JP4789241B2 - Tire mold casting method - Google Patents

Tire mold casting method Download PDF

Info

Publication number
JP4789241B2
JP4789241B2 JP2005343662A JP2005343662A JP4789241B2 JP 4789241 B2 JP4789241 B2 JP 4789241B2 JP 2005343662 A JP2005343662 A JP 2005343662A JP 2005343662 A JP2005343662 A JP 2005343662A JP 4789241 B2 JP4789241 B2 JP 4789241B2
Authority
JP
Japan
Prior art keywords
casting
mold
surface plate
ring
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005343662A
Other languages
Japanese (ja)
Other versions
JP2007144480A (en
Inventor
泰之 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005343662A priority Critical patent/JP4789241B2/en
Publication of JP2007144480A publication Critical patent/JP2007144480A/en
Application granted granted Critical
Publication of JP4789241B2 publication Critical patent/JP4789241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明はタイヤ成形用金型の鋳造方法に関するものである。更に詳しくは、重力鋳造法を用いて低圧鋳造法並以上の品質及びコストでタイヤ金型用リング鋳物を製作出来る技術に関するものである。   The present invention relates to a method for casting a tire molding die. More specifically, the present invention relates to a technology capable of producing a ring casting for a tire mold with a quality and cost equal to or higher than those of the low pressure casting method using the gravity casting method.

タイヤ成形用金型は、その分割方法から、タイヤ形状を、幅方向に2分割するタイプの2ピースモールド(上下分割型)と、半径(円周)方向で7〜13程度に分割する、セクショナルモールド(上下一体型)の2種類 に大別される。これらの金型は、機械加工では対処しづらい形状(鋭い角を持った、凹ブロック形状や、サイプブレードと称する薄肉凸形状)を多数有している事から、鋳造製法で製作される事が多い。   Tire molding dies are divided into two-piece molds (upper and lower molds) that divide the tire shape into two in the width direction, and 7 to 13 in the radial (circumferential) direction. There are two types of molds (upper and lower integrated type). Since these dies have many shapes that are difficult to deal with by machining (concave blocks with sharp corners, thin convex shapes called sipe blades), they may be manufactured by a casting method. Many.

鋳造製法の中でも、特に石膏鋳造法が使用される事が多いと言える。これは、鋳型が崩壊性を持ち、アンダーカット形状対応の自由度が高く、鋳型での組み立て加工が簡易に行え、金型分割形状分をほぼ一体形状で鋳造でき、かつ、寸法精度が高い上、鋳型コストが低い事がその理由として挙げられる。   It can be said that the gypsum casting method is often used among casting methods. This is because the mold is collapsible, has a high degree of freedom in supporting undercut shapes, can be easily assembled with the mold, can be cast into a nearly integral shape, and has high dimensional accuracy. The reason is that the mold cost is low.

石膏鋳造法でタイヤ成形用金型を製造するには、原型製作、ゴム型反転、石膏鋳型反転、鋳型乾燥及び角度切断、リング状に鋳型組み立て、鋳造、型バラシ、型合わせといった公知の手順で行われる。上記の各工程のうち鋳造工程は、定盤上に石膏鋳型鋳物と鋳枠をリング状に組立てて合金溶湯を注湯する最も重要な工程である。鋳型への溶湯の流し込み方については、従来から様々な鋳造方法が知られている。   In order to manufacture tire molds by the gypsum casting method, known procedures such as prototyping, rubber mold reversal, gypsum mold reversal, mold drying and angle cutting, ring-shaped mold assembly, casting, mold separation, and mold matching are used. Done. Among the above processes, the casting process is the most important process in which a gypsum mold casting and a casting frame are assembled on a surface plate in a ring shape to pour molten alloy. Conventionally, various casting methods are known for pouring molten metal into a mold.

図1は重力鋳造法と呼ばれ、鋳枠・鋳型位置より高い位置から溶湯を注ぎ込む方法であり、湯口,湯道で落下溶湯を整流化する場合が多い。大掛かりな装置が不要であり比較的大物物件の鋳造対応が実施しやすい利点があるが、注湯時に溶湯が落下する際、溶湯内に大気(気泡)が巻き込まれたり、酸窒化物が発生したりしやすく、これに起因する鋳造欠陥が発生し易い欠点もある。   FIG. 1 is called a gravity casting method, which is a method of pouring molten metal from a position higher than the casting frame / mold position, and the falling molten metal is often rectified at the gate and runner. There is an advantage that it is easy to carry out casting of relatively large objects without requiring a large-scale device, but when the molten metal falls during pouring, air (bubbles) is entrained in the molten metal or oxynitride is generated. There is also a drawback that casting defects are likely to occur due to this.

