JPS59105612A - Separating element for plane of polarization of light - Google Patents

Separating element for plane of polarization of light

Info

Publication number
JPS59105612A
JPS59105612A JP21668782A JP21668782A JPS59105612A JP S59105612 A JPS59105612 A JP S59105612A JP 21668782 A JP21668782 A JP 21668782A JP 21668782 A JP21668782 A JP 21668782A JP S59105612 A JPS59105612 A JP S59105612A
Authority
JP
Japan
Prior art keywords
waveguide
optical
refractive index
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21668782A
Other languages
Japanese (ja)
Inventor
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP21668782A priority Critical patent/JPS59105612A/en
Publication of JPS59105612A publication Critical patent/JPS59105612A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To permit easy production, efficient sepn. of planes of polarization and control of polarized light and to decrease the loss of guided light by disposing two optical waveguides in proximity to each other and providing control electrodes to the respective optical waveguides. CONSTITUTION:The 1st optical waveguide which is made larger in both extraordinary refractive index and ordinary refractive index than a base plate 21 and the 2nd optical waveguide 23 which is made larger only in the extraordinary refractive index than the base plate are disposed in parallel, and electrode groups 24-26 are constituted. Only the TM mode polarized light of the light P incident to the waveguide 22 is then led out to the waveguide 23 and the difference in the phase velocities of respective polarization modes is controlled by the groups 24-26. Such device is usable as a modulator, switch and synthesizing element for planes of polarization. Both waveguides can be formed independently, and since the high refractive index forming materials are respectively of one kind, diffusion control is easy and there is no induction of crystal strain. Since the element is linear-shaped, the loss of the guided light is decreased.

Description

【発明の詳細な説明】 (発明の分野) この発明は、入射光を特定の偏波上−ドの光に分離する
光偏波面分離素子に関づる。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to an optical polarization separation element that separates incident light into light with a specific polarization top.

(従来技術とその問題点) 従来、この種光偏波面分離素子としでは、例えば第1図
に示すものが知られている。同図において、基板1はa
−カッ1〜のニオブ酸リチウムからなり、この基板1上
には結合導波路2a1分岐導波路2bおよび2Cからな
るY分岐導波路2が次のようにして形成されている。ま
ずチタンを拡散させて結合導波路2aと一方の分岐導波
路2bを形成し、次いで他方の分岐導波路2cを銀を拡
散して形成する。このとき、結合導波路2aにも銀を拡
散づる。その結果、分岐導波路2bは異常屈折率と常屈
折率とが共に増加し、また分岐導波路2Cは異常屈折率
のみが増加したものになる。そして、分岐導波路2Gに
おける異常屈折率の増加値は分岐導波路2bにおけるも
のよりも大ぎくしである。従って、結合導波路2aにお
いては、異常屈折率の増加値は分岐導波路2cと略等し
く、常屈折率の増加値は分岐導波路2bと等しい。
(Prior Art and its Problems) Conventionally, as this type of optical polarization plane splitting element, for example, the one shown in FIG. 1 is known. In the figure, the substrate 1 is a
On this substrate 1, a Y-branch waveguide 2 consisting of a coupling waveguide 2a, branch waveguides 2b and 2C is formed as follows. First, the coupling waveguide 2a and one branch waveguide 2b are formed by diffusing titanium, and then the other branch waveguide 2c is formed by diffusing silver. At this time, silver is also diffused into the coupling waveguide 2a. As a result, both the extraordinary refractive index and the ordinary refractive index of the branch waveguide 2b increase, and the branch waveguide 2C becomes one in which only the extraordinary refractive index increases. Further, the increase value of the extraordinary refractive index in the branch waveguide 2G is much larger than that in the branch waveguide 2b. Therefore, in the coupling waveguide 2a, the increase value of the extraordinary refractive index is approximately equal to that of the branch waveguide 2c, and the increase value of the ordinary refractive index is equal to that of the branch waveguide 2b.

