JPS59104249A - Casting method of hollow steel ingot and core for casting - Google Patents

Casting method of hollow steel ingot and core for casting

Info

Publication number
JPS59104249A
JPS59104249A JP21276782A JP21276782A JPS59104249A JP S59104249 A JPS59104249 A JP S59104249A JP 21276782 A JP21276782 A JP 21276782A JP 21276782 A JP21276782 A JP 21276782A JP S59104249 A JPS59104249 A JP S59104249A
Authority
JP
Japan
Prior art keywords
core
mold
hollow steel
cooling
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21276782A
Other languages
Japanese (ja)
Other versions
JPS6349582B2 (en
Inventor
Shinji Kojima
小島 信司
Kanji Aizawa
完二 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21276782A priority Critical patent/JPS59104249A/en
Publication of JPS59104249A publication Critical patent/JPS59104249A/en
Publication of JPS6349582B2 publication Critical patent/JPS6349582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/04Casting hollow ingots

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable free control of a final solidification position with a large-sized hollow steel ingot as well in a device for producing the hollow steel ingot with inside and outside double connecting cores packed therein with refractories by shifting the indirect cooling of the cores to direct cooling upon thickening of a solidified shell. CONSTITUTION:An assembled core 7 which is cylindrical over the entire part and is packed therein with castable refractories 6 is installed in the cavity between an annular or cylindrical casting mold 3 formed of iron on a molding board and inside and outside cylinders 4, 5 which are formed of inside and outside, relatively thin-walled double iron pipes and are disposed concentrically in the inside central part of said mold. A header 9 for injecting a cooling medium provided with many injection ports 8 opening toward the inside periphery of the core in the central part thereof is provided in an upright attitude through the molding board. A molten steel 10 is charged, by bottom pouring, into the part between the mold 3 and the core 7, and the medium is injected through the ports 8 to the cylinder 4 during the charging and during the initial stage of solidification, thereby cooling indirectly the steel 10. When the strength of the solidified shell on the inside surface of the steel 10 attains the level substantially equal to the static pressure of the molten steel, the cylinder 4 is removed upward by a handle 15, then the refractories 6 flow out and the cylinder 5 is directly cooled by the medium from the ports 8.

Description

【発明の詳細な説明】 イ1発明の関係する技術分野 この発明は、中空鋼塊の鋳造方法とその鋳造用中子とに
関し、とくに大型の中空鋼塊の鋳造時に問題となる最終
凝固位置を自由に制御して健全な内部性状を有する中空
鋼材を、有利に製造することを可能ならしめようとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION A1 Technical field to which the invention relates The present invention relates to a method for casting hollow steel ingots and a casting core thereof, and in particular to a method for determining the final solidification position, which is a problem when casting large hollow steel ingots. It is an object of the present invention to make it possible to advantageously manufacture hollow steel materials having sound internal properties through free control.

口、従来技術とその問題点と、発明の目的一般に圧力容
器々どの使途において、筒状またはリング状の如き中空
の鍛造用粗材を製造するには、古く中実鋼塊から鍛造過
程で厄介な穴明け・穴拡げなどの工程を経る場合のほか
、金属中子を使用し造塊過程で中空状に製造する方法も
すでに知られているが、従来法に基づく中空鋼塊製造法
の場合には、冷却表面積が外面と内面とで一般的には8
対1程に大幅に異な9、とくに凝固をさせようとする中
空鋼塊の重置に対する抜熱表面積の比で考えると5対1
程にも著しく異方るため内表面の冷却は著しく不充分に
なる。
Description of the Prior Art, its Problems, and Purpose of the Invention In general, in order to produce hollow forging materials in the form of cylinders or rings for applications such as pressure vessels, it is difficult to use the forging process from old solid steel ingots. In addition to processes such as drilling and expanding holes, there are also methods that use metal cores to produce hollow steel ingots during the ingot making process. The cooling surface area is generally 8 on the outer and inner surfaces.
9, especially when considering the ratio of heat extraction surface area to the stacking of hollow steel ingots to be solidified, it is 5 to 1.
The anisotropy is so significant that cooling of the inner surface becomes extremely insufficient.