図2は転倒鋳造法(ダービル法)と呼ばれ、鋳枠・鋳型と湯溜め(溶湯を溜めてある片側面開放容器)を連結し、初期状態は湯溜めを鋳枠・鋳型より低い位置にセットし、湯溜めに溶湯を注湯後、鋳枠・鋳型+湯溜めを転倒する事で、鋳枠・鋳型内部に溶湯を注ぎ込む方法である。注湯完了時間を最速にでき、装置さえあれば比較的大物物件の鋳造対応が実施しやすいが、注湯時に溶湯が落下するのは避けられない為、鋳造欠陥の発生を回避しづらい欠点がある。   Fig. 2 is called the overturning casting method (Darville method). The casting frame and mold are connected to a hot water reservoir (one side open container where molten metal is stored), and the initial state is lower than the casting frame and mold. This is a method in which the molten metal is poured into the casting frame and mold by tumbling the casting frame and mold and the hot pool after setting and pouring the molten metal into the hot pool. The casting completion time can be made the fastest, and it is easy to carry out casting of relatively large items with the equipment, but it is inevitable that the molten metal will fall during pouring, so it is difficult to avoid the occurrence of casting defects. is there.

図3は吸引鋳造法(CLAプロセス)と呼ばれ、鋳枠・鋳型位置より低い位置に溶湯を配置し、鋳枠・鋳型内を減圧する事で、鋳枠・鋳型内に溶湯を吸い込む形で注湯する方法である。注湯時の気泡巻き込みや酸窒化物の発生が少なく、これに起因する鋳造欠陥も発生しづらい利点があるが、鋳型に通気性が必須で、減圧吸引装置も必須であり、また大物物件の対応がしづらいという欠点がある。   Fig. 3 is called the suction casting method (CLA process). The molten metal is placed at a position lower than the position of the casting frame / mold and the inside of the casting frame / mold is decompressed to suck the molten metal into the casting frame / mold. It is a method of pouring hot water. There is an advantage that there is little bubble entrainment and oxynitride generation during pouring, and it is difficult to cause casting defects due to this, but the mold must have air permeability, a vacuum suction device is also essential, and There is a drawback that it is difficult to handle.

図4は低圧鋳造法と呼ばれ、鋳枠・鋳型位置より低い位置に溶湯(湯溜め)を配置し、湯溜め容器内を加圧することで、給湯管を通して溶湯を湧き上がらせ、鋳枠・鋳型内に注湯する方法である。注湯時の気泡巻き込みや酸窒化物の発生が少なく、これに起因する鋳造欠陥も発生しづらいこと、押し湯なしの鋳造が可能といった利点があるが、専用の鋳造装置(低圧鋳造装置)が必須であり、大物物件や密度の高い合金種の鋳造は困難という欠点がある。   Fig. 4 is called the low pressure casting method. The molten metal (hot water reservoir) is placed at a position lower than the casting frame / mold position, and the molten metal is swelled through the hot water pipe by pressurizing the hot water reservoir. This is a method of pouring molten metal into the mold. There are advantages such as less bubble entrainment and oxynitride generation during pouring, less prone to casting defects due to this, and the ability to cast without hot water, but there is a dedicated casting device (low pressure casting device). It is indispensable and has the disadvantage that it is difficult to cast large items and dense alloy types.