以上の構成にJ5いて、結合導波路2aに入射した光P
は、結合導波路部2aにおいて、異常光線に対応りる偏
波モー1〜と常光線に対I、i5′Tl8(Iii波モ
ー(2が生じ、それぞれ異なる位相速度て伝搬づる。
With the above configuration J5, the light P incident on the coupling waveguide 2a
In the coupling waveguide section 2a, polarized wave modes 1 to 1 corresponding to the extraordinary ray and pairs I, i5'Tl8 (Iii wave mode (2) of the ordinary ray are generated, and they propagate at different phase velocities.

このどき、基板1はa−カッ1〜であるから、異常光線
に対応づる偏波モードは振動方向がC軸方向にある−1
−「七−ドであり、また常光線に対応する偏波モードは
、振動方向がa軸方向にある丁Mモードである。でして
、両分枝導波路2b、2cの異富屈Iバ串値の大小関係
り日うして、Tロモードは分岐導波路2Cに導波され、
T Mモー1〜は5)岐シ9波路21)に導波される。
At this time, since the substrate 1 is a-c1~, the polarization mode corresponding to the extraordinary ray has a vibration direction in the C-axis direction -1
The polarization mode corresponding to the ordinary ray is the M mode whose vibration direction is in the a-axis direction. Depending on the magnitude of the bar value, the T mode is guided to the branch waveguide 2C,
The T M waves 1 to 5) are guided to a branch 9 wavepath 21).

しかし、このようなY分岐形の偏波面分離素子にあって
は次のような問題がある。まず、結合導波路2aてはチ
タンを拡散し更に銀を拡散するのであるが、銀はチタン
拡散領域に拡散し難い/(め、銀の拡散制御が困IIJ
であり、またこの銀の拡散が結晶に歪を生じさせる原因
になる。また、TEモートどT Mモードの分断を効率
良く行なうためには、分岐導波路2Cの異常屈折率の値
を分岐導波路に83りるイれよりも大きくしな(プれば
ならないが、上述のJ:うに、銀の拡散制御が困難であ
るから、両脣波路2b、2cにおける異常屈折率の増加
愉の差は僅かなものとなり、T[モードは分岐導波路2
1)側にも導波されてしまう。つまり、偏波面の分離が
不充分である。更に、導波路が分岐形であるため、曲り
による損失に加えて分岐による損失が生ずる。最後に、
このY分岐形光偏波面分離素子にあっては、単に光偏波
面の分離をくヱづのみで分離された偏波光を制御Jるこ
とができない。
However, such a Y-branch type polarization plane separation element has the following problems. First, the coupling waveguide 2a diffuses titanium and further diffuses silver, but silver is difficult to diffuse into the titanium diffusion region.
This diffusion of silver also causes distortion in the crystal. In addition, in order to efficiently split the TM mode such as TE mode, the value of the extraordinary refractive index of the branching waveguide 2C must be made larger than the value of 83 in the branching waveguide. As mentioned above, since it is difficult to control the diffusion of silver, the difference in the increase in the extraordinary refractive index between the two waveguides 2b and 2c is small, and the T [mode is
1) The wave is also guided to the side. In other words, the polarization plane separation is insufficient. Furthermore, since the waveguide is of a branched type, a loss due to branching occurs in addition to a loss due to bending. lastly,
In this Y-branch type optical polarization plane separation element, it is not possible to control the separated polarized light simply by separating the optical polarization planes.

・〈発明の目的) この発明は、2つの光導波路を近接し−(−配「jし、
かつ各光導波路に駒部電極を設Gプることにより、製造
が容易であり、かつ偏波面の分断が効率良く行なえると
ともに偏波光の制御を可能にし、θ1せて、導波光の損
失を低減化できる光偏波面分離素子を提供することにあ
る。
・〈Object of the invention〉This invention provides two optical waveguides that are arranged close to each other and
In addition, by providing a bridge electrode in each optical waveguide, manufacturing is easy, polarization planes can be split efficiently, polarized light can be controlled, and loss of guided light can be reduced by increasing θ1. It is an object of the present invention to provide an optical polarization plane splitting element that can reduce the amount of light.