この点従来の金属板中子に対する単なる空冷の如きでは
、とくに金属板中子自体の溶損を来すうれいがあシ、さ
ればといって厚肉板を用いると中空鋼塊の中子側である
内表面に割れ発生などの不利を伴うので中空鋼塊内面か
らの凝固速度を速める抜熱の強化、促進にはとくに問題
が多く、その故に実用的には最終凝固位置が組立て中子
側からして中空鋼塊の肉厚の20〜30%程度の所にし
か達せずして、有効なザク圧着を含めた鍛錬効果上、中
空鋼塊の肉厚の50%にも及ぶ範囲で目標とする最終凝
固位置の制御には程違いことにならざるを得なかった。
In this respect, in conventional methods such as simple air cooling for metal plate cores, there is a risk of melting and damage to the metal plate core itself, and if a thick plate is used, the core side of the hollow steel block However, there are many problems in strengthening and promoting heat removal to accelerate the solidification rate from the inner surface of the hollow steel ingot, and therefore, in practical terms, the final solidification position is on the side of the assembled core. Therefore, the goal is to reach only about 20 to 30% of the wall thickness of the hollow steel ingot, but due to the training effect including effective crimp crimping, the target range is as much as 50% of the wall thickness of the hollow steel ingot. However, the control of the final solidification position had to be completely different.

そこで出願人は、さきに特公昭56−18587号公報
にて耐火物を充てんした内外2重の連結中子を介する中
空1Iilj塊製造用鋳型装置について提案したが、溶
鋼の冷却全期間にわたシ、上記連結中子に耐火物を介し
た間接冷却を適用するので、上記のような最終凝固位置
の判断目標を成就するためには、中空鋼塊の肉厚に応じ
て操業要因に多くの考慮を必要とした。
Therefore, the applicant previously proposed in Japanese Patent Publication No. 56-18587 a mold device for producing a hollow 1Iilj ingot using a double inner and outer connecting core filled with refractories. , Since indirect cooling is applied to the above-mentioned connecting core through a refractory, in order to achieve the above-mentioned goal of determining the final solidification position, many considerations must be made to operational factors depending on the wall thickness of the hollow steel ingot. required.

発明者らは、さらに−歩を進めて、溶鋼の静圧と対抗を
すべき鋳造の前段期間中にのみ上記とほぼ同様々間接冷
却によシ凝固シェルの成長を導き、その肥厚化をまって
直接冷却に移行させることに着目して火験と検討を加え
、前述のような欠点もしくは問題点を有利に解消して、
たとえば100トン以上のような大型中空鋼塊において
さえも、該鋼塊の内面性状が優れるだけでなくとくに最
終凝固位置を上掲の目標に従い自由に制御し得る有利な
中空鋼塊の製造に関する開発成果をあげることができた
The inventors went a step further and completely prevented the thickening of the solidified shell by directing the growth of the solidified shell by indirect cooling in much the same manner as described above, only during the pre-casting period when it must counteract the static pressure of the molten steel. Focusing on the transition to direct cooling, we have conducted fire experiments and studies, and have advantageously solved the drawbacks and problems mentioned above.
Development regarding the production of advantageous hollow steel ingots that not only have excellent inner surface properties, but also allow the final solidification position to be freely controlled in accordance with the above goals, even for large hollow steel ingots of, for example, 100 tons or more. I was able to achieve results.