図5はダイキャスト法と呼ばれ、鋳枠・鋳型位置より低い位置に溶湯(プランジャ)を配置し、溶湯をピストン加圧する事で、給湯管を通して溶湯を湧き上がらせ、鋳枠・鋳型内に注湯する方法である。鋳型に「鋼材」を用い、同一鋳型で複数の鋳物をサイクル早く生産する量産製法であって、鋳造組織を微細化しやすい(鋳型が鋼材の為、鋳型側からの溶湯凝固・冷却が早い)こと、押し湯なしの鋳造が可能といった利点があるが、専用の鋳造装置(ダイキャストマシン)が必須であること、鋳込速度を過剰に早くし過ぎると、気泡巻き込みや酸窒化物による鋳造欠陥が発生し易いこと、鋳型を壊せない為にアンダーカット形状品の鋳造対応が困難といった欠点がある。   Fig. 5 is called the die-casting method. The molten metal (plunger) is placed at a position lower than the casting frame / mold position, and the molten metal springs up through the hot water supply pipe by pressurizing the molten metal into the casting frame / mold. It is a method of pouring hot water. It is a mass production method that uses “steel” as the mold and produces multiple castings in the same mold early in the cycle. The cast structure is easy to refine (the mold is made of steel, so the molten metal from the mold can be solidified and cooled quickly). There is an advantage that casting without the hot water is possible, but a dedicated casting device (die-casting machine) is essential, and if the casting speed is excessively increased, there is a possibility of casting defects due to bubble entrainment or oxynitride. There are drawbacks in that it tends to occur and the casting of an undercut product is difficult because the mold cannot be broken.

上記した従来の鋳造方法を鋳造可能な合金種で区分けすると、重力鋳造法、転倒鋳造法、吸引鋳造法は、貴金属、銅合金、ニッケル合金、鉄系合金といった、比較的融点(鋳込み温度)が高く、密度の高い合金種を含む、殆ど全ての実用合金材の鋳造が出来るのに対し、低圧鋳造法、ダイキャスト法は、亜鉛合金、マグネシウム合金、アルミニウム合金といった、比較的融点が低く、密度の低い合金種(所謂軽合金)しか鋳造出来ないと言う、利点・欠点も持っている。   When the above conventional casting methods are classified according to the types of alloys that can be cast, the gravity casting method, the falling casting method, and the suction casting method have relatively high melting points (casting temperatures) such as precious metals, copper alloys, nickel alloys, and iron-based alloys. Almost all practical alloy materials, including high and high-density alloy types, can be cast, while the low-pressure casting method and die-casting method have relatively low melting points such as zinc alloy, magnesium alloy, and aluminum alloy. It has the advantages and disadvantages that only low alloy grades (so-called light alloys) can be cast.

これらの鋳造法(注湯法)には、それぞれが必ず『欠点』を持っている為、鋳造する物件毎に、最適な鋳造方案を選択しなければならず、また、場合によっては欠点を克服する方法が無く、歩留高く鋳造出来ない物件も存在していた。このケースを具体的に言えば、鋳込重量が大きく(例えば1000kgを超える様な物件)、かつ、鋳造欠陥の発生が許されない様な物件で、この種の物件対応時には、重力鋳造法、転倒鋳造法を用いるしか無いといえるが、鋳造欠陥の発生を完全に押さえ込む事が出来ず、不良を多発させてしまうという問題が存在していた。   Each of these casting methods (pouring methods) always has “defects”, so the optimum casting method must be selected for each property to be cast. There were some properties that could not be cast with high yield. More specifically, this is a property that has a large casting weight (for example, a property that exceeds 1000 kg) and that does not allow for casting defects. Although it can only be said that the casting method is used, there has been a problem that the occurrence of casting defects cannot be completely suppressed and defects are frequently generated.

溶湯が落下する事で、気泡を巻き込んだり、酸窒化物を形成したりするのは、水道の蛇口からコップに水を入れる際の空気の泡を巻き込む現象と同じ現象である。すなわち、蛇口の開口面からコップの底面までの距離が長く、蛇口からの単位時間当たりの水の流量が多い程、たくさんの空気の泡を巻き込む事になる。鋳造の場合には、単に空気の泡を巻き込むだけでなく、溶湯内物質と大気成分が結合(酸化・窒化)して非金属介在物(酸窒化物,スラグ,ドロス)を同時に発生させることになる。これら気泡や非金属介在物が鋳枠・鋳型の表面に貼り付いたり、鋳物製品部内に留まったりすると、『鋳造欠陥』として問題となり易い。   When the molten metal falls, entraining bubbles or forming oxynitrides is the same phenomenon as entraining air bubbles when water is poured into a cup from a tap. That is, the longer the distance from the opening surface of the faucet to the bottom surface of the cup and the greater the flow rate of water per unit time from the faucet, the more air bubbles will be involved. In the case of casting, not only entraining air bubbles but also combining non-metallic inclusions (oxynitride, slag, dross) at the same time by combining (oxidizing / nitriding) the substance in the molten metal and atmospheric components. Become. If these bubbles and non-metallic inclusions stick to the surface of the casting frame / mold, or stay in the casting product part, they are likely to cause a problem as a “casting defect”.