・〈発明の構成と効果) この発明は、上記目的を達成Jるために、光・新結晶基
板上に、異常屈折率と常屈折率とを共に該基板よりも大
きくした第1の光導波路と、異常層11θyのみを該基
板よりも大きくした第2の光導波路とを所定長さ平行に
配設し、かつ上記第1の光導波路」−にその光伝搬方向
に複数に分割して形成され交互に逆電圧が印加される第
1の電極群と、上記第2の光導波路」二に一連に形成さ
れた第2の電極とを有していることを特徴とりる。
・<Structure and Effects of the Invention> In order to achieve the above object, the present invention provides a first optical waveguide on an optical/new crystal substrate in which both the extraordinary refractive index and the ordinary refractive index are larger than that of the substrate. and a second optical waveguide in which only the abnormal layer 11θy is larger than the substrate are arranged in parallel for a predetermined length, and the first optical waveguide is divided into a plurality of parts in the optical propagation direction. and a second electrode group formed in series on the second optical waveguide.

この構成によれば、上記第1の電極群a3よび第2の電
極により上記第1の光導波路に八111=1 シた光の
うちの4?j定の偏波モートの光が上記第2の先導波路
に導出される。このとさ、」二記第1の電極群63J:
び第2の電極により上記第′1.第2の先導波路の光波
結合の態様および8導波路に分離己れC導波される各偏
波モードの位相速度差を制御C゛きるので、各導波路の
異常屈折率値(ま等しくなくても、この偏波モードの分
l1lI[ができる。そして、これらの制御1ffi極
を用いることにより、この発明に係る光偏波面分#l素
子は変調器、スイッチおよび偏波面合成素子として使用
できる。また、両導波路は独立に形成Cき、かつ各導波
路の高屈折率形成物質はそれぞ1シ1種で良いので、従
来のような拡散制御の困難性や結晶歪の誘発等の問題1
.iなくなり、′JA造容易である。更に、各導波路は
略直線状に形成でき、導波光の損失を著しく低減させ1
りる。
According to this configuration, 4 of the 8111=1 lights transmitted to the first optical waveguide by the first electrode group a3 and the second electrode? Light with a polarization moat constant j is guided to the second leading wavepath. In this case, the first electrode group 63J:
and the second electrode. Since it is possible to control the mode of optical wave coupling in the second leading waveguide and the phase velocity difference of each polarization mode that is separated into eight waveguides and guided, the extraordinary refractive index values of each waveguide (or unequal By using these control 1ffi poles, the optical polarization plane component #l element according to the present invention can be used as a modulator, a switch, and a polarization plane combining element. In addition, both waveguides can be formed independently, and only one type of high refractive index forming material is required for each waveguide, so there are no problems with conventional methods such as difficulty in controlling diffusion and induction of crystal distortion. Problem 1
.. It is easy to make 'JA'. Furthermore, each waveguide can be formed into a substantially straight line, significantly reducing the loss of guided light.
Rir.

(実施例の説明) 第2図にd3いで、基板21はC−カッ1−の二Aブ酸
リチウムからなり、この基板21上には長さし1に亘っ
て2つの先導波路22.23が一定の間隔で平行に形成
されているとともに、光導波路22土には2つの電極2
4.25 (Lz :1+ /2)が設【プられ、また
光導波路23上には長さLlに亘る電極26が段けられ
ている。そして、上記電極24には電源E+により正の
電圧が印加され、TG極25には電源E2により負の電
圧が印加され、また電極26はアース電位に保持されて
いる。
(Description of the Embodiment) At d3 in FIG. 2, a substrate 21 is made of C-C-1- lithium diAbutate, and on this substrate 21 there are two leading waveguides 22, 23 over a length of 1. are formed in parallel at regular intervals, and two electrodes 2 are formed on the optical waveguide 22.
4.25 (Lz: 1+/2), and an electrode 26 having a length Ll is provided on the optical waveguide 23. A positive voltage is applied to the electrode 24 by the power source E+, a negative voltage is applied to the TG pole 25 by the power source E2, and the electrode 26 is held at ground potential.