ハ0発明の構成 この発明は、鋳型用定盤上に環状または筒状の鉄製鋳型
と、その内方中央部で同心配置をなす内外2重の比較的
薄肉鉄管相互間の空隙内に不定形耐火物を充てん挾持さ
せた全体として筒状の組立て中子とを据付け、鋳型と組
立て中子との間に濃口を有する冷却媒体へラダーを鋳型
用定盤の中央孔を通し配設して、上記注入の完了に引続
く凝固の初期過程中組立て中子を、その内方に位置させ
た流体 鉄管に対しへ噴射口から放出させた冷却媒体の噴射によ
り不定形耐火物を介して間接冷却し、凝固シェルの生長
に応じて内方に位置する鉄管のみを上方に撤去すると同
時に不定形耐火物を鋳型用定盤の中央孔を介し流下除去
して、組立て中子の外方に位置させた鉄管の内面を流体
噴射口からの冷却媒体の噴射により直接冷却し、その冷
却媒体の噴射流量を選択して中空鋼塊の最終凝固位置の
制御を行うことを上記課題の解決手段とするものであシ
、また鋳型定盤上に環状または筒状の鉄製鋳型の内方中
央部で内、外2重の比較的薄肉鉄管を同心に配置してこ
れら鉄管相互間の空隙内に不定形耐火物を充てんした全
体として筒状をなし、内方に鋼塊鋳造用の組立て中子で
あって、上記冷却媒体へラダーを鋳型定盤の中央孔を通
り抜けた直立姿勢にて組立て中子と同心に位置させ、か
つ組立て中子はその内方に位置する鉄管の頂部に、不定
形耐火物を鋳型定盤の中央孔から型ばらし除去するのに
役立つ吊手を有するものとした中空鋼塊の鋳造用中子を
上記方法の有効な実施に使用することを提案するもので
ある。
C0 Structure of the Invention This invention has an annular or cylindrical iron mold placed on a mold surface plate, and an irregularly shaped iron mold in a gap between two relatively thin-walled iron pipes arranged concentrically at the inner center of the mold. A generally cylindrical assembly core filled with a refractory and sandwiched therein is installed, and a ladder is placed between the mold and the assembly core for a cooling medium having a dense opening through the center hole of the mold surface plate. During the initial stage of solidification following the completion of the above injection, the assembled core is indirectly cooled through the monolithic refractory by the injection of cooling medium discharged from the injection port into the fluid iron pipe located inside the core. According to the growth of the solidified shell, only the iron pipe located inward was removed upward, and at the same time, the monolithic refractory was removed through the center hole of the mold surface plate and was positioned outside the assembled core. The solution to the above problem is to directly cool the inner surface of the iron pipe by injecting a cooling medium from a fluid injection port, and to control the final solidification position of the hollow steel ingot by selecting the injection flow rate of the cooling medium. In addition, relatively thin-walled iron pipes with two inner and outer layers are arranged concentrically in the inner center of an annular or cylindrical iron mold on a mold surface plate, and a monolithic refractory is placed in the gap between these iron pipes. It is an assembly core for casting steel ingots, which has a cylindrical shape as a whole and is filled with the inside of the assembly core, and the ladder is inserted into the cooling medium in an upright position passing through the center hole of the mold surface plate, and is concentric with the assembly core. casting of a hollow steel ingot, in which the assembled core has a hanger on the top of the iron pipe located inside the core, which is useful for removing the monolithic refractory from the central hole of the mold surface plate; It is proposed that the core be used for the effective implementation of the above method.

この発明では、中空鋼塊の鋳造過程の第1段階として慣
例に従う溶鋼注入作業中および注入直後においてとくに
上述のように構成した組立て中子に対しその内周に面し
て開口する冷却媒体たとえば圧縮ガスもしくは冷水の噴
射口を有する加圧へラダーからの放出をもってする間接
冷却をなし、それに由来した凝固シェルの生長をまち、
第2段階として組立て中子からその内方に位置する鉄管
(以下内筒という)のみを上方に吊上げて引抜き撤去を
行うとともに組立て中子の不定形耐火物を流出除去して
こんどは組立て中子の外方に位置する鉄管(以下外筒と
いう)の内周に直接冷却を施し、その冷却媒体噴射流量
の選択を加えて中子側からの抜熱増強調節をすることに
より溶鋼の内面における抜熱速度が外面からのそれに匹
敵するに至るような調整を施し中空鋼塊の最終凝固位置
を制御し、もって表面性状はもとよシ内面性状がとくに
すぐれ、鋳造後の鍛造にてザクが容易に圧着されて、健
全な内部性能が簡便に確保され、大型の中空鋼塊にあっ
ても支障なく製造できるようにしたものである。
In this invention, during and immediately after the conventional molten steel pouring operation as the first step in the casting process of a hollow steel ingot, a cooling medium, such as a compressed Provide indirect cooling by releasing from the ladder to pressurization with a gas or cold water injection port to prevent the growth of the solidified shell resulting therefrom;
In the second step, only the iron pipe located inside the assembly core (hereinafter referred to as the inner tube) is lifted upwards and pulled out and removed. At the same time, the monolithic refractories of the assembly core are flowed out and removed, and then the assembly core is removed. By applying direct cooling to the inner periphery of the iron pipe (hereinafter referred to as the outer tube) located outside the core, and adjusting the cooling medium injection flow rate to enhance the heat removal from the core side, the molten steel can be extracted from the inner surface. The final solidification position of the hollow steel ingot is controlled by adjusting the heat rate so that it is comparable to that from the outside surface, resulting in particularly excellent surface texture as well as inner surface texture, making it easy to corrugate during forging after casting. It is crimped to easily ensure sound internal performance, and can be manufactured without any problems even in large hollow steel ingots.