このように様々な鋳造法が存在するが、実際にタイヤ金型用リング鋳物の注湯方法としては、重力鋳造法と低圧鋳造法の2種類が採用される場合が多い。重力鋳造法では、注湯時の落差で、必ずと言って良い程、溶湯内への気泡巻き込み、酸窒化物形成が生じる。これを浮上分離する為に湯口・湯道・堰の設置が必須となる場合が多い。また低圧鋳造法では、溶湯を溶解炉から移しかえる事無く鋳造する場合は、気泡巻き込み、酸窒化物形成を極小で鋳造する事が出来る。但し、溶湯が加圧気体雰囲気にさらされる為、加圧気体内に水分が多いと、鋳物に水素ピンホール欠陥を発生させる危険性が有る。   As described above, there are various casting methods, but as a method for pouring a ring casting for a tire mold, there are many cases where two methods of a gravity casting method and a low pressure casting method are adopted. In the gravity casting method, a bubble is trapped in the molten metal and oxynitride is formed as much as possible due to a drop during pouring. In many cases, it is necessary to install a gate, a runway, and a weir to float and separate this. Further, in the low pressure casting method, when the molten metal is cast without being transferred from the melting furnace, bubbles can be entrained and oxynitride formation can be performed with a minimum. However, since the molten metal is exposed to a pressurized gas atmosphere, there is a risk of generating hydrogen pinhole defects in the casting if the moisture is high in the pressurized gas.

図6はタイヤ金型用リング鋳物を重力鋳造方法で製造する場合の公知技術を説明する図であり、定盤1上に別途リング組立てしておいた石膏鋳型2を設置し、その上に鋳枠3を載せる。またその外側に湯口、湯道、堰構造を持った鋳枠4を載せ、定盤1と鋳枠3、4により湯道、堰構造を形成する。鋳枠3の下面には冷し金5を配置しておく。また定盤1も冷し金として機能する。この図6の注湯方法は、非特許文献1に記載されている。   FIG. 6 is a view for explaining a known technique when a ring casting for a tire mold is manufactured by a gravity casting method. A gypsum mold 2 that has been separately assembled on a surface plate 1 is installed, and a cast is formed thereon. Place frame 3. A cast frame 4 having a gate, a runner, and a weir structure is placed on the outside, and a runner and a weir structure are formed by the surface plate 1 and the cast frames 3 and 4. A cooling metal 5 is disposed on the lower surface of the casting frame 3. The surface plate 1 also functions as a cooling metal. The pouring method shown in FIG. 6 is described in Non-Patent Document 1.

図7はタイヤ金型用リング鋳物を低圧鋳造方法で製造する場合の公知技術を説明する図であり、石膏定盤6上で石膏鋳型2を組み立て、これを石膏製の湯道ボード7上に設置して上部構造とする。これを加圧炉8上にセットし、湯道ボード7を介して溶湯を押し上げて注湯する。この図7の注湯方法は、特許文献1に記載されている。   FIG. 7 is a view for explaining a known technique when a ring casting for a tire mold is manufactured by a low pressure casting method. The gypsum mold 2 is assembled on a gypsum surface plate 6 and the gypsum mold 7 is assembled on a gypsum runner board 7. Install to make superstructure. This is set on the pressurizing furnace 8 and the molten metal is pushed up and poured through the runner board 7. The pouring method of FIG. 7 is described in Patent Document 1.

上記した重力鋳造方法は、リング鋳物の上下側双方に冷し金を配設し易い(鋳物上下からの同時溶湯凝固・冷却を狙いやすい)という利点があるが、湯口,湯道,堰構造が『使い捨て構造』で、1リング鋳造する毎に、作り直さなければならない欠点がある。また低圧鋳造方法は、気泡巻込み,酸窒化物形成を極小化出来る利点があるが、リング鋳物の下側に冷し金を配設し辛い(上側から下側への溶湯凝固・冷却パターンしか狙えない)うえ、湯口,湯道,堰構造が『使い捨て構造』で、1リング鋳造する毎に、作り直さなければならない欠点がある。   The above-mentioned gravity casting method has the advantage that it is easy to dispose cooling metal on both the upper and lower sides of the ring casting (it is easy to aim at simultaneous solidification / cooling of the molten metal from the upper and lower sides of the casting). The “disposable structure” has the disadvantage that it must be remade every time one ring is cast. The low-pressure casting method has the advantage of minimizing bubble entrainment and oxynitride formation, but it is difficult to place cooling metal on the lower side of the ring casting (only the pattern of molten metal solidification / cooling from the upper side to the lower side) In addition, the gate, runner, and weir structure is a “disposable structure” and has the disadvantage that it must be remade every time one ring is cast.

