2と、混合液攪拌槽3と、制御手段4とを備え、A液とB液とを混合液攪拌槽3に供給して攪拌することにより、地盤改良材を製造する。A液はコロイダルシリカと酸と水とを含み、酸は特に限定されないが、例えば硫酸等を用いることができる。B液は珪酸塩と水とを含み、珪酸塩は特に限定されないが、例えば珪酸ナトリウム等を用いることができる。珪酸ナトリウムは特に限定されないが、シリカの溶脱によるゲルの劣化を抑止する観点から、ナトリウム含有量が少ないものの方が好ましい。強酸のA液に弱アルカリ性のB液を投入することで、弱酸の遊離が起こり、珪酸の沈殿により混合液をゲル化することができる。また、A液がコロイダルシリカを含有することにより、ゲルにより土粒子を固結させた後、ゲルからシリカが溶脱することを抑制することができる。
[Manufacturing system]
FIG. 1 shows a schematic diagram of a ground improvement material manufacturing system S of the present embodiment.
The ground improvement material manufacturing system S of the present embodiment includes an A liquid preparation device 1, a B liquid preparation device 2, a mixed liquid stirring tank 3, and a control means 4, and mixes the A liquid and the B liquid. A ground improvement material is manufactured by supplying and stirring to the liquid stirring tank 3. The liquid A contains colloidal silica, an acid, and water. The acid is not particularly limited, but sulfuric acid or the like can be used. The liquid B contains silicate and water, and the silicate is not particularly limited, but sodium silicate or the like can be used. Sodium silicate is not particularly limited, but one having a low sodium content is preferable from the viewpoint of suppressing gel deterioration due to leaching of silica. By adding the weakly alkaline solution B to the strong acid solution A, the weak acid is liberated, and the mixed solution can be gelated by the precipitation of silicic acid. Further, since the liquid A contains colloidal silica, it is possible to prevent silica from leaching from the gel after the soil particles are solidified by the gel.

B液の供給は複数回に分けて行う。そして、A液とB液の混合液に理論上想定されるpH値と、実測されたpH値の差に基づいて、追加供給するB液の量を調整することにより、目標pH値の地盤改良材を取得する。
A液作液装置1は、A液攪拌槽11と、A液貯留槽12とを備えている。A液攪拌槽11には、構成材料槽1A〜1Cから不図示の送液ポンプを介してコロイダルシリカと酸(A液の構成材料)が供給される。そして、コロイダルシリカと酸とをA液攪拌槽11で攪拌することによりA液を作液し、作液したA液をA液貯留槽12に貯留する。A液攪拌槽11は、モーター110により駆動する攪拌翼を備えA液の構成材料を攪拌する。A液貯留槽12は、貯留したA液のpH値を計測するpH計120を備えている。
The liquid B is supplied in plural times. Then, based on the difference between the pH value theoretically assumed for the mixed solution of A solution and B solution and the measured pH value, the amount of B solution to be additionally supplied is adjusted to improve the ground for the target pH value. Get the material.
The A liquid preparation apparatus 1 includes an A liquid stirring tank 11 and an A liquid storage tank 12. To the A liquid stirring tank 11, colloidal silica and an acid (a constituent material of the A liquid) are supplied from the constituent material tanks 1A to 1C via a liquid feed pump (not shown). Then, the colloidal silica and the acid are stirred in the A solution stirring tank 11 to prepare the A solution, and the prepared A solution is stored in the A solution storage tank 12. The A liquid stirring tank 11 is equipped with a stirring blade driven by a motor 110 to stir the constituent materials of the A liquid. The A liquid storage tank 12 includes a pH meter 120 that measures the pH value of the stored A liquid.

B液作液装置2は、B液攪拌槽21と、B液貯留槽22とを備えている。B液攪拌槽21には、構成材料槽2Aと2Bから不図示の送液ポンプを介して珪酸塩と水(B液の構成材料)が供給される。そして珪酸塩と水とをB液攪拌槽21で攪拌することによりB液を作液し、作液したB液をB液貯留槽22に貯留する。B液攪拌槽21は、モーター210により駆動する攪拌翼を備えB液の構成材料を攪拌する。B液貯留槽22は、貯留したB液のpHを計測するpH計220を備えている。 The B liquid preparation apparatus 2 includes a B liquid stirring tank 21 and a B liquid storage tank 22. The B liquid stirring tank 21 is supplied with silicate and water (a constituent material of the B liquid) from the constituent material tanks 2A and 2B via a liquid feed pump (not shown). Then, the B solution is prepared by stirring the silicate and the water in the B solution stirring tank 21, and the prepared B solution is stored in the B solution storage tank 22. The B liquid stirring tank 21 is equipped with a stirring blade driven by a motor 210 to stir the constituent materials of the B liquid. The B liquid storage tank 22 includes a pH meter 220 that measures the pH of the stored B liquid.

A液作液装置1は、A液供給経路100により混合液攪拌槽3と連結されている。A液作液装置1で作液されたA液は、混合液攪拌槽3に供給される。A液供給経路100は、送液ポンプ101と流量計102を含んで構成されている。流量計102はA液供給経路100を流れるA液の流量を計測し、送液ポンプ101はA液の流量を増減させることができる。 The A liquid preparation apparatus 1 is connected to the mixed liquid stirring tank 3 via the A liquid supply path 100. The A liquid produced by the A liquid producing apparatus 1 is supplied to the mixed liquid stirring tank 3. The A liquid supply path 100 includes a liquid feed pump 101 and a flow meter 102. The flow meter 102 measures the flow rate of the A liquid flowing through the A liquid supply path 100, and the liquid feed pump 101 can increase or decrease the flow rate of the A liquid.