第1図および第2図により、この発明を具体的に説明す
る。
This invention will be specifically explained with reference to FIGS. 1 and 2.

第1図に第1段階として溶鋼注入中、ないしはその直後
に施される中空鋼塊の冷却過程を示し、また第2図に第
2段階として組立て中子の円筒を撤去しかつ不定形耐火
物を流出除去して組立て中子の外筒の内面に対する直接
冷却を施す過程を示した。
Figure 1 shows the cooling process of the hollow steel ingot during or immediately after pouring molten steel as the first step, and Figure 2 shows the cooling process of the hollow steel ingot as the second step in which the cylinder of the assembly core is removed and the monolithic refractory is assembled. The process of directly cooling the inner surface of the outer cylinder of the assembled core by removing the outflow is shown.

第1図において例えば上、下二段重ねの鋳型用定盤1,
2上に環状または筒状の鉄製鋳型8と、その内方中央部
で同心配置とした内、外2重の比較的薄肉鉄管よシなる
内、外筒4,5間の空隙内に不定形耐火物6を充てん挾
持させた全体として筒状をなす組立て中子7とを据付け
、その組立て中子7の中心部でその内周に面して開口す
る多数の噴射口8を高さ方向および周方向に多数具備し
た冷却媒体噴射用ヘッダー9を、とくに鋳型用定盤1.
2の中央孔を通り抜けた直立姿勢に配設し、鋳型用定盤
1.2内に設けた溶鋼lOの導入路11を通して溶鋼1
0を鋳型8と組立て中子7間に下注ぎ注入を行う。
In Fig. 1, for example, upper and lower mold surface plates 1,
An annular or cylindrical iron mold 8 is placed on the inner and outer cylinders 4 and 5, and an irregularly shaped iron mold 8 is placed in the gap between the inner and outer cylinders 4 and 5. A cylindrical assembly core 7 filled with a refractory 6 is installed, and a large number of injection ports 8 opening facing the inner circumference are installed in the center of the assembly core 7 in the height direction and A large number of cooling medium injection headers 9 provided in the circumferential direction are installed especially on the mold surface plate 1.
The molten steel 1 is placed in an upright position passing through the central hole of the mold 1.
0 is poured between the mold 8 and the assembled core 7.

この注入中およびこれに引続く凝固の初期過程中、組立
て中子7を、その内筒4に対し噴射口8からたとえば圧
縮ガス12または冷却水18を噴射して、組立て中子7
を介し溶鋼の内面の間接冷却を行うのであυ、この間接
冷却は過度急冷による中空鋼塊内周の内面性状の悪化や
割れを、外筒5の溶損なしに防止するのに役立つ。なお
14は湯道耐火物である。
During this injection and the subsequent initial stage of solidification, compressed gas 12 or cooling water 18, for example, is injected into the inner cylinder 4 of the assembly core 7 from the injection port 8.
Since the inner surface of the molten steel is indirectly cooled through the molten steel, this indirect cooling is useful for preventing deterioration of the inner surface quality and cracking of the inner periphery of the hollow steel ingot due to excessive rapid cooling, without causing melt damage to the outer cylinder 5. Note that 14 is a runner refractory.

もちろんこの溶鋼注入に当っては、組立て中子7の下端
と上定盤1との隙間その他において溶鋼洩れ事故を防止
するような配慮が必要であるが、万一の場合に対する安
全性を重視して上記の第1段階の間接冷却は、冷却水に
よるよりも、それと洩れ鋼との反応による水蒸気爆発の
よう々事故を未然に回避するのに有用な圧縮ガスの使用
が好ましい。
Of course, when pouring this molten steel, it is necessary to take precautions to prevent molten steel from leaking in the gap between the lower end of the assembly core 7 and the upper surface plate 1, etc. For the above-mentioned first stage of indirect cooling, it is preferable to use compressed gas, which is useful for avoiding accidents such as steam explosions due to reactions between cooling water and leaking steel, rather than using cooling water.