上記先導波路22は、基板21上面にチタンを蒸着等に
より該導波路の平面形状(L+X5μm〉に付着させ、
これを1000℃の雰囲気中で5時間放置し、熱拡散さ
せたもので、常屈折率と異常屈IJj 率が共に10−
3オ−−ダの値に増加したものになっている。
The guide waveguide 22 is formed by attaching titanium to the top surface of the substrate 21 by vapor deposition or the like so that the waveguide has a planar shape (L+X5 μm).
This was left in an atmosphere at 1000°C for 5 hours and thermally diffused, and both the ordinary refractive index and the extraordinary refractive index were 10-
The value has increased by three orders of magnitude.

」−配光導波路23は、基板21にアルミニウムを蒸着
し−(」ニ記光導波路22をマスクし、該光導波路22
から平行に間隔5μmの部位にり、+X5μmの大きざ
の窓を設【プノζ基板21を350℃の△gNO:l液
に3時間浸し、上記窓から銀イオンを拡散させ、イの後
アルミニウムを除去したものて、異常層JJi率のみが
10−”7!−ダの値に増加したものになっている。そ
してこのにうに各光導波路22.23を形成した後に、
上記各電極を蒸着等により形成したものである。
''-The light distribution waveguide 23 is formed by depositing aluminum on the substrate 21.
A window with a size of +X5 μm was installed at a distance of 5 μm in parallel from Even after removing , only the abnormal layer JJi ratio has increased to a value of 10-"7!-da. After forming each optical waveguide 22 and 23 on this,
Each of the above electrodes is formed by vapor deposition or the like.

以上のJ:うな(jη成としたので、光導波路22に端
面から入射づる光Pは、光導波路22において、前)本
と同様に2つの偏波七−ドになる。このとき、基板21
はC−カッ1〜であるから、異常光線に対1ii5 ’
J l偏波モードは振動方向がC軸方向にあるTMモー
ドであり、また常光線に対応ブる偏波モードは振動方向
がa軸方向にあるTEモードである。
Since the above J: jη configuration is adopted, the light P incident on the optical waveguide 22 from the end face becomes two polarized waves in the optical waveguide 22 as in the previous case. At this time, the substrate 21
is C-k1~, so the pair 1ii5' for the extraordinary ray
The J1 polarization mode is a TM mode whose vibration direction is in the C-axis direction, and the polarization mode corresponding to the ordinary ray is a TE mode whose vibration direction is in the a-axis direction.

周知のように、2つの光導波路が隣接する場合、光波結
合によって一方の光導波路から他方の光導波路に光波が
移行り゛るが、この実施例においでは、光導波路23は
異常屈折率のみを増加させた導波路であるから、T M
モードの偏波光のみが光導波路23に移行づ−ることに
なる。
As is well known, when two optical waveguides are adjacent to each other, light waves are transferred from one optical waveguide to the other optical waveguide by optical wave coupling, but in this embodiment, the optical waveguide 23 has only an extraordinary refractive index. Since it is an increased waveguide, T M
Only the polarized light of the mode will be transferred to the optical waveguide 23.