B液作液装置2は、B液供給経路200により混合液攪拌槽3と連結されている。B液作液装置2で作液されたB液は混合液攪拌槽3に供給される。B液供給経路200は、送液ポンプ201と流量計202を含んで構成され、流量計202によりB液の流量を計測し、送液ポンプ201によってB液の流量を増減させることができる。B液供給経路200は、複数の経路に分岐しており、各経路に送液ポンプ201と流量計202が設けられている。本実施形態では、3つの送液ポンプ201と、1つの送液ポンプ201あたり2つ、合計6つの流量計202を備えている。このように複数の経路を備えることで、一本の太い供給経路から供給する場合に比べて、B液の供給を分散させることができ、混合液混合液の急速なゲル化の危険性を低下させることができる。 The B liquid producing apparatus 2 is connected to the mixed liquid stirring tank 3 via the B liquid supply path 200. The B liquid produced by the B liquid producing device 2 is supplied to the mixed liquid stirring tank 3. The B liquid supply path 200 includes a liquid feed pump 201 and a flow meter 202. The flow meter 202 can measure the flow rate of the B liquid, and the liquid feed pump 201 can increase or decrease the flow rate of the B liquid. The B liquid supply path 200 is branched into a plurality of paths, and a liquid sending pump 201 and a flow meter 202 are provided in each path. In the present embodiment, three liquid feed pumps 201 and two liquid feed pumps 201, six flow meters 202 in total, are provided. By providing a plurality of paths in this way, compared to the case of supplying from one thick supply path, the supply of solution B can be dispersed, and the risk of rapid gelation of the mixed solution mixed solution is reduced. Can be made.

混合液攪拌槽3は、モーター310で駆動する攪拌翼を備えており、A液供給経路100から供給されたA液、およびB液供給経路200から供給されたB液を攪拌し、混合液を作液する。攪拌翼の数は特に限定されないが、A液攪拌槽11やB液攪拌槽21に比べて混合液攪拌槽3は大容量であるので、A液攪拌槽11等より多くの攪拌翼を備えることが攪拌効率の観点から好ましい。また、混合液攪拌槽3は、混合液のpHを計測するpH計320を備えている。 The mixed solution stirring tank 3 is equipped with stirring blades driven by a motor 310, and stirs the A solution supplied from the A solution supply path 100 and the B solution supplied from the B solution supply path 200 to form a mixed solution. Make a liquid. The number of stirring blades is not particularly limited, but the mixed solution stirring tank 3 has a larger capacity than the A solution stirring tank 11 and the B solution stirring tank 21, so that more stirring blades than the A solution stirring tank 11 and the like should be provided. Is preferable from the viewpoint of stirring efficiency. The mixed solution stirring tank 3 also includes a pH meter 320 that measures the pH of the mixed solution.

制御手段4は、計測値取得手段41と、理論pH算出手段42と、追加量算出手段43と、供給指示手段44とを備えており、A液およびB液の混合液攪拌槽3への供給量を制御する。
計測値取得手段41は、pH計120で計測したA液のpH値、pH計220で計測したB液のpH値、pH計320で計測した混合液のpH値(以下、「実測pH値」という)、流量計102で計測したA液の流量、流量計202で計測したB液の流量を、図1中の点線の流れのように受信して取得し、理論pH算出手段42に送信する。
理論pH算出手段42は、A液およびB液の単位時間あたりの流量と、供給に要した時間から、混合液攪拌槽3に供給されたA液およびB液の供給量を算出する。そして、A液の供給量、A液のpH値、B液の供給量およびB液のpH値に基づいて、混合液の理論pH値を算出し、追加量算出手段43に送信する。このように混合液の理論pH値を算出し、追加量算出手段43に送信する処理は、B液供給の間に2回以上行う。
The control unit 4 includes a measured value acquisition unit 41, a theoretical pH calculation unit 42, an additional amount calculation unit 43, and a supply instruction unit 44, and supplies the liquid A and the liquid B to the mixed liquid stirring tank 3. Control the amount.
The measurement value acquisition means 41 includes a pH value of the solution A measured by the pH meter 120, a pH value of the solution B measured by the pH meter 220, and a pH value of the mixed solution measured by the pH meter 320 (hereinafter, “measured pH value”). That is, the flow rate of the A solution measured by the flow meter 102 and the flow rate of the B solution measured by the flow meter 202 are received and acquired as the flow indicated by the dotted line in FIG. 1 and transmitted to the theoretical pH calculation means 42. ..
The theoretical pH calculating means 42 calculates the supply amounts of the A liquid and the B liquid supplied to the mixed liquid stirring tank 3 from the flow rates of the A liquid and the B liquid per unit time and the time required for the supply. Then, the theoretical pH value of the mixed liquid is calculated based on the supply amount of the A liquid, the pH value of the A liquid, the supply amount of the B liquid, and the pH value of the B liquid, and the calculated theoretical pH value is transmitted to the additional amount calculating means 43. The process of calculating the theoretical pH value of the mixed liquid and transmitting it to the additional amount calculating means 43 in this way is performed twice or more during the supply of the liquid B.

