JPH0362845B2 - - Google Patents

Info

Publication number
JPH0362845B2
JPH0362845B2 JP58075423A JP7542383A JPH0362845B2 JP H0362845 B2 JPH0362845 B2 JP H0362845B2 JP 58075423 A JP58075423 A JP 58075423A JP 7542383 A JP7542383 A JP 7542383A JP H0362845 B2 JPH0362845 B2 JP H0362845B2
Authority
JP
Japan
Prior art keywords
injection
chemical
hole
density
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58075423A
Other languages
Japanese (ja)
Other versions
JPS59203119A (en
Inventor
Shunsuke Shimada
Kyoichi Myashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AASUNIKUSU KK
KYOKADO ENJINYARINGU KK
Original Assignee
AASUNIKUSU KK
KYOKADO ENJINYARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AASUNIKUSU KK, KYOKADO ENJINYARINGU KK filed Critical AASUNIKUSU KK
Priority to JP58075423A priority Critical patent/JPS59203119A/en
Publication of JPS59203119A publication Critical patent/JPS59203119A/en
Publication of JPH0362845B2 publication Critical patent/JPH0362845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は地盤または岩盤内に薬液を注入した際
の薬液の注入状態をγ線透過法により測定するよ
うにした方法およびその測定方法を用いた薬液注
入施工管理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the injection state of a chemical liquid when it is injected into the ground or bedrock using a gamma ray transmission method, and a method for managing chemical injection construction using the measuring method. .

従来のラジオアイソトープ(以下RIと略記す
る)を用いた薬液の注入状態を測定する方法とし
てはホウ素をトレーサとした反射型中性子水分計
または散乱型(反射型)γ線密度計を用いた方法
が試みられている。前者は速中性子線源と熱中性
子検出器とを収めたプローブを薬液注入孔(以下
注入孔という)内に挿入し、薬液には指標として
ホウ素又はホウ素化合物を添加したものを用い、
薬液注入後に測定可能範囲内にあるホウ素の量を
測定するようにしたものである。この測定方法は
熱中性子の拡散現象と熱中性子のホウ素による吸
収とを応用しているため線源に強いものを用いて
も測定範囲は広くならず、たかだか半径5〜10cm
の範囲内に限られ、またプローブ近傍のホウ素濃
度にだけ強く影響され測定範囲内のホウ素の平均
濃度を測ることができない。これは薬液の注入量
を測ろうとする目的には精度の低いデータしか得
られないことを意味する。更に薬液注入状態の方
向性については弁別できないという欠点があつ
た。
Conventional methods for measuring the injection status of chemical solutions using radioisotopes (hereinafter abbreviated as RI) include methods using reflection-type neutron moisture meters or scattering-type (reflection-type) gamma-ray densitometers that use boron as a tracer. is being attempted. In the former method, a probe containing a fast neutron source and a thermal neutron detector is inserted into a chemical liquid injection hole (hereinafter referred to as the injection hole), and the chemical liquid is doped with boron or a boron compound as an indicator.
This system measures the amount of boron within a measurable range after injecting a chemical solution. This measurement method applies the diffusion phenomenon of thermal neutrons and the absorption of thermal neutrons by boron, so even if a strong radiation source is used, the measurement range is not wide, and the radius is 5 to 10 cm at most.
It is not possible to measure the average concentration of boron within the measurement range because it is strongly influenced only by the boron concentration near the probe. This means that only data with low accuracy can be obtained for the purpose of measuring the amount of drug solution injected. Furthermore, there is a drawback that the directionality of the drug solution injection state cannot be discriminated.

対して後者の反射型γ線密度計は1回の散乱を
うけたγ線を検出する方式であるのでコリメータ
を設けることにより注入状態の方向性は弁別でき
るが、測定可能範囲はたかだか半径5〜10cm位で
あり、測定値は測定範囲内の密度分布に依存性が
あるので、平均密度を表わしているとは言えず、
前者の方法と同様に薬液注入量を正確に測れない
ことになる。
On the other hand, the latter reflection type gamma ray densitometer detects gamma rays that have been scattered once, so the directionality of the injection state can be determined by installing a collimator, but the measurable range is at most 5 to The measurement value is approximately 10 cm, and the measured value is dependent on the density distribution within the measurement range, so it cannot be said that it represents the average density.
As with the former method, the amount of liquid medicine to be injected cannot be measured accurately.