ここに組立て中子7の内、外筒4,5間に不定形耐火物
6を充てん挾持させた理由は、外筒5のみのような鉄板
中子に直接冷却を施す場合に懸念される中子の亀裂や溶
損の不利に加え、とくに水冷を行った場合の上掲事故の
回避のほか、サラに不定形耐火物を介した円筒4による
中子剛性の確保の下に外筒5の鉄板を比較的薄肉として
中空鋼塊の内面における熱収縮を有利に許容し内面亀裂
の発生を効果的に防止するためである。
The reason for filling and sandwiching the monolithic refractory material 6 between the outer cylinders 4 and 5 in the assembled core 7 is because there are concerns when directly cooling a steel plate core such as only the outer cylinder 5. In addition to avoiding the disadvantages of cracking and melting of the outer cylinder 5, especially in the case of water cooling, it is possible to avoid the above-mentioned accidents, especially when water cooling is performed. This is to advantageously allow thermal contraction on the inner surface of the hollow steel ingot by making the iron plate relatively thin, thereby effectively preventing the occurrence of inner surface cracks.

次に溶鋼内面の凝固シェルの生長に応じその凝固シェル
の強度が溶鋼の静圧に十分匹敵する時点に達したとき、
第2段階として組立て中子7の内筒4をその頂部に設け
た吊手15を介してクレーンなどで上方に撤去する。同
時に組立て中子7の内、外筒4,5間に充てん挾持され
た不定形耐火物は、その内周支持が失われて第2図に示
すとおり定盤1,2の中央孔16を介して流出除去され
、ダクト17中に回収される。
Next, as the solidified shell grows on the inner surface of the molten steel, when the strength of the solidified shell sufficiently rivals the static pressure of the molten steel,
In the second step, the inner cylinder 4 of the assembly core 7 is removed upward by a crane or the like via a hanger 15 provided at the top thereof. At the same time, the monolithic refractory filled and held between the outer cylinders 4 and 5 of the assembled core 7 loses its inner periphery support, and as shown in FIG. The water is removed and collected in the duct 17.

この間噴射口8を介してスプレィ状に噴出する冷却媒体
により外筒5を直接冷却するので、溶鋼10の内面から
の冷却速度は、第8図につき後述するように極度に増強
され、このとき冷却水18の使用に伺らの不安は彦くそ
の水歇を加減して中空鋼塊の最終凝固位置を適切に制御
できる。
During this time, the outer cylinder 5 is directly cooled by the cooling medium ejected in a spray form through the injection port 8, so the cooling rate from the inner surface of the molten steel 10 is extremely increased as will be described later with reference to FIG. Although we are concerned about the use of water 18, we can appropriately control the final solidification position of the hollow steel ingot by adjusting the water droplet.

なおこの際に発生する蒸気は内筒4の撤去後にたとえば
フード18を据えて、系外に排出され得るしまた余分な
冷却水は、ダクト17から回収できる。
The steam generated at this time can be discharged from the system by installing a hood 18, for example, after the inner cylinder 4 is removed, and excess cooling water can be recovered from the duct 17.

また不定形耐火物6は、組立て中子70円筒4の撤去後
容易に下方に流下除去され得ることが必要で、焼結化し
々い不定形耐火物例えばクロマイト砂などの使用がのぞ
ましく、もちろんその回収再利用は有利である。
Further, the monolithic refractory 6 needs to be able to be easily flowed down and removed after the assembly core 70 and cylinder 4 are removed, and it is preferable to use a monolithic refractory that easily sinters, such as chromite sand. Of course, its recovery and reuse is advantageous.

この発明に従う鋳造方法における中空鋼塊の内外面から
の凝固の進展状況を電子計算機で差分法により求めた結
果の一例を第8図に示す。−またこの場合の計算条件の
代表値を表1に示す。
FIG. 8 shows an example of the results obtained by calculating the progress of solidification from the inner and outer surfaces of a hollow steel ingot in the casting method according to the present invention using an electronic computer using the differential method. - Also, Table 1 shows typical values of the calculation conditions in this case.