追加量算出手段43は、混合液の実測pH値と理論pH値との差に基づいて、混合液に追加するB液の量を算出し、供給指示手段44に送信する。
具体的には以下のようにして行う。すなわち、前述のように、B液供給中に理論pHが複数回に渡って追加量算出手段43に送信される。追加量算出手段43は、各理論pHに対応する混合液の実測pHをそれぞれ計測する。そして、取得した複数の「実測pHと理論pHの値の組」のデータを元に、実測pHと理論pHの差の絶対値が最小となるA液の修正pH値とB液の修正pH値とを算出する。A液の修正pH値とB液の修正pH値という2つの変数を特定するため、上記「理論pHと実測pHの値の組」は複数回に渡って計測することが必要である。このような方法によれば、複数の計測データに基づいてA液とB液の両方について修正pH値を算出することにより、B液追加量の算出精度を向上し、計画通りのpH値の地盤改良材を作液することができる。
A液の修正pH値、A液の供給量、B液の修正pH値、B液の供給量から、混合液の修正pH値を求め、この修正pH値から計画pH値に到達するために必要なB液の量を算出する。このB液の量が、B液の追加量である。このようにB液の追加量を算出すれば、A液およびB液のpH値の計測誤差だけでなく、A液の供給量およびB液供給量の計測誤差にも対応できる。
The additional amount calculation means 43 calculates the amount of the solution B to be added to the mixed solution based on the difference between the measured pH value and the theoretical pH value of the mixed solution, and sends it to the supply instructing means 44.
Specifically, it is performed as follows. That is, as described above, the theoretical pH is transmitted to the additional amount calculating means 43 a plurality of times during the supply of the liquid B. The additional amount calculation means 43 respectively measures the measured pH of the mixed liquid corresponding to each theoretical pH. Then, based on the data of a plurality of obtained “pairs of measured pH and theoretical pH”, the corrected pH value of solution A and the corrected pH value of solution B in which the absolute value of the difference between the measured pH and the theoretical pH is minimum. And calculate. In order to specify the two variables of the corrected pH value of the solution A and the corrected pH value of the solution B, it is necessary to measure the above “set of theoretical pH and measured pH value” multiple times. According to such a method, the calculation accuracy of the additional amount of the B solution is improved by calculating the corrected pH values of both the A solution and the B solution based on the plurality of measurement data, and the ground having the pH value as planned is obtained. An improved material can be prepared.
Required to obtain the corrected pH value of the mixed solution from the corrected pH value of solution A, the supply amount of solution A, the corrected pH value of solution B, and the supplied amount of solution B, and to reach the planned pH value from this corrected pH value. Calculate the amount of liquid B. This amount of the B liquid is the additional amount of the B liquid. By calculating the additional amount of the B liquid in this way, not only the measurement error of the pH value of the A liquid and the B liquid but also the measurement error of the supply amount of the A liquid and the B liquid supply amount can be dealt with.

混合液に追加するB液の量を算出する方法は上記に限られず、例えば以下のような方法も挙げられる。上記の方法では、追加量算出手段43はA液とB液の両方について修正pH値を算出したが、pH計120とpH計220が計測したA液とB液のpHのどちらか一方は正しいと仮定し、他方の液の修正pH値だけを算出して、B液の追加量を求めてもよい。このような方法によれば、より簡易にB液の追加量を算出することができる。
また、A液とB液のpH値についてはA液貯留槽12とB液貯留槽22で測定せず、仮値を設定し、この仮値に基づいて混合液の理論pHを算出することにより、B液の追加量を算出するようにしてもよい。このような方法によれば、地盤改良材製造システムSのA液貯留槽12およびB液貯留槽22からpH計120、220を除くことが可能となる。
The method of calculating the amount of the liquid B to be added to the mixed liquid is not limited to the above, and examples thereof include the following methods. In the above method, the additional amount calculation means 43 calculates the corrected pH values for both the A solution and the B solution, but either one of the pH values of the A solution and the B solution measured by the pH meter 120 and the pH meter 220 is correct. It is also possible to calculate only the corrected pH value of the other liquid and determine the additional amount of the liquid B. According to such a method, the additional amount of the B liquid can be calculated more easily.
Further, the pH values of the A liquid and the B liquid are not measured in the A liquid storage tank 12 and the B liquid storage tank 22, but a temporary value is set, and the theoretical pH of the mixed liquid is calculated based on the temporary value. , The additional amount of the B liquid may be calculated. According to such a method, the pH meters 120 and 220 can be removed from the A liquid storage tank 12 and the B liquid storage tank 22 of the ground improvement material manufacturing system S.

なお、追加量算出手段43は、追加するB液の量だけでなく、追加速度(単位時間あたりの追加量)も算出することが好ましい。具体的には、混合液のpH値が大きくなり、地盤改良材の計画上のpHに近づくほど、B液の供給速度を低下させることで、pH調整の誤差を抑止することができる。よって、追加量算出手段43は、混合液の修正pHに基づいて、B液の追加速度を計画した速度から増減させる。
供給指示手段44は、送液ポンプ201を駆動し、流量計202でB液供給経路200を流れるB液の量を監視して、B液の追加量が追加量算出手段43の算出した追加量となるように送液ポンプ201を制御する。
In addition, it is preferable that the additional amount calculation means 43 calculates not only the amount of the B liquid to be added, but also the additional speed (the additional amount per unit time). Specifically, as the pH value of the mixed solution increases and approaches the planned pH of the ground improvement material, the feed rate of the solution B is reduced, so that an error in pH adjustment can be suppressed. Therefore, the additional amount calculation means 43 increases or decreases the additional speed of the liquid B from the planned speed based on the corrected pH of the mixed liquid.
The supply instructing unit 44 drives the liquid feed pump 201, monitors the amount of the B liquid flowing through the B liquid supply path 200 with the flow meter 202, and determines that the additional amount of the B liquid is the additional amount calculated by the additional amount calculating unit 43. The liquid feed pump 201 is controlled so that