このように従来のRIを用いた反射型の測定器
を用いた測定方法では測定範囲が5〜10cmと狭い
ため正確な注入状態を把握するには狭い間隔で多
数の試験孔を掘削しなければならず、又測定回数
もこれに伴つて多くなるので、多大の手間と時間
とを要するという難点があり、更に本質的に精度
が低いという難点があつた。
In this way, the conventional measurement method using a reflection-type measuring device using RI has a narrow measurement range of 5 to 10 cm, so in order to accurately determine the injection state, it is necessary to drill a large number of test holes at narrow intervals. In addition, the number of measurements increases accordingly, which requires a great deal of effort and time, and furthermore, the accuracy is essentially low.

本発明はかかる従来の測定方法の改良を目的と
してなされたもので、透過型γ線密度計を適用す
ることにより狭い指向性の範囲内の平均密度が測
定できるので測定精度の向上およびその測定可能
距離の増大が図れるのでこの利点を利用して注入
孔および複数の試験孔相互間で薬液注入前後の地
盤密度を測定してその密度差を算出し、この密度
差値の分布の態様から注入薬液の浸透領域の大き
さとその形、即ち分布状態を測定するようにした
ものである。
The present invention was made with the aim of improving such conventional measurement methods, and by applying a transmission type gamma ray densitometer, it is possible to measure the average density within a narrow directivity range, thereby improving measurement accuracy and making it possible to measure the same. Since the distance can be increased, taking advantage of this advantage, the ground density before and after chemical injection is calculated between the injection hole and multiple test holes, and the density difference is calculated. The size and shape of the permeation area, that is, the state of distribution, are measured.

またこの測定方法を用いて、薬液注入時の地盤
の密度変化を経時的に測定するとともにその注入
薬液の種類および密度と注入量および注入圧の経
時的変化を測定し、上記地盤密度の経時的変化の
態様と上記注入量および注入圧の変化の態様とか
ら薬液の注入状態を測定し、薬液の注入状態をみ
ながら注入条件を調整するようにした薬液注入施
工管理方法を提供するものである。
In addition, using this measurement method, we can measure the change in ground density over time during chemical injection, and also measure the type and density of the injected chemical liquid, the injection amount, and the injection pressure over time. This invention provides a method for managing chemical injection construction in which the injection condition of the chemical liquid is measured from the mode of change and the mode of change in the above-mentioned injection amount and injection pressure, and the injection conditions are adjusted while checking the injection state of the chemical liquid. .

以下詳細に説明する。 This will be explained in detail below.

第1図は本発明で適用する透過型γ線密度計の
原理を説明するための断面図で、1は薬液注入孔
(以下単に注入孔という)、2はγ線源、3はγ線
源2を先端部に収容し、注入孔1内に挿入するた
めの挿入管、4は注入孔1から所定距離隔てた位
置に掘削された試験孔、5はプローブで、γ線検
出器(以下単に検出器という)6、これは給電す
る高圧電源7および検出器6の出力信号を増幅す
るプリアンプ8を収容し、信号線が併設されたケ
ーブル9で試験孔4内に挿入される。10は信号
線を経て送られてくるγ線検出信号をカウントす
る計数器、11は注入された薬液が固結した薬液
固結土である。
FIG. 1 is a cross-sectional view for explaining the principle of the transmission type gamma-ray densitometer applied in the present invention, in which 1 is a chemical injection hole (hereinafter simply referred to as injection hole), 2 is a γ-ray source, and 3 is a γ-ray source. 2 is housed in the tip and an insertion tube is inserted into the injection hole 1; 4 is a test hole drilled at a predetermined distance from the injection hole 1; 5 is a probe; A detector) 6 accommodates a high-voltage power supply 7 for feeding power and a preamplifier 8 for amplifying the output signal of the detector 6, and is inserted into the test hole 4 via a cable 9 with a signal line attached thereto. 10 is a counter that counts the gamma ray detection signal sent through the signal line, and 11 is a chemical liquid compacted soil in which the injected chemical liquid is solidified.