表  1 初期溶融金属の温度 : 1550℃ 金属製鋳型の輻射率  :ε=0.8 〃  表面熱伝達率:自然対流 鋼塊外表面の輻射率 :ε=0.8 スフレイ冷却水の鼠: 10077m”・min不定形
耐火物     :クロマイト砂(厚み50mrrL)
鋼塊形状  内径  =80oφrrLrn外径  :
 2800φmm 内、外 筒      :鉄板製(厚み15mm)鉄製
鋳型a中における溶鋼は$1段階において、組立て中子
の内、外筒間に耐火物が挾持されているため内面側の凝
固速度が、第8図に示すとおり外面側のそれに較べかな
りに低いが、溶鋼内面の凝固シェルの生長により所定の
厚み以上に達するA点において、第2段階として組立て
中子の内筒を上方に撤去すると同時に不定形耐火物を下
方に流下除去しつつスプレィ冷却水で外筒の内面を直接
冷却した。とこに溶鋼の外面と比べるとやや冷却遅れが
みられるものの内面側凝固速度が極度に増大し、最終凝
固位置は中空鋼塊の内面より肉厚のほぼ45%程度に達
する計算結果が得られた。
Table 1 Temperature of initial molten metal: 1550°C Emissivity of metal mold: ε=0.8 Surface heat transfer coefficient: Natural convection Emissivity of outer surface of steel ingot: ε=0.8 Souffle cooling water: 10077 m ”・min Monolithic refractory: Chromite sand (thickness 50mrrL)
Steel ingot shape Inner diameter = 80oφrrLrn Outer diameter:
2800φmm Inner and outer tube: Made of iron plate (thickness 15 mm) Molten steel in the iron mold a is solidified at the inner and outer tubes at the $1 stage because the refractory is sandwiched between the inner and outer tubes of the assembly core. As shown in Fig. 8, at point A, which is considerably lower than that on the outer surface, but reaches a predetermined thickness or more due to the growth of the solidified shell on the inner surface of the molten steel, the inner cylinder of the assembly core is removed upward in the second step, and at the same time the thickness is removed. The inner surface of the outer cylinder was directly cooled with spray cooling water while the shaped refractory was removed downward. Although there is a slight cooling delay compared to the outer surface of the molten steel, the solidification rate on the inner surface increases extremely, and the calculation results show that the final solidification position is approximately 45% of the wall thickness than the inner surface of the hollow steel ingot. .

実施例 内径’100mmφ、外径2800mrr+φ、100
トンの中空鋼塊をこの発明により鋳造した。その溶鋼の
成分を表2に、鋳込設備条件および鋳込条件を表8に示
す。
Example inner diameter '100mmφ, outer diameter 2800mrr+φ, 100
tons of hollow steel ingots were cast according to the invention. The composition of the molten steel is shown in Table 2, and the casting equipment conditions and casting conditions are shown in Table 8.

表  2 表  8 溶鋼初jAA温匿  : 1548℃ 鋳型外筒鉄板厚み211mm 鋳型内筒鉄板厚み211mm 不定形耐火物   :クロマイト砂(厚み85rrLr
rL)9 m3/ h、時間240分) 噴射ノズル:フルコーンノズル8〜4 t/mln噴射
口数m : 8 ft+i/rr12その結果鋳造作業
は安全に行彦うことができ、中空鋼塊の最終凝固位置も
ほぼ肉厚中心近傍に至った。
Table 2 Table 8 Initial jAA temperature of molten steel: 1548℃ Mold outer cylinder steel plate thickness 211mm Mold inner cylinder steel plate thickness 211mm Monolithic refractory: Chromite sand (thickness 85rrLr
rL) 9 m3/h, time 240 minutes) Injection nozzle: Full cone nozzle 8-4 t/mln No. of injection ports m: 8 ft+i/rr12 As a result, casting work can be carried out safely and final solidification of hollow steel ingots. The position was also almost near the center of the wall thickness.

ホ、効 果 この発明によれば環状または筒形の鉄製鋳型と、その内
方中央部に位置する組立て中子との間で鋳型定盤上に形
成される鋳造空間内に注入した溶鋼に対する冷却過程を
、凝固シェルの成長の前後で第1段階と第2段階とに区
分し、前段階においては凝固シェルの生長を充分に養生
し得る中子構造での間接冷却により、比較的薄肉の組立
て外皮を用いてその溶損を生じるおそれ力しに凝固シェ
ルの成長に伴う収縮を適切に吸収して内周割れを有効に
防止し、また第2段階での直接冷却により溶鋼の最終凝
固位置をして中空鋼塊のほぼ肉厚中央に至らせるよう々
広範な調整を可能ならしめて、内、外面性状はもとより
とくに内部性状の健全化を有効に達成できる。
E. Effects According to the present invention, the molten steel injected into the casting space formed on the mold platen between the annular or cylindrical iron mold and the assembly core located at the inner center of the mold is cooled. The process is divided into a first stage and a second stage before and after the growth of the solidified shell, and in the first stage, indirect cooling with a core structure that can sufficiently cure the growth of the solidified shell allows relatively thin assembly. The outer shell is used to effectively absorb the shrinkage caused by the growth of the solidified shell without causing melt damage, and effectively prevent inner cracking, and direct cooling in the second stage allows the final solidification position of the molten steel to be adjusted. By making it possible to make a wide range of adjustments so that the thickness of the hollow steel ingot reaches approximately the center of the wall thickness, it is possible to effectively improve the internal and external properties as well as the internal properties.