[製造方法]
図2に本実施形態の地盤改良材の製造方法のフローを示す。本実施形態の地盤改良材の製造方法では、ステップS101からステップS111を実行する。
ステップS101では、A液攪拌槽11に水と酸とを供給して攪拌し、さらにコロイダルシリカをA液攪拌槽11に供給して攪拌することにより、A液を作液し、A液貯留槽12に貯留する。弱アルカリ製のコロイダルシリカに強酸性の反応材を供給すると、部分的な中性領域が生じ、A液の一部でゲル化反応が進んでしまうため、A液の構成材料はこのような順序で供給する。
ステップS102では、A液貯留槽12内のA液のpH値を、A液貯留槽12に備わるpH計120で計測する。なお、A液のpHは、混合液攪拌槽3にA液を送液した段階で、混合液攪拌槽3に備わるpH計320で取得するようにしてもよい。ただし、地盤改良材の作液を複数回繰り返す場合、混合液攪拌槽3内には混合液が残留していると考えられるため、A液のpHはA液貯留槽12のpH計120で計測した方がより正確に計測できるため好ましい。
[Production method]
FIG. 2 shows a flow of the method for manufacturing the ground improvement material of the present embodiment. In the method for manufacturing a ground improvement material of the present embodiment, steps S101 to S111 are executed.
In step S101, water and an acid are supplied to the A liquid stirring tank 11 and stirred, and colloidal silica is further supplied to the A liquid stirring tank 11 to stir the liquid A to prepare the liquid A storage tank. Store in 12. When a strongly acidic reaction material is supplied to colloidal silica made of weak alkali, a partial neutral region is generated, and the gelation reaction proceeds in a part of solution A. Supplied by.
In step S102, the pH value of the liquid A in the liquid A storage tank 12 is measured by the pH meter 120 provided in the liquid A storage tank 12. The pH of the liquid A may be acquired by the pH meter 320 provided in the mixed liquid stirring tank 3 when the liquid A is sent to the mixed liquid stirring tank 3. However, when the soil improvement material is repeatedly produced a plurality of times, it is considered that the mixed liquid remains in the mixed liquid stirring tank 3, so the pH of the A liquid is measured by the pH meter 120 of the A liquid storage tank 12. It is preferable to do so because the measurement can be performed more accurately.

ステップS103では、B液攪拌槽21に水と珪酸塩酸とを供給して攪拌することにより、B液を作液し、B液貯留槽22に貯留する。
ステップS104では、B液貯留槽22内のB液のpHを計測する。
ステップS105において、B液の1次供給量は、計画されたB液の供給量の総量よりも少ないものとする。ステップS105では、混合液攪拌槽3にA液の供給を行い、次にB液の1次供給を行い、1次攪拌することで1次混合液(混合液)を作液する。なお、ここでA液とB液の供給順序を逆に、すなわちB液を先に供給すると、弱アルカリ性のB液に強酸液のA液を投入することになるため、B液にA液を一定量投入した時点で混合液全体が中性になり、瞬時にゲル化してしまう。
ステップS106では、A液の供給量、A液のpH値、B液の供給量およびB液のpH値に基づいて、複数回に渡って1次混合液の理論pH値を算出する。
In step S<b>103, water and silicate acid are supplied to the B liquid stirring tank 21 and stirred, whereby the liquid B is prepared and stored in the liquid B storage tank 22.
In step S104, the pH of the B liquid in the B liquid storage tank 22 is measured.
In step S105, the primary supply amount of the B liquid is smaller than the planned total supply amount of the B liquid. In step S105, the liquid A is supplied to the mixed liquid stirring tank 3, and then the liquid B is primarily supplied to perform primary stirring to form a primary mixed liquid (mixed liquid). In addition, if the supply order of the liquid A and the liquid B is reversed, that is, if the liquid B is supplied first, the liquid A of the strong acid liquid is added to the liquid B of weak alkaline. At the time when a fixed amount was added, the entire mixed solution became neutral and instantly gelled.
In step S106, the theoretical pH value of the primary mixed solution is calculated over a plurality of times based on the supply amount of the A liquid, the pH value of the A liquid, the supply amount of the B liquid, and the pH value of the B liquid.

ステップS107では、ステップS106で算出した各理論pHに対応する実測pHを計測し、各実測pH値と各理論pH値の差を最小にする1次混合液の修正pHを算出し、当該修正pHに基づいて、追加するB液の量(1次追加量)を算出する。なお、ステップ107において、1次混合液の実測pH値と理論pH値との差に基づいて、B液の追加速度(1次追加速度)も算出することが好ましい。
ステップS108では、B液供給経路200を流れるB液の量を流量計202で監視しつつ、B液の追加量が1次追加量になるように、送液ポンプ201でB液を混合液攪拌槽3に供給する。なお、ステップ107で1次追加速度が算出されている場合は、B液の追加速度が1次追加速度になるように制御しつつ、B液の追加を行う。混合液攪拌槽3は、1次混合液と、追加されたB液とを2次攪拌し、2次攪拌することで2次混合液(混合液)を作液する。
In step S107, the measured pH corresponding to each theoretical pH calculated in step S106 is measured, the corrected pH of the primary mixed solution that minimizes the difference between each measured pH value and each theoretical pH value is calculated, and the corrected pH is calculated. Based on the above, the amount of liquid B to be added (first additional amount) is calculated. In addition, in step 107, it is preferable to calculate the additional speed of the solution B (first additional speed) based on the difference between the measured pH value and the theoretical pH value of the primary mixed solution.
In step S108, while monitoring the amount of the B liquid flowing through the B liquid supply path 200 with the flow meter 202, the liquid feed pump 201 agitates the mixed liquid so that the additional amount of the B liquid becomes the primary additional amount. Supply to tank 3. When the primary additional speed is calculated in step 107, the liquid B is added while controlling the additional speed of the liquid B to be the primary additional speed. The mixed liquid stirring tank 3 secondarily stirs the primary mixed liquid and the added liquid B, and secondarily stirs to form a secondary mixed liquid (mixed liquid).