このように配置されたγ線透過型密度計では、
γ線源2から放射されたγ線のうち地盤内を透過
してきたγ線だけが検出されるので、その測定範
囲は第1図中の一点鎖線A−A′の間であつて、
その第1図−線よりみた平面図である第2図
中の一点鎖線B−B′の間に挾まれる狭い範囲と
なる。このように本装置は透過型γ線密度計であ
るので、その測定値は上記一点鎖線A−A′,B
−B′で囲まれた範囲内の地盤の平均密度を示す
ものとなり、更にその測定範囲の方向性がよい
(広がりが狭い)ので従来使用されてきた散乱型
RI計器に比べて測定精度は大幅に向上する。ま
た、γ線源2と検出器5の隔りを50cmとすると、
γ線源2に100μCiのコバルト60を用い検出器6
にGM管を用いた場合は約10分間の測定で必要な
精度で地盤の密度の測定ができ、γ線源2に10m
Ciのものを用いれば、約1分間の測定で必要な精
度の測定が可能である。
In the gamma-ray transmission type densitometer arranged in this way,
Of the γ-rays emitted from the γ-ray source 2, only the γ-rays that have passed through the ground are detected, so the measurement range is between the dashed-dotted line A-A' in FIG.
This is a narrow range sandwiched between dashed-dotted line B-B' in FIG. 2, which is a plan view taken from the line in FIG. In this way, since this device is a transmission type gamma ray densitometer, the measured values are as shown on the dashed-dotted lines A-A' and B.
It indicates the average density of the ground within the area surrounded by −B′, and the measurement range has good directionality (narrow spread), so it is different from the conventionally used scattering type.
Measurement accuracy is significantly improved compared to RI instruments. Also, if the distance between the γ-ray source 2 and the detector 5 is 50 cm,
100μCi of cobalt-60 is used as gamma ray source 2 and detector 6
If a GM tube is used for measurement, the density of the ground can be measured with the necessary accuracy in about 10 minutes.
If Ci is used, it is possible to measure with the necessary accuracy in about 1 minute.

第3図は本発明を1シヨツト方式若しくは1.5
シヨツト方式の薬液注入工法に適用した一実施例
の断面図、第4図はその試験孔4の配置を示す平
面図で、12は注入管、13は注入薬液の吐出
孔、14は薬液を圧送する注入ポンプ、15は注
入管12の先端部分に設けられγ線源2を着脱自
在に装着しうるように構成された線源装着部、4
−1〜4−6は注入孔1を中心とする円周上に等
間隔に設けられた試験孔で、この例は正六角形の
各頂角に位置するように設けられている。6−1
〜6−6は各試験孔4−1〜4−6内にそれぞれ
挿入された検出器で、計数器10は各検出器6−
1〜6−6から送出される検出信号を各別に計数
するように構成されている。
Figure 3 shows how the present invention can be used in one shot method or 1.5
4 is a cross-sectional view of an embodiment applied to the shot method chemical injection method, and FIG. 4 is a plan view showing the arrangement of the test holes 4, where 12 is an injection pipe, 13 is a discharge hole for injecting chemical liquid, and 14 is a pressure-feeding chemical liquid. An injection pump 15 is provided at the distal end of the injection tube 12 and is configured to allow the gamma ray source 2 to be detachably attached thereto;
-1 to 4-6 are test holes provided at equal intervals on a circumference centered on injection hole 1, and in this example, test holes are provided so as to be located at each apex angle of a regular hexagon. 6-1
-6-6 are detectors inserted into each of the test holes 4-1 to 4-6, and the counter 10 is inserted into each of the test holes 4-1 to 4-6.
It is configured to separately count the detection signals sent from 1 to 6-6.

次に測定手順を説明する。 Next, the measurement procedure will be explained.

まず薬液注入前の地盤の密度を測定する。γ線
源2に10mCiのものを用い、線源2と検出器6の
間隔を50cmとすると約1分間の測定時間で必要な
精度の測定が可能である。つぎに薬液の注入を開
始し、所定量の注入が終るまでの間、各検出器6
−1〜6−6の計数率を所定の時間間隔(この例
では1分間)毎に記録し、最後に注入終了後の密
度測定を行い記録する。このような作業を注入管
12とプローブ5とを所定長ずつ引き上げながら
繰返し、所定ステージの薬液注入を終了する。
First, the density of the ground before chemical injection is measured. If a 10 mCi gamma ray source 2 is used and the distance between the ray source 2 and the detector 6 is 50 cm, the required accuracy can be measured in a measurement time of about 1 minute. Next, the injection of the chemical solution is started, and each detector 6 is
The counting rate of -1 to 6-6 is recorded at predetermined time intervals (1 minute in this example), and finally, the density is measured and recorded after the injection is completed. Such operations are repeated while pulling up the injection tube 12 and probe 5 by a predetermined length to complete the injection of the chemical liquid at a predetermined stage.