石膏鋳型を用いた鋳造では、石膏鋳型材の熱伝導性が低い事から、鋳込まれた溶湯が石膏側から自発的に凝固・冷却する可能性が極めて低い。この為、鋳枠や定盤を『冷し金』として利用し、鋳枠、定盤側から溶湯を指向性凝固させる事で、引け巣欠陥の少ない、健全な鋳物を製作する場合が多い。従って、冷し金の配置構造がタイヤ金型用リング鋳物の顕微鏡組織レベルの内部品質を決定するといっても過言では無い。(溶湯凝固・冷却が遅いと、顕微鏡組織が粗くなり、微細引け巣が発生したり、強度特性が低下したりするという問題を生じやすい。また、溶湯の凝固・冷却時間差は、タイヤ金型としての寸法特性の差に直結すると言う問題点も存在する。)   In casting using a gypsum mold, since the thermal conductivity of the gypsum mold material is low, the possibility that the cast molten metal spontaneously solidifies and cools from the gypsum side is extremely low. For this reason, sound castings with few shrinkage defects are often produced by using a casting frame or surface plate as a “cooling metal” and directional solidification of the molten metal from the side of the casting frame or surface plate. Therefore, it is no exaggeration to say that the arrangement structure of the cooling metal determines the internal quality of the microstructure of the ring casting for tire mold. (If the molten metal solidifies and cools slowly, the microstructure becomes coarse, and it is easy to cause problems such as the formation of fine shrinkage cavities and the deterioration of strength characteristics. There is also a problem that it is directly related to the difference in dimensional characteristics of

この観点から言うと、上述した通り、重力鋳造法は鋳物の上下側に冷し金を設置出来ると言う点で、冷し金配置の自由度が高く、低圧鋳造法より優れていると言える。(低圧鋳造法では、下側構造は、鋳物に完全に抱き込まれること、及び、炉内加圧により湯道・堰を介して製品部の溶湯凝固が完了する最後まで溶湯を加圧補給しなければならないと言う制約が有る為ことから、冷し金を配置し辛い。)しかしながら、重力鋳造法でも、上下側に過大に冷し金を配設すると、注湯時の湯流れを確保できなかったり、製品部への押し湯補給効果を阻害したりすると言う問題を生じる事になる。従って、冷し金配設の厳密なコントロールが必須となるのであるが、従来法では、この制御が難しい状況であった。(下側;定盤側;では、溶湯は流れ易いが、注湯完了後は充分な冷し金効果を発揮させる必要があり、上側では、押し湯補充効果を阻害しない程度に冷し金の溶湯との接触面積を調整する必要があるが、鋳造する物件毎に簡単に微調整出来る良い方法が存在していなかった。)
この様に、それぞれに利点、弱点が存在しており、全ての点で満足の行く鋳造方法が確立出来ていない状況にあった。
社団法人日本鋳造工学会「鋳造工学」第75巻、第10号、P.682〜687 特開昭57−58968号公報
From this point of view, as described above, it can be said that the gravity casting method is superior to the low-pressure casting method in that the cooling metal can be placed on the upper and lower sides of the casting, so that the degree of freedom in arranging the cooling metal is high. (In the low-pressure casting method, the lower structure is completely embraced by the casting, and the molten metal is pressurized and replenished to the end of the solidification of the product part through the runner and weir by pressurization in the furnace. It is difficult to place cooling metal because there is a restriction that it has to be.) However, even with gravity casting, if excessive cooling metal is placed on the upper and lower sides, the flow of hot water during pouring can be secured. There will be a problem that it does not exist or obstructs the hot water supply effect to the product part. Therefore, strict control of the arrangement of the cooling metal is indispensable, but in the conventional method, this control is difficult. (Lower side; surface plate side; the molten metal tends to flow, but after the pouring is complete, it is necessary to exert a sufficient cooling metal effect. On the upper side, the molten metal does not interfere with the hot water replenishment effect. It is necessary to adjust the contact area with the molten metal, but there was no good method that can be easily fine-tuned for each property to be cast.)
In this way, there are advantages and disadvantages for each, and a satisfactory casting method has not been established in all respects.
Japan Foundry Engineering Society "Casting Engineering" Vol.75, No.10, pp.682-687 JP 57-58968