ステップS109では、1次混合液の量、1次混合液の実測pH値、B液のpH、B液の1次追加量に基づいて、2次混合液の理論pH値を算出する。
ステップS110では、2次混合液の実測pH値と理論pH値との差に基づいて、2次混合液にさらに追加されるB液の2次追加量を算出する。なお、ステップS110では、2次混合液の実測pH値と理論pH値との差に基づいて、B液の追加速度(2次追加速度)も算出することが好ましい。
In step S109, the theoretical pH value of the secondary mixed solution is calculated based on the amount of the primary mixed solution, the measured pH value of the primary mixed solution, the pH of solution B, and the primary additional amount of solution B.
In step S110, the secondary addition amount of the solution B further added to the secondary mixed solution is calculated based on the difference between the actually measured pH value and the theoretical pH value of the secondary mixed solution. In addition, in step S110, it is preferable to calculate the additional speed (secondary additional speed) of the liquid B based on the difference between the measured pH value and the theoretical pH value of the secondary mixed solution.

ステップS111では、B液供給経路200を流れるB液の量を流量計202で監視しつつ、B液の追加量が2次追加量になるように、送液ポンプ201でB液を混合液攪拌槽3に供給する。なお、ステップS110で2次追加速度が算出されている場合は、B液の追加速度が2次追加速度になるように制御しつつ、B液の追加を行う。
混合液攪拌槽3は、2次混合液と、供給された2次追加B液とを攪拌して3次混合液を作液する。
なお、地盤改良材製造システムSは、ステップS109〜S111の工程を行わずに、B液を2回に分けて供給して地盤改良材を作液してもよい。2回に分けて供給すれば、より簡便に地盤改良材のpH調整が可能となり、3回以上に分けて供給すれば、よりpH誤差の少ない地盤改良材が作液可能となる。
In step S111, while monitoring the amount of the B liquid flowing through the B liquid supply path 200 with the flow meter 202, the liquid feed pump 201 agitates the mixed liquid so that the additional amount of the B liquid becomes the secondary additional amount. Supply to tank 3. In addition, when the secondary additional speed is calculated in step S110, the liquid B is added while controlling the additional speed of the liquid B to be the secondary additional speed.
The mixed liquid stirring tank 3 stirs the secondary mixed liquid and the supplied secondary additional liquid B to form a tertiary mixed liquid.
In addition, the soil improvement material manufacturing system S may supply the liquid B in two times to produce the soil improvement material without performing the steps S109 to S111. If it is supplied in two batches, the pH of the ground improvement material can be adjusted more easily, and if it is supplied in three or more batches, the ground improvement material with less pH error can be prepared.

図3に、混合液攪拌槽3における液量とpHの関係の経時変化のグラフを示し、B液の追加量および追加速度の調整について説明する。横軸が経過時間を、左軸が混合液攪拌槽3の容量に対する混合液の液量の割合を、右軸が混合液攪拌槽3内の混合液のpHを示す。
実線が混合液の量を示し、1点鎖線が計画上のA液およびB液の供給量の合計を示す。破線が混合液の実測pHを示し、2点鎖線が理論pH算出手段42により算出された混合液の計画上のpH(理論pH)を示す。
FIG. 3 is a graph showing the change over time in the relationship between the liquid amount and the pH in the mixed liquid stirring tank 3, and the adjustment of the additional amount of liquid B and the additional speed will be described. The horizontal axis represents elapsed time, the left axis represents the ratio of the amount of the mixed liquid to the volume of the mixed liquid stirring tank 3, and the right axis represents the pH of the mixed liquid in the mixed liquid stirring tank 3.
The solid line shows the amount of the mixed solution, and the alternate long and short dash line shows the planned total supply of solutions A and B. The broken line indicates the measured pH of the mixed solution, and the two-dot chain line indicates the planned pH (theoretical pH) of the mixed solution calculated by the theoretical pH calculating means 42.