このようにすると、これらのデータに基づいて
注入孔の周囲の薬液注入時の地盤の密度変化の態
様と薬液注入前後の地盤密度の分布状態、即ち増
大値とその位置関係およびこれらの立体的な関係
を知ることができるので、これらの情報から薬液
の注入状態、即ち薬注固結土11の大きさとその
形状を精度よく測定することができる。
In this way, based on these data, it is possible to determine the mode of change in the density of the ground around the injection hole when the chemical is injected, the distribution state of the ground density before and after the chemical is injected, that is, the increase value, its positional relationship, and the three-dimensional relationship between the two. Since the relationships can be known, it is possible to accurately measure the injection state of the chemical solution, that is, the size and shape of the chemical injection compacted soil 11, from this information.

なお、地盤の種類によつては薬液注入時の地盤
の密度変化の態様まで知る必要のない場合もある
が、この場合は薬液注入前と注入後に地盤の密度
を立体的に測定し、その薬液注入による地盤の密
度の増加量(以下単に密度差値という)を算出す
ればその密度差値は当該測定範囲内の薬液注入量
を示すものとなるので、この密度差値の分布状態
から注入孔1の周囲の薬液の注入状態を測定する
ことができる。この場合プローブ5を各試験孔4
−1〜4−6内に順次挿入して測定するようにし
てもよいことはいうまでもない。
Depending on the type of ground, it may not be necessary to know how the density of the ground changes when the chemical is injected, but in this case, the density of the ground is measured three-dimensionally before and after the chemical is injected, and the chemical solution is measured three-dimensionally. If the amount of increase in ground density due to injection (hereinafter simply referred to as density difference value) is calculated, the density difference value will indicate the amount of chemical solution injected within the measurement range, so the injection hole can be determined from the distribution of this density difference value. It is possible to measure the injection state of the drug solution around 1. In this case, probe 5 is inserted into each test hole 4.
It goes without saying that the measurements may be made by sequentially inserting the signals within -1 to 4-6.

また地盤の密度差値(即ち薬液注入量)の測定
は、注入孔1と試験孔4との間の測定に限られる
ものではなく、例えば第5図に示すように試験孔
4−1,4−4内にγ線源2−1,2−4をそれ
ぞれ挿入し、検出器6−2,6−3,6−5,6
−6で薬液注入前後にそれぞれ測定すれば試験孔
4−1と4−2、4−1と4−6、4−4と4−
3および4−4と4−5の間の密度差値を算出す
ることができ、γ線源2と検出器6の位置を変え
ることにより全ての試験孔4−1〜4−6の間の
密度差値を算出することができる。この試験孔4
−1〜4−6の間の密度差値の分布の態様を加え
ることにより更に精度よく薬液の注入状態を測定
することができ、更にこれら試験孔の間の薬液注
入時の地盤密度の経時的な変化をも測定してその
変化の態様を加えれば、更に精度のよい薬液の注
入状態を測定することができる。
Furthermore, the measurement of the ground density difference value (that is, the amount of chemical injection) is not limited to the measurement between the injection hole 1 and the test hole 4. For example, as shown in FIG. Insert the γ-ray sources 2-1 and 2-4 into the detectors 6-2, 6-3, 6-5, and 6, respectively.
-6, test holes 4-1 and 4-2, 4-1 and 4-6, 4-4 and 4-
The density difference value between 3 and 4-4 and 4-5 can be calculated, and by changing the position of the γ-ray source 2 and the detector 6, the density difference value between all the test holes 4-1 to 4-6 can be calculated. A density difference value can be calculated. This test hole 4
By adding the form of the distribution of density difference values between -1 and 4-6, it is possible to measure the injection state of the chemical liquid with even greater accuracy, and furthermore, it is possible to measure the injection state of the chemical liquid over time between these test holes at the time of the chemical liquid injection. By measuring such changes and adding the manner of the changes, it is possible to measure the injection state of the drug solution with even higher accuracy.

なお薬液注入時は地盤密度を測定するには第3
図に図示した注入管12を用いれば別にγ線源2
を挿入する必要がないので便利である。
In addition, when injecting chemical liquid, the third method is used to measure the ground density.
If the injection tube 12 shown in the figure is used, the gamma ray source 2 can be used separately.
This is convenient because there is no need to insert .

なお第3図に示した注入管は1シヨツト方式若
しくは1.5シヨツト方式の施工に適用する一実施
例を示したもので、2シヨツト方式の注入管の一
実施例を第6図に示す。
The injection pipe shown in FIG. 3 shows an embodiment that is applied to one shot method or 1.5 shot method construction, and FIG. 6 shows an embodiment of a two shot method injection pipe.