ここで注目リーベぎことは、nいに逆極性の電圧が印加
される電極24..25とアース電位に保持されている
電極26を設けであるということτ′ある。つまり、電
極24が存在覆る導波路長L?の領域にお()る両光導
波路22.23の光波結合り程式は となり、また電極25が設りられている導波路長L2の
領域にお()る光導波路22.23間の光波結合力′程
式は となる。ここでa、bは2つの光導波路22,23にお
りる導波光の複素振幅、β1とβ2は両導波路の位相速
1哀、Cは両脣波路の結合係数である。
What should be noted here is the electrode 24 to which a voltage of opposite polarity is applied. .. 25 and an electrode 26 held at ground potential. In other words, the length L of the waveguide covered by the electrode 24? The equation for the optical wave coupling between the optical waveguides 22 and 23 in the region () is as follows, and the optical wave coupling between the optical waveguides 22 and 23 in the region () with the waveguide length L2 where the electrode 25 is provided is as follows. The force equation becomes. Here, a and b are the complex amplitudes of the guided light passing through the two optical waveguides 22 and 23, β1 and β2 are the phase velocities of both waveguides, and C is the coupling coefficient between the two outer waveguides.

上記2つの式から明らかなように、互いに逆電圧が印加
される電極24と25ににつて、電4iiA24にお【
ノる領域と電極25にJ5ける領域とで′は結合係数の
貸号が反転し、また位相速度差β1〜β2の1″1号も
反転ザる。このとき、先導波路23に移行する1Mモー
ドの移行量(エネルギ量)は第3図に示IJこうなる。
As is clear from the above two equations, when voltages opposite to each other are applied to the electrodes 24 and 25, the voltage 4iiA24 is
The sign of the coupling coefficient ' is reversed between the region where the current is applied to the electrode 25 and the region J5 is connected to the electrode 25, and the 1"1 of the phase velocity difference β1 to β2 is also reversed. At this time, the 1 M The mode shift amount (energy amount) is as shown in FIG. 3.

このJ:うな電極を設()たことにJ:って、両光導波
路22.23の異常屈折率の値が等しくなく’lも、光
導波路23にはT M [−ト鍋波光が導波されるめで
ある。また、以」二の説明からも明らかなように、この
にうな電極構造とづることによってこの発明に、係る光
偏波面分PJJ素子は、光変調器、スイッチおよび光偏
波面分離素子としでし使用することができるのである。
This means that the extraordinary refractive index values of both optical waveguides 22 and 23 are not equal, and that the T M It's meant to be waved. Furthermore, as is clear from the following explanation, by using this electrode structure, the optical polarization plane PJJ element according to the present invention can be used as an optical modulator, a switch, and an optical polarization plane separation element. It can be used.