時刻t1まで、混合液攪拌槽3にはA液のみが供給されている。時刻t1の時点で、計画量のA液の供給が完了し、A液の供給が停止される。その後、時刻t1からB液の1次供給が開始される。B液の供給は、混合液の急激なゲル化等を防止するため、B液の供給速度はA液の供給速度より低速である。
時刻t2の時点で、計画量のB液の1次供給が完了する。時刻t2において、1次混合液の実測pHと理論pHとを比較すると、1次混合液の実測pHは、計画上のpHよりも大きい。つまり、B液の1次混合液への影響が計画よりも大きくなってしまっている。
そこで、追加量算出手段43は、B液の追加量を計画よりも減少させる。また、B液の追加速度についても、1次混合液のpHが計画よりも高すぎるため、計画した速度よりも低速に設定する。時刻t2から、供給指示手段44は、送液ポンプ201を駆動し、B液の追加を開始する。供給指示手段44は、B液供給経路200に流れるB液を流量計202で監視し、追加量算出手段43が算出した追加速度および追加量になるように送液ポンプ201を制御する。このように、B液の追加速度と追加量を調整することにより、時刻t2から時刻t3の間の一時点において1次混合液の理論pHと実測pHとが合致し、時刻t3において、計画と一致したpH値の地盤改良材が得られる。
Until time t1, only the liquid A is supplied to the mixed liquid stirring tank 3. At time t1, the supply of the planned amount of liquid A is completed and the supply of liquid A is stopped. After that, the primary supply of the liquid B is started from time t1. The liquid B is supplied at a lower speed than the liquid A at a supply speed in order to prevent the gelation of the mixed liquid and the like.
At time t2, the primary supply of the planned amount of liquid B is completed. When the measured pH of the primary mixed solution and the theoretical pH are compared at time t2, the measured pH of the primary mixed solution is higher than the planned pH. That is, the influence of the liquid B on the primary mixed liquid is larger than planned.
Therefore, the additional amount calculating means 43 reduces the additional amount of the liquid B as compared with the plan. Moreover, since the pH of the primary mixed solution is too higher than planned, the additional speed of solution B is also set to be lower than the planned speed. From time t2, the supply instructing means 44 drives the liquid feed pump 201 to start adding the liquid B. The supply instructing means 44 monitors the B liquid flowing through the B liquid supply path 200 with the flow meter 202, and controls the liquid feed pump 201 so that the additional speed and the additional amount calculated by the additional amount calculating means 43 are obtained. As described above, by adjusting the additional speed and the additional amount of the solution B, the theoretical pH and the measured pH of the primary mixed solution match at one point between time t2 and time t3, and at the time t3, the A soil improvement material having a consistent pH value is obtained.

本実施形態の地盤改良材製造システムSおよび地盤改良材の製造方法によれば、地盤改良材の構成材料のロットごとのpHや濃度等の差異、構成材料の計量誤差、A液およびB液の混合液攪拌槽3への供給量の計測誤差等があった場合であっても、計画したpH値の地盤改良材を、攪拌槽でもって大量に作液することができる。 According to the soil improvement material manufacturing system S and the method for manufacturing the soil improvement material of the present embodiment, differences in the pH and the concentration of the constituent material of the soil improvement material for each lot, the measurement error of the constituent material, the A liquid and the B liquid Even if there is an error in the measurement of the amount supplied to the mixed liquid stirring tank 3, a large amount of the ground improvement material having the planned pH value can be prepared in the stirring tank.

以上、本発明に係る実施形態について説明したが、本発明は、前述の実施形態に限られず、各構成要素については、本発明の趣旨を逸脱しない範囲で適宜追加や変更が可能である。例えば、地盤改良材製造システムSは、前述の実施形態の構成に加えて、送液ポンプ101と混合液攪拌槽3との間で混合液を循環させる循環混合経路を備えるようにしてもよい。この循環混合経路は1以上のスタティックミキサを備え、内部を循環する液を当該スタティックミキサで攪拌することができる。
地盤改良材製造システムSは、混合液攪拌槽3へのA液の供給を完了した後、送液ポンプ101が液を送液する経路をA液供給経路100から循環混合経路に切り替え、混合液攪拌槽3の混合液を循環混合経路内で循環させる。このような構成により、地盤改良材製造システムSは、混合液を、循環混合経路内のスタティックミキサで攪拌することができる。混合液攪拌槽3の攪拌翼と循環混合経路内のスタティックミキサの両方で混合液が攪拌され、地盤改良材製造システムSの作液能力を向上させることができる。
Although the embodiment according to the present invention has been described above, the present invention is not limited to the above-described embodiment, and each component can be appropriately added or changed without departing from the spirit of the present invention. For example, the ground improvement material manufacturing system S may be provided with a circulation mixing path for circulating the mixed liquid between the liquid feed pump 101 and the mixed liquid stirring tank 3 in addition to the configuration of the above-described embodiment. This circulation mixing path is provided with one or more static mixers, and the liquid circulating inside can be agitated by the static mixers.
The soil improvement material manufacturing system S switches the route through which the liquid feed pump 101 feeds the liquid from the A liquid feed route 100 to the circulation mixing route after completing the supply of the liquid A to the mixed liquid stirring tank 3. The mixed solution in the stirring tank 3 is circulated in the circulation mixing path. With such a configuration, the ground improvement material manufacturing system S can stir the mixed liquid with the static mixer in the circulation mixing path. The mixed solution is stirred by both the stirring blades of the mixed solution stirring tank 3 and the static mixer in the circulation mixing path, and the liquid production capacity of the ground improvement material manufacturing system S can be improved.

S 地盤改良材製造システム
1 A液作液装置
11 A液攪拌槽
12 A液貯留槽
100 A液供給経路
101,201 送液ポンプ
102,202 流量計
120,220,320 pH計
2 B液作液装置
21 B液攪拌槽
22 B液貯留槽
200 B液供給経路
3 混合液攪拌槽
4 制御手段
41 計測値取得手段
42 理論pH算出手段
43 追加量算出手段
44 供給指示手段?
S Ground improvement material manufacturing system 1 A liquid preparation device 11 A liquid stirring tank 12 A liquid storage tank 100 A liquid supply path 101, 201 Liquid feed pump 102, 202 Flow meter 120, 220, 320 pH meter 2 B liquid preparation liquid Device 21 B liquid stirring tank 22 B liquid storage tank 200 B liquid supply path 3 Mixed liquid stirring tank 4 Control means 41 Measured value acquisition means 42 Theoretical pH calculation means 43 Additional amount calculation means 44 Supply instruction means?