図において16は内管、17は外管で、内管1
6には吐出孔13が形成されるとともに先端部分
に線源装着部15が設けられており、外管17の
先端部分には注入孔掘削のためのメタルクラウン
18が装着された二重管で注入管12が構成され
る。注入薬液は内管16から硬化剤が、外管17
から主剤がそれぞれ圧送され、外管17の先端部
分で混合されて吐出口19から地盤内に注入され
る。
In the figure, 16 is the inner tube, 17 is the outer tube, and the inner tube 1
6 is formed with a discharge hole 13 and is provided with a radiation source attachment part 15 at its tip, and the outer tube 17 is a double tube with a metal crown 18 attached to the tip for drilling an injection hole. An injection tube 12 is configured. The injected chemical solution is supplied from the inner tube 16 to the curing agent, and from the outer tube 17
The base agents are pumped through the tubes, mixed at the tip of the outer tube 17, and injected into the ground through the discharge port 19.

また第4図に示した実施例では、試験孔4は注
入孔1を中心とする円周上に正六角形となるよう
に配設したが、この例に限られるものではなく他
の正多角形としてもよく、また必ずしも試験孔か
らの距離および試験孔の間隔も同一である必要は
ない。ただ試験孔4を正多角形に配置すれば平面
的な地盤の密度変化の解析が容易となり、また注
入孔1を中心として左右対象に配置することによ
り断面的な地盤の密度変化の解析が容易になる利
点がある。
Further, in the embodiment shown in FIG. 4, the test holes 4 are arranged so as to form a regular hexagon on the circumference centered on the injection hole 1, but the test hole 4 is not limited to this example, and other regular polygons may be formed. Also, the distance from the test hole and the interval between the test holes do not necessarily have to be the same. However, by arranging the test holes 4 in a regular polygon, it becomes easier to analyze planar ground density changes, and by arranging them symmetrically with injection hole 1 as the center, it is easier to analyze cross-sectional ground density changes. There are advantages to becoming

また上記実施例では、線源装着部15を注入管
の先端部に配設した例を示したがこの位置に限ら
れるものでないことはいうまでもない。
Further, in the above embodiment, an example was shown in which the radiation source mounting part 15 was disposed at the tip of the injection tube, but it goes without saying that the position is not limited to this.

つぎに上記注入薬液の分布状態測定方法を利用
した薬液注入施工管理方法を説明する。
Next, a method for managing chemical injection construction using the above-mentioned method for measuring the distribution state of an injected chemical will be explained.

第3図に示すように注入孔1内にはγ線源2と
注入管12とを挿入し、周囲の試験孔4−1〜4
−6にはそれぞれ検出器6−1〜6−6を挿入
し、薬液注入前後、および注入時の地盤の密度変
化を測定する。これと同時に注入時の薬液の注入
量Q、注入圧Pを常時測定し、これらの変化の態
様と上記注入時の地盤の密度変化の態様とを対比
させて注入状態を監視し、異常のあるときは必要
な調整を行うようにしたものである。
As shown in FIG. 3, the gamma ray source 2 and injection tube 12 are inserted into the injection hole 1, and the surrounding test holes 4-1 to 4-4 are inserted into the injection hole 1.
-6 are respectively inserted with detectors 6-1 to 6-6 to measure changes in density of the ground before and after and during injection of the chemical solution. At the same time, the injection amount Q and injection pressure P of the chemical solution during injection are constantly measured, and the injection status is monitored by comparing the changes in these changes with the changes in the density of the ground during injection, and any abnormalities are detected. At that time, necessary adjustments were made.

例えばある注入ステージにおいて地盤の密度の
増大がみられない場合は、その注入ステージでは
薬液の逸走しやすい層があると考えられ、この場
合はゲル化時間を短縮し、かつ注入圧Pと注入量
Qを適正に調整して注入することにより地盤の状
態に適合した施工を行うことができる。
For example, if there is no increase in the density of the ground at a certain injection stage, it is thought that there is a layer at that injection stage where the chemical solution easily escapes, and in this case, the gelation time should be shortened, and the injection pressure P and injection volume should be adjusted. By appropriately adjusting Q and pouring, construction can be carried out that suits the ground condition.