また上記の各冷却段階の進展に適合し得る中子構造の適
切な改良を実現できこの発明の方法の実施を容易になし
得る。
Moreover, appropriate improvements in the core structure that can be adapted to the development of each of the cooling stages described above can be realized, and the implementation of the method of the present invention can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、この発明にかかる中空鋼塊製造
過程を模式的に示す断面図であシ、$8図は中空鋼塊内
外面からの凝固進展状況を電算機で差分法により求めた
説明用図表である。 8・・・鋳型、4・・・組立て中子の円筒、5・・・組
立て中子の外筒、6・・・不定形耐火物、7・・組立て
中子、8・・・噴射口、9・・・冷却媒体噴射用ヘッダ
ー、10・・・溶鋼、15・・吊手。 特許出願人 川崎製鉄株式会社
Figures 1 and 2 are cross-sectional views schematically showing the process of manufacturing a hollow steel ingot according to the present invention, and Figure 8 shows the progress of solidification from the inner and outer surfaces of the hollow steel ingot using a computer using the differential method. This is the explanatory chart I found. 8... Mold, 4... Cylinder of assembly core, 5... Outer cylinder of assembly core, 6... Monolithic refractory, 7... Assembly core, 8... Injection port, 9...Header for cooling medium injection, 10... Molten steel, 15... Hanging hand. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 L 鋳型用定盤上に環状または筒状の鉄製鋳型と、その
内方中央部で同心配置をなす内外2重の比較的薄肉鉄管
相互間もの空隙内に不定形耐火物を充てん挾持させた全
体として筒状の組立て中子とを据付け、鋳型と組立て中
子との間に溶鋼を注入する中空鋼塊の製造にあラダーを
鋳型用定盤の中央孔を通し配設して上記注入の完了に引
続く凝固の初期過程中組より不足形耐火物を介して間接
冷却し、凝固シェルの生長に応じて内方に位置する鉄管
のみを上方に撤去すると同時に不足形耐火物を鋳型用定
盤の中央孔を介し流下除去して、組立て中子の外方に位
置させた鉄管の内面を流体噴射口からの冷却媒体の噴射
によシ直接冷却し、その冷却媒体の噴射流量を選択して
中空鋼塊の最終凝固位置をffflJ御することを特徴
とする中空鋼塊の鋳造方法。 鋳型定盤上に環状または筒状の鉄製鋳型の内方中央部で
内、外2重の比較的薄肉鉄管を同心に配置してこれら鉄
管相互間の空隙内に不定形耐火物を充てんした全体とし
て筒状をダーと組合わせた中空鋼塊鋳造用の組立て中子
であって、上記冷却媒体へラダーを鋳型定盤の中央孔を
通り抜けた直立姿勢にて組立て中子と同心に位置させ、
かつ組立て中子はその内方に位置する鉄管の頂部に、不
足形耐火物を鋳型定盤の中央孔から型ばらし除去するの
に役立つ吊手を有するものとした中空鋼塊の鋳造用中子
[Scope of Claims] L An annular or cylindrical iron mold on a mold surface plate, and a monolithic refractory in the gap between two relatively thin-walled iron pipes arranged concentrically at the inner center of the mold. A cylindrical assembling core filled with and sandwiched together is installed, and a ladder is installed through the center hole of the mold surface plate to produce a hollow steel ingot in which molten steel is injected between the mold and the assembling core. In the initial stage of solidification following the completion of the above-mentioned injection, indirect cooling is performed from the middle set via the missing refractory, and as the solidified shell grows, only the inner iron pipe is removed upwards, and at the same time the insufficient refractory is removed. The material is removed by flowing down through the center hole of the mold surface plate, and the inner surface of the iron pipe located outside the assembled core is directly cooled by the injection of cooling medium from the fluid injection port. A method for casting a hollow steel ingot, characterized in that the final solidification position of the hollow steel ingot is controlled by selecting the injection flow rate. An entire structure in which two relatively thin-walled iron pipes, an inner and outer layer, are arranged concentrically in the center of an annular or cylindrical iron mold on a mold surface plate, and the void between these iron pipes is filled with monolithic refractories. This is an assembly core for casting hollow steel ingots in which a cylindrical shape is combined with a ladder, and the ladder is placed concentrically with the assembly core in an upright position passing through the center hole of the mold surface plate to the cooling medium,
A core for casting a hollow steel ingot, in which the assembled core has a hanger on the top of the iron pipe located inside the core to help remove the missing refractory from the center hole of the mold surface plate. .
JP21276782A 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting Granted JPS59104249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21276782A JPS59104249A (en) 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21276782A JPS59104249A (en) 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting

Publications (2)

Publication Number Publication Date
JPS59104249A true JPS59104249A (en) 1984-06-16
JPS6349582B2 JPS6349582B2 (en) 1988-10-05

Family

ID=16628056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21276782A Granted JPS59104249A (en) 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting

Country Status (1)

Country Link
JP (1) JPS59104249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580966A1 (en) * 1985-04-29 1986-10-31 Cegedur Method for mould casting disposable anodes
WO2013152478A1 (en) * 2012-04-11 2013-10-17 中冶京诚工程技术有限公司 Hollow billet water cooling casting method and device
KR20150131444A (en) * 2014-05-14 2015-11-25 재단법인 포항산업과학연구원 Mold for casting aluminum clad ingot and electromagnetic continuous casting apparatus using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530877U (en) * 1991-08-09 1993-04-23 株式会社大阪クリツプ Name card holder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252830A (en) * 1975-10-28 1977-04-28 Daido Steel Co Ltd Method of making hollow ingot
JPS55161553A (en) * 1979-06-04 1980-12-16 Hitachi Ltd Production of hollow metal ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252830A (en) * 1975-10-28 1977-04-28 Daido Steel Co Ltd Method of making hollow ingot
JPS55161553A (en) * 1979-06-04 1980-12-16 Hitachi Ltd Production of hollow metal ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580966A1 (en) * 1985-04-29 1986-10-31 Cegedur Method for mould casting disposable anodes
WO2013152478A1 (en) * 2012-04-11 2013-10-17 中冶京诚工程技术有限公司 Hollow billet water cooling casting method and device
KR20150131444A (en) * 2014-05-14 2015-11-25 재단법인 포항산업과학연구원 Mold for casting aluminum clad ingot and electromagnetic continuous casting apparatus using the same

Also Published As

Publication number Publication date
JPS6349582B2 (en) 1988-10-05

Similar Documents

Publication Publication Date Title
US3523570A (en) Method of press forming thin-walled cast iron parts
CN104785757A (en) Multi-core reducing multi-ladle co-casting method and device for casting large composite steel ingots
JP4789241B2 (en) Tire mold casting method
US4785871A (en) Manufacturing method for hollow cast product with bottom
CN108746496B (en) Preparation method of mold shell for investment casting
US5553656A (en) Method of directionally cooling using a fluid pressure induced thermal gradient
CN112387931A (en) Gravity casting mold of new energy water-cooled motor shell end cover and casting process thereof
US6467531B1 (en) Method and apparatus for producing investment castings in a vacuum
WO2009053675A1 (en) Casting a metal object
JPS59104249A (en) Casting method of hollow steel ingot and core for casting
JPH06320252A (en) Manufacture of forming die having heating and cooling water line
CN110918923A (en) Casting process of sequential directional solidification double-layer conical shell structure casting
CN101298092B (en) Method for producing movable core low segregation large-sized hollow steel ingot
EP0498808A1 (en) Method of controlling the rate of heat extraction in mould casting
US3293708A (en) Method of centrifugally casting flanged tubular members
JPS62220241A (en) Casting mold and vacuum casting method using said casting mold
CN107716859B (en) Co-tank casting device
US1908170A (en) Method of centrifugal molding
US3513903A (en) Apparatus for casting ingots
CN114713775B (en) Preparation method of large cylindrical titanium casting with opening
JP2005144461A (en) Method for cooling cast product
US1191473A (en) Manufacture of molds.
CN218611626U (en) Low-pressure casting die for cast-weld structural flange castings
JPS585739B2 (en) Manufacturing method for bottomed hollow steel ingot
SU1103934A1 (en) Method of manufacturing casting moulds by vacuum shaping