Claims (5)

コロイダルシリカと酸とを含有するA液と珪酸塩を含有するB液とを攪拌して混合液を作液する混合液攪拌槽と、
前記混合液攪拌槽に供給された前記A液の量、前記混合液攪拌槽に供給された前記B液の量、前記A液のpH値および前記B液のpH値に基づいて、前記混合液の理論pH値を算出する理論pH算出手段と、
前記混合液の実測pH値と前記理論pH値との差に基づいて、前記混合液攪拌槽に追加する前記B液の追加量を算出する追加量算出手段とを備える、ことを特徴とする地盤改良材の製造システム。
A mixed solution stirring tank for preparing a mixed solution by stirring solution A containing colloidal silica and acid and solution B containing silicate;
Based on the amount of the liquid A supplied to the mixed liquid stirring tank, the amount of the liquid B supplied to the mixed liquid stirring tank, the pH value of the liquid A and the pH value of the liquid B, the mixed liquid A theoretical pH calculating means for calculating the theoretical pH value of
An additional amount calculating means for calculating an additional amount of the liquid B to be added to the mixed liquid stirring tank based on a difference between an actually measured pH value of the mixed liquid and the theoretical pH value. Improved material manufacturing system.
前記実測pH値と前記理論pH値との差に基づいて、前記B液を前記混合液攪拌槽に追加する際の追加速度を算出する追加速度算出手段を備える、ことを特徴とする請求項1に記載の地盤改良材の製造システム。 The additional speed calculation means for calculating an additional speed when the liquid B is added to the mixed liquid stirring tank is provided based on a difference between the measured pH value and the theoretical pH value. The ground improvement material manufacturing system described in. コロイダルシリカと酸とを含有するA液と珪酸塩を含有するB液とを攪拌して1次混合液を作液する1次攪拌工程と、
前記1次攪拌工程で供給された前記A液の量、前記1次攪拌工程で供給された前記B液の量、前記A液のpH値および前記B液のpH値に基づいて、前記1次混合液の理論pH値を算出する第1理論pH算出工程と、
前記1次混合液の実測pH値と前記理論pH値との差に基づいて、前記B液の1次追加量を算出する1次追加量算出工程と、
前記1次混合液に前記1次追加量の前記B液を供給し、攪拌して2次混合液を作液する2次攪拌工程とを含む、ことを特徴とする地盤改良材の製造方法。
A primary stirring step of stirring a liquid A containing colloidal silica and an acid and a liquid B containing a silicate to form a primary mixed liquid;
Based on the amount of the solution A supplied in the primary stirring step, the amount of the solution B supplied in the primary stirring step, the pH value of the solution A and the pH value of the solution B, the primary A first theoretical pH calculating step of calculating a theoretical pH value of the mixed solution;
A primary additional amount calculating step of calculating a primary additional amount of the liquid B based on the difference between the measured pH value of the primary mixed liquid and the theoretical pH value;
A secondary stirring step of supplying the primary additional amount of the solution B to the primary mixed solution and stirring the solution to form a secondary mixed solution.
前記実測pH値と前記理論pH値との差に基づいて、前記B液を前記1次混合液に追加する際の追加速度を算出する追加速度算出工程を含む、ことを特徴とする請求項3に記載の地盤改良材の製造方法。 4. An additional speed calculation step of calculating an additional speed when adding the solution B to the primary mixed solution based on a difference between the measured pH value and the theoretical pH value. A method for manufacturing the ground improvement material according to. 前記1次混合液の量、前記1次混合液の実測pH値、前記B液のpH、前記2次攪拌工程における前記B液の追加量に基づいて、前記2次混合液の理論pH値を算出する第2理論pH算出工程と、
前記2次混合液の実測pH値と前記2次混合液の理論pH値との差に基づいて、前記2次混合液にさらに追加される前記B液の2次追加量を算出する2次追加量算出工程と、
前記2次混合液に前記2次追加量の前記B液を供給し、攪拌して3次混合液を作液する3次攪拌工程とを含む、ことを特徴とする請求項3に記載の地盤改良材の製造方法。
The theoretical pH value of the secondary mixed solution is calculated based on the amount of the primary mixed solution, the measured pH value of the primary mixed solution, the pH of the B solution, and the additional amount of the B solution in the secondary stirring step. A second theoretical pH calculating step of calculating,
Secondary addition for calculating a secondary additional amount of the solution B to be further added to the secondary mixed solution based on a difference between an actually measured pH value of the secondary mixed solution and a theoretical pH value of the secondary mixed solution. Quantity calculation process,
4. A third stirring step of supplying the second additional amount of the solution B to the second mixed solution and stirring the mixture to form a third mixed solution, the ground according to claim 3. Method for manufacturing improved material.
JP2018243636A 2018-12-26 2018-12-26 Manufacturing system of soil improvement material and manufacturing method of soil improvement material Pending JP2020105289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243636A JP2020105289A (en) 2018-12-26 2018-12-26 Manufacturing system of soil improvement material and manufacturing method of soil improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243636A JP2020105289A (en) 2018-12-26 2018-12-26 Manufacturing system of soil improvement material and manufacturing method of soil improvement material

Publications (1)

Publication Number Publication Date
JP2020105289A true JP2020105289A (en) 2020-07-09