この例の外、薬液注入時の地盤密度の経時的変
化の態様と、薬液の注入圧P、注入量Qの経時的
変化の態様とから注入量Q、注入圧Pが適当であ
るか否か、注入終了時点の測定、注入薬液のゲル
化時間が適当であるか否か等の判断を適確に行い
うるので薬液の浸透状態をみながら注入条件を管
理する施工管理を行うことができる。
In addition to this example, whether or not the injection amount Q and injection pressure P are appropriate based on the manner in which the ground density changes over time when the chemical solution is injected, and the manner in which the injection pressure P and injection amount Q of the chemical solution change over time. Since it is possible to accurately measure the end of injection and to judge whether the gelling time of the injected chemical is appropriate, it is possible to carry out construction management that manages injection conditions while monitoring the permeation state of the chemical.

本発明は以上詳細に説明したように薬液注入孔
の周囲に適宜間隔で試験孔を設け、γ線源を何れ
かの孔内に、γ線検出器を他の何れかの孔内に挿
入して薬液注入前と後の地盤の密度を測定してそ
の密度差値を算出する作業を所望の各孔の間につ
いてそれぞれ行い、これらの密度差値の分布の態
様から当該地盤内に注入された薬液の注入状態を
測定するようにしたもので、透過型γ線密度計で
測定するので測定範囲が広くなり試験孔の数を少
くできるとともに方向分布についての情報も得ら
れ、更に得られた測定値は測定範囲内の平均密度
であるので地盤内に注入されている薬液の量を精
度よく測定できる利点もある。従つてこの各孔間
の薬液注入前と注入後の地盤の密度差の分布状態
から薬液の注入状態を精度よく測定することがで
き、更に薬液注入時の各孔の間の地盤の密度の変
化の態様を上記薬液注入前後の地盤の密度差の分
布状態に加えて総合的に判断することにより、更
に精度のよい薬液の注入状態を測定することがで
きる。
As explained in detail above, the present invention provides test holes at appropriate intervals around the chemical injection hole, inserts a gamma ray source into one of the holes, and inserts a gamma ray detector into the other hole. The density of the ground before and after chemical injection is measured and the density difference is calculated between each desired hole, and the distribution of these density differences determines whether the chemical has been injected into the ground. This is designed to measure the injection state of the chemical solution.Since the measurement is performed using a transmission type gamma ray densitometer, the measurement range is wide, the number of test holes can be reduced, and information on the directional distribution can also be obtained. Since the value is the average density within the measurement range, it also has the advantage of being able to accurately measure the amount of chemical solution injected into the ground. Therefore, it is possible to accurately measure the injection state of the chemical solution from the distribution state of the difference in the density of the ground between each hole before and after the chemical injection, and also to measure the change in the density of the ground between each hole when the chemical solution is injected. By comprehensively determining this aspect in addition to the distribution state of the density difference in the ground before and after the chemical injection, it is possible to measure the injection state of the chemical liquid with even higher accuracy.

また上記薬液注入時の地盤の密度の変化と、薬
液の注入圧P、注入量Qの経時的変化とをみるこ
とにより、薬液の逸走等の注入状態を弁別するこ
とができ、注入状態に応じた適切な施工管理を行
うことができる。
In addition, by looking at changes in the density of the ground during the injection of the chemical solution, and changes over time in the injection pressure P and injection amount Q of the chemical solution, it is possible to distinguish injection conditions such as escape of the chemical solution, and depending on the injection state. It is possible to carry out appropriate construction management.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で適用する透過型γ線密度計の
原理を説明するための断面図、第2図は第1図
−線よりみた測定範囲を示す平面図、第3図は
本発明の一実施例の断面図、第4図はその試験孔
の配置を示す平面図、第5図は他の実施例におけ
る配置例を示す平面図、第6図は2シヨツト方式
の注入管に適用した実施例の先端部分の構成を示
す断面図である。 符号の説明、1……薬液注入孔、2,2−1,
2−4……γ線源、3……挿入管、4,4−1〜
4−6……試験孔、5……プローブ、6,6−1
〜6−6……γ線検出器、7……高圧電源、8…
…プリアンプ、9……ケーブル、10……計数
器、11……薬注固結土、12……注入管、13
……吐出孔、14……薬液注入ポンプ、15……
線源装着部、16……内管、17……外管、18
……メタルクラウン、19……吐出口。
Fig. 1 is a cross-sectional view for explaining the principle of the transmission type gamma ray densitometer applied in the present invention, Fig. 2 is a plan view showing the measurement range as seen from the line in Fig. A sectional view of one embodiment, Fig. 4 is a plan view showing the arrangement of the test holes, Fig. 5 is a plan view showing an arrangement example of another embodiment, and Fig. 6 is a plan view showing the arrangement of the test holes. FIG. 3 is a cross-sectional view showing the configuration of the tip portion of the example. Explanation of symbols, 1... Chemical injection hole, 2, 2-1,
2-4... γ-ray source, 3... Insertion tube, 4, 4-1~
4-6...Test hole, 5...Probe, 6,6-1
~6-6... γ-ray detector, 7... High voltage power supply, 8...
... Preamplifier, 9 ... Cable, 10 ... Counter, 11 ... Chemical injection compacted soil, 12 ... Injection pipe, 13
...Discharge hole, 14...Medical solution injection pump, 15...
Source attachment part, 16... Inner tube, 17... Outer tube, 18
...Metal crown, 19...Discharge port.