なお、−11記実施例では、互いに逆電■−が印加され
る電極は光導波路上に2つ設けたが、この発明G;1こ
れに限定されるものではイTく、豆いに逆電圧が印加さ
れる電極を光導波路22上に複数個段(すても良いこと
は勿論である。
In addition, in Example 11, two electrodes to which opposite voltages are applied to each other were provided on the optical waveguide, but this invention is not limited to this. It goes without saying that a plurality of electrodes to which a voltage is applied may be arranged on the optical waveguide 22 in multiple stages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光偏波面分離素子を承り概略斜視図、第
2図はこの発明の一実施例に係る光i波面分前素子を示
す概略斜視図、第3図は2つの光導波路の結合特性を示
1図である。 21・・・・・・・・・・・・光学結晶基板22.23
・・・光導波路 24.25・・・第1の電極群 2G・・・・・・・・・・・・電極 P・・・・・・・・・・・・・・・入射光P1・・・・
・・・・・・・・偏波光(]−[モード)])2・・・
・・・・・・・・・偏波光(1−Mモード)1−+、L
2・・・光導波路の平行距離Fl、E2・・・電源 特許出願人 立石電機株式会社 第1図 第2図
FIG. 1 is a schematic perspective view of a conventional optical polarization splitter, FIG. 2 is a schematic perspective view of an optical i-wavefront splitter according to an embodiment of the present invention, and FIG. 3 is a schematic perspective view of a conventional optical polarization splitter. FIG. 1 shows the coupling characteristics. 21......Optical crystal substrate 22.23
... Optical waveguide 24.25 ... First electrode group 2G ...... Electrode P ......... Incident light P1. ...
...Polarized light (]-[mode)])2...
......Polarized light (1-M mode) 1-+, L
2... Parallel distance of optical waveguide Fl, E2... Power supply patent applicant Tateishi Electric Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] く1)光学結晶基板上に、異常屈折率と常屈折率とを共
に該基板よりも大きくした第1の先導波路と、異常屈折
率のみを該基板にりも大きくした第2の光導波路とを所
定良さ平行に配設し、かつ上記第1の光導波路上にイの
光伝搬り向に複数に分割して形成され交互に逆電圧が印
加される第1の電極JIYと、上記第2の光S波路上に
一連に形成された第2の電極とを41し、上記第1の電
極群および第2の電極により上記第1の先導波路に入射
した光の−うちの特定の偏波モードの光が上記第2の光
導波路に導出されるようにしたことを特徴とづ゛る光偏
波面分離素子。
1) On an optical crystal substrate, a first guiding waveguide having both an extraordinary refractive index and an ordinary refractive index larger than that of the substrate, and a second optical waveguide having only an extraordinary refractive index larger than that of the substrate. a first electrode JIY arranged in parallel with a predetermined height and divided into a plurality of parts in the light propagation direction A on the first optical waveguide and to which a reverse voltage is alternately applied; a second electrode formed in series on the optical S wavepath of 41; An optical polarization plane splitting element characterized in that light in a mode is guided to the second optical waveguide.
JP21668782A 1982-12-10 1982-12-10 Separating element for plane of polarization of light Pending JPS59105612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21668782A JPS59105612A (en) 1982-12-10 1982-12-10 Separating element for plane of polarization of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21668782A JPS59105612A (en) 1982-12-10 1982-12-10 Separating element for plane of polarization of light

Publications (1)

Publication Number Publication Date
JPS59105612A true JPS59105612A (en) 1984-06-19

Family

ID=16692345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21668782A Pending JPS59105612A (en) 1982-12-10 1982-12-10 Separating element for plane of polarization of light

Country Status (1)

Country Link
JP (1) JPS59105612A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595928A (en) * 1979-01-16 1980-07-21 Nippon Telegr & Teleph Corp <Ntt> Photo branching filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595928A (en) * 1979-01-16 1980-07-21 Nippon Telegr & Teleph Corp <Ntt> Photo branching filter

Similar Documents

Publication Publication Date Title
JP2531634B2 (en) Optical multiplexer / demultiplexer
CZ107196A3 (en) Acousto-optical waveguide for separation to wavelength
JPS61290426A (en) Higher harmonic generator
JPS61223823A (en) Integrated optical device for polarization conversion
US4776656A (en) TE-TM mode converter
JP2004013155A (en) Single mode optical switch, thin film optical switch, optical switch, and method for manufacturing single mode optical switch
JP2004170924A (en) Waveguide embedded optical circuit and optical element used therefor
JPS62182726A (en) Liquid crystal swiching unit with optical fiber
JPS59105612A (en) Separating element for plane of polarization of light
JPS6247627A (en) Optical deflector
CN110703386B (en) Bragg concave diffraction grating type polarization-wavelength hybrid multiplexer
CN204129369U (en) A kind of single channel bandwidth tuned filter based on micro-ring
JPS59102203A (en) Optical polarizing plane separating element
JPH0721597B2 (en) Optical switch
JPS63261219A (en) Optical modulator element
CN204129368U (en) A kind of buried channel formula bandwidth tuning device based on micro-ring
TWI239412B (en) Optical directional coupler and design method thereof
JPH01201628A (en) Optical switch
JPS6015251B2 (en) optical demultiplexer
JPH03263005A (en) Optical circuit element
JP2661968B2 (en) Light switch
JPH01197724A (en) Optical waveguide switch
JPH01257921A (en) Optical circuit element
JPS61160703A (en) Te-tm mode splitter
JPH0222621A (en) Optical element and optical parts using this element