Family

ID=71448261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243636A Pending JP2020105289A (en) 2018-12-26 2018-12-26 Manufacturing system of soil improvement material and manufacturing method of soil improvement material

Country Status (1)

Country Link
JP (1) JP2020105289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785603C1 (en) * 2022-05-13 2022-12-09 Антон Петрович Пензев Injection solution for fixation of sand-containing massif

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910609A (en) * 1982-07-08 1984-01-20 Kyokado Eng Co Ltd Control of injection work
JPH089131Y2 (en) * 1990-04-24 1996-03-13 ジュバンスコスム株式会社 Cosmetics set
JP2003119465A (en) * 2001-10-05 2003-04-23 Kyokado Eng Co Ltd Liquefaction-preventing grouting chemical liquid
JP2011116829A (en) * 2009-12-01 2011-06-16 Kyokado Kk Grouting material and grouting method
JP2012007019A (en) * 2010-06-22 2012-01-12 Toa Harbor Works Co Ltd Mixing system of soil improvement chemical
JP2012012483A (en) * 2010-06-30 2012-01-19 Nippon Chem Ind Co Ltd Grout material for grouting and grouting method
JP2012228685A (en) * 2011-04-11 2012-11-22 Hazama Corp Injection chemical liquid for preventing diffusion of arsenic, method for preventing diffusion of arsenic in arsenic-contaminated soil, and liquid feeding device for use in the method
JP2013010829A (en) * 2011-06-28 2013-01-17 Raito Kogyo Co Ltd Grouting material for improving ground, and method for manufacturing the same
JP2015025040A (en) * 2013-07-25 2015-02-05 東亜建設工業株式会社 Method and apparatus for producing solidification material for ground injection
JP2015064340A (en) * 2013-08-27 2015-04-09 オルガノ株式会社 Hydrogen ion selective electrode, ph measuring method and sensitive membrane
JP2016074778A (en) * 2014-10-03 2016-05-12 強化土株式会社 Manufacturing installation and manufacturing method of silica sol grout

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910609A (en) * 1982-07-08 1984-01-20 Kyokado Eng Co Ltd Control of injection work
JPH089131Y2 (en) * 1990-04-24 1996-03-13 ジュバンスコスム株式会社 Cosmetics set
JP2003119465A (en) * 2001-10-05 2003-04-23 Kyokado Eng Co Ltd Liquefaction-preventing grouting chemical liquid
JP2011116829A (en) * 2009-12-01 2011-06-16 Kyokado Kk Grouting material and grouting method
JP2012007019A (en) * 2010-06-22 2012-01-12 Toa Harbor Works Co Ltd Mixing system of soil improvement chemical
JP2012012483A (en) * 2010-06-30 2012-01-19 Nippon Chem Ind Co Ltd Grout material for grouting and grouting method
JP2012228685A (en) * 2011-04-11 2012-11-22 Hazama Corp Injection chemical liquid for preventing diffusion of arsenic, method for preventing diffusion of arsenic in arsenic-contaminated soil, and liquid feeding device for use in the method
JP2013010829A (en) * 2011-06-28 2013-01-17 Raito Kogyo Co Ltd Grouting material for improving ground, and method for manufacturing the same
JP2015025040A (en) * 2013-07-25 2015-02-05 東亜建設工業株式会社 Method and apparatus for producing solidification material for ground injection
JP2015064340A (en) * 2013-08-27 2015-04-09 オルガノ株式会社 Hydrogen ion selective electrode, ph measuring method and sensitive membrane
JP2016074778A (en) * 2014-10-03 2016-05-12 強化土株式会社 Manufacturing installation and manufacturing method of silica sol grout

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785603C1 (en) * 2022-05-13 2022-12-09 Антон Петрович Пензев Injection solution for fixation of sand-containing massif

Similar Documents

Publication Publication Date Title
KR100837673B1 (en) Chemical solution feeding apparatus and method for preparing slurry
JP5828726B2 (en) Liquid mixing device
CN103726821A (en) Acid fracturing liquid continuous blending supply device
KR100623493B1 (en) High rate mixer and mixing method for slurry
JP2020105289A (en) Manufacturing system of soil improvement material and manufacturing method of soil improvement material
CN110539401A (en) Method for preparing foamed light soil for railway roadbed
CN104338481A (en) Device for diluting concentrated solution and method
CN211306899U (en) Equipment for preparing foamed light soil for railway roadbed
JP5139388B2 (en) Air mortar quality confirmation management method
CN104338447A (en) On-line solution mixing device and method
JP5755134B2 (en) Non-alkaline ground hardening chemical preparation equipment
JP2012007019A (en) Mixing system of soil improvement chemical
JP4101146B2 (en) Grout injection control method and apparatus
CN109016161A (en) Intelligent distribution and device
JP4490184B2 (en) Grout injection controller
CN103821493B (en) The continuous mixture of acidizing and fracturing fluid is for delivery method
JP4531154B2 (en) Continuous production method of foam mortar using mixer pump for continuous production of foam mortar
JP3013221B2 (en) Continuous production apparatus for kneading water for noodle making and noodle making method using kneading water for continuous production
JPH08262739A (en) Device and method for preparing developer
JP2022001701A (en) Medical liquid production method and medical liquid production system
JPH0871389A (en) Preparation of developing solution
JP7220863B2 (en) pH neutralization treatment device and pH neutralization treatment method
JPH04159390A (en) Equipment for mixing grout for ground
US20050039780A1 (en) Method for dissolving a solid material in a liquid
JPS5949280A (en) Chemical composition for ground impregnation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314