Claims (1)

【特許請求の範囲】 1 薬液注入孔の周囲に適宜間隔で試験孔を設
け、γ線源を前記注入孔および試験孔のうちの何
れかの孔内に、γ線検出器を他の何れかの孔内に
挿入して薬液注入前と後の地盤の密度を測定して
その密度差値を算出する作業を所望の各孔の間に
ついてそれぞれ行い、これらの密度差値の分布の
態様から当該地盤内に注入された薬液の注入状態
を測定するようにした薬液の注入状態測定方法。 2 薬液注入時の各孔間の地盤の密度変化を経時
的に測定し、これら各孔間の地盤密度の経時的変
化の態様を加味して当該地盤内に注入された薬液
の注入状態を測定するようにした特許請求の範囲
第1項記載の薬液の注入状態測定方法。 3 薬液注入孔内にγ線源を挿入し、各試験孔内
にはそれぞれγ線検出器を挿入して薬液注入孔と
各試験孔との間の地盤の密度を測定するようにし
た特許請求の範囲第1項記載の薬液の注入状態測
定方法。 4 何れかの試験孔内にγ線源を挿入し、その他
の1または複数の試験孔内にγ線検出器を挿入し
て両試験孔間の地盤の密度を測定するようにした
特許請求の範囲第1項記載の薬液の注入状態測定
方法。 5 薬液注入孔を中心とする円周上に等間隔に複
数の試験孔を設けるようにした特許請求の範囲第
1項記載の薬液の注入状態測定方法。 6 薬液注入孔内には薬液注入管とともにγ線源
を挿入し、上記注入孔の周囲に設けた複数の試験
孔内にはそれぞれγ線検出器を挿入して薬液注入
前後の地盤の密度差および注入時の地盤の密度の
経時的変化を上記注入孔と各試験孔との間につい
てそれぞれ測定するとともに、薬液注入時の注入
量および注入圧の経時的変化を測定し、上記注入
時の地盤密度の経時的変化の態様と、上記注入量
および注入圧の変化の態様とから薬液の注入状態
を測定するようにしたことを特徴とする薬液注入
施工管理方法。
[Scope of Claims] 1. Test holes are provided at appropriate intervals around the chemical injection hole, and a γ-ray source is placed in either the injection hole or the test hole, and a γ-ray detector is placed in any of the other holes. The work of inserting the chemical into the hole and measuring the density of the ground before and after injecting the chemical solution and calculating the density difference value is performed between each desired hole, and the density difference value is calculated based on the distribution of these density difference values. A method for measuring the injection state of a chemical solution that measures the injection state of a chemical solution injected into the ground. 2. Measure the change in the density of the ground between each hole over time when the chemical solution is injected, and measure the injection state of the chemical solution injected into the ground by taking into account the changes in the ground density between these holes over time. A method for measuring the injection state of a medicinal solution according to claim 1. 3. A patent claim in which a gamma ray source is inserted into the chemical solution injection hole, and a gamma ray detector is inserted into each test hole to measure the density of the ground between the chemical solution injection hole and each test hole. A method for measuring the injection state of a medicinal solution according to item 1. 4. A patent claim in which a gamma ray source is inserted into one of the test holes and a gamma ray detector is inserted into one or more of the other test holes to measure the density of the ground between both test holes. A method for measuring the injection state of a medicinal solution according to scope 1. 5. The method for measuring the injection state of a chemical liquid according to claim 1, wherein a plurality of test holes are provided at equal intervals on a circumference centered on the chemical liquid injection hole. 6 Insert a gamma ray source along with a chemical injection tube into the chemical injection hole, and insert a gamma ray detector into each of the multiple test holes provided around the injection hole to detect the density difference in the ground before and after chemical injection. In addition, we measured the change over time in the density of the ground at the time of injection between the injection hole and each test hole, and measured the change over time in the injection amount and injection pressure during chemical injection. A chemical liquid injection construction management method, characterized in that the injection state of the chemical liquid is measured from the temporal change in density and the change in the injection amount and injection pressure.
JP58075423A 1983-04-28 1983-04-28 Method and grout injection pipe for measuring injection condition of grout and grout injection control system Granted JPS59203119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075423A JPS59203119A (en) 1983-04-28 1983-04-28 Method and grout injection pipe for measuring injection condition of grout and grout injection control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075423A JPS59203119A (en) 1983-04-28 1983-04-28 Method and grout injection pipe for measuring injection condition of grout and grout injection control system

Publications (2)

Publication Number Publication Date
JPS59203119A JPS59203119A (en) 1984-11-17
JPH0362845B2 true JPH0362845B2 (en) 1991-09-27

Family

ID=13575769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075423A Granted JPS59203119A (en) 1983-04-28 1983-04-28 Method and grout injection pipe for measuring injection condition of grout and grout injection control system

Country Status (1)

Country Link
JP (1) JPS59203119A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652230B2 (en) * 1987-05-29 1994-07-06 水資源開発公団 Method and apparatus for measuring density distribution inside a stratified layer of granular material
JPH01285843A (en) * 1988-05-13 1989-11-16 Green Technol:Kk System for measuring underground seepage water
JPH079094B2 (en) * 1989-03-31 1995-02-01 鹿島建設株式会社 Quality control method in the stirring and mixing process of excavated soil and solidified material
JPH0454484A (en) * 1990-06-22 1992-02-21 Kyokado Eng Co Ltd Ground investigating method
JPH0637748U (en) * 1992-10-26 1994-05-20 清水建設株式会社 Measuring device for soil density and water content
CN104834014A (en) * 2015-05-05 2015-08-12 核工业二〇三研究所 Radioactive mineral geological exploration device
JP7323430B2 (en) * 2019-11-06 2023-08-08 五洋建設株式会社 Method, program and apparatus for managing dosing efficiency
CN112031705B (en) * 2020-08-19 2022-06-10 北京大地高科地质勘查有限公司 Grouting effect detection equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383307A (en) * 1976-12-28 1978-07-22 Taisei Corp Method of examining injected grout
JPS5392821A (en) * 1977-01-25 1978-08-15 Mizushigen Kaihatsu Koudan Apparatus for detetcing concentration of cement milk and mortar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383307A (en) * 1976-12-28 1978-07-22 Taisei Corp Method of examining injected grout
JPS5392821A (en) * 1977-01-25 1978-08-15 Mizushigen Kaihatsu Koudan Apparatus for detetcing concentration of cement milk and mortar

Also Published As

Publication number Publication date
JPS59203119A (en) 1984-11-17

Similar Documents

Publication Publication Date Title
US6220371B1 (en) Downhole in-situ measurement of physical and or chemical properties including fluid saturations of cores while coring
US11668844B2 (en) System and method for the detection of gamma radiation from a radioactive analyte
US7312460B2 (en) High energy gamma probe with position sensing capability
US5984023A (en) Downhole in-situ measurement of physical and or chemical properties including fluid saturations of cores while coring
US5704890A (en) Real time sensor for therapeutic radiation delivery
Belcher The measurement of soil moisture and density by neutron and gamma-ray scattering
EP1481265B1 (en) Method and apparatus for real time dosimetry
CA2090393C (en) Method and apparatus for locating stratification in production fluid in a well
JPH0362845B2 (en)
Votaw et al. Performance evaluation of the Pico-Count flow through detector for use in cerebral blood flow PET studies
Hickernell et al. Dual-detector probe for surgical tumor staging
US3778613A (en) Pipe-line leak detection method and device
US7205546B1 (en) Spherical PET mammography scanner
JPH0455790A (en) Examination of ground
JPS6244680A (en) Bed density logging using two detector and line source
MAcINTYRE et al. A method for continuously recording the disappearance of radioactive tracers from circulating blood
CN1210272A (en) Intellectual dynamic parameter meter for underground water in single well
NL2033056B1 (en) Portable soil density meter
Hallenburg Interpretation of gamma-ray logs
US3536918A (en) Method for calibrating thermal neutron decay logging device
JPH0454484A (en) Ground investigating method
CN205374768U (en) Ground -source heat pump pipe laying vertically recharges closely knit degree test system
JPH0546435B2 (en)
Jones et al. The measurement of spleen perfusion in man: a non-invasive method using the ratio between rubidium-81 and its decay product krypton-81m
EP0956814B1 (en) Mesuring cardiac ejection fraction by radiation