本発明はこの様な状況下で発明されたものであり、その第一の目的は、上記した従来の重力鋳造法及び低圧鋳造法に共通する、湯口、湯道、堰構造が使い捨て構造で1リング鋳造する毎に作り直さなければならないという欠点を解決し、再使用を可能としたタイヤ金型の鋳造方法を提供することである。また第二の目的は、石膏鋳造法でタイヤ金型用リング鋳物を製作する際に必須となる、冷し金の配設量を簡易に、精度高くコントロール出来る技術を提供する事にある。また第三の目的は、重力鋳造方案を用いても、押し湯なしの鋳造が可能な技術を提供する事にある。   The present invention has been invented under such circumstances, and the first object thereof is that the sprue, runner, and weir structure is a disposable structure common to the above-described conventional gravity casting method and low pressure casting method. An object of the present invention is to provide a method for casting a tire mold that solves the drawback of having to be remade each time a ring is cast and enables reuse. A second object is to provide a technique capable of easily and accurately controlling the amount of cooling metal disposed, which is essential when manufacturing a ring casting for a tire mold by a gypsum casting method. A third object is to provide a technique capable of casting without a hot water even when a gravity casting method is used.

上記の課題を解決するためになされた請求項1の発明は、タイヤ金型用リング鋳物を重力鋳造方法で製作する場合に、鋳造する合金溶湯で溶解・崩壊する事の無い材質からなる鋳造定盤上に、上面開放構造でリング鋳物の外径より一回り大きい内径を持ったリング状の溝形状を彫りこんでおき、その上にこれに蓋をする事が出来る形状の中空リングを上下合わせる形で組み立て、溝形状の内面に断熱材を貼り付けて湯口、湯道、堰構造を形成することにより、湯口、湯道、堰構造を繰り返し使用出来るようにしたことを特徴とするものである。   In order to solve the above-mentioned problems, the invention of claim 1 is directed to a casting composition made of a material that does not melt or collapse with a molten alloy to be cast when a ring casting for a tire mold is manufactured by a gravity casting method. A ring-shaped groove shape with an inner surface that is slightly larger than the outer diameter of the ring casting is engraved on the board, and a hollow ring with a shape that can be capped on it is vertically aligned. It is characterized by being able to repeatedly use the gate, runner, and dam structure by forming a gate, runner, and dam structure by attaching a heat insulating material to the inner surface of the groove shape. .

なお請求項2のように、鋳造定盤の中央部に円形座グリ溝を形成しておき、ここに脱着出来る形の脱着定盤を別途製作しておき、この脱着定盤にリング鋳型を載せる事で、鋳型組み立て、再乾燥作業と、鋳造定盤の湯口、湯道、堰構造部への断熱材貼り付け作業を独立して行う事が出来るようにすることが好ましい。   As in claim 2, a circular counterbored groove is formed in the center of the casting surface plate, and a detachable surface plate that can be detached is prepared separately, and a ring mold is placed on the surface plate. Therefore, it is preferable that the mold assembly and re-drying operations and the heat insulating material affixing operations on the pouring gates, runners and weir structures of the casting surface plate can be performed independently.

また請求項3のように、鋳型の下側の冷し金として脱着定盤および鋳造定盤を用い、上側の冷し金として鋳型直上に設置する鋳枠を利用し、これらの溶湯接触面に断熱材を貼り付けておき、この断熱材に不連続な開口部を複数個配置する事で、この開口率調整で冷し金効率を調整し、上下側でほぼ同等な冷し金効果を持たせると同時に、注湯時の湯流れ性をも確保することが好ましい。   In addition, as described in claim 3, a desorption surface plate and a casting surface plate are used as the cooling metal on the lower side of the mold, and a casting frame installed immediately above the mold is used as the cooling metal on the upper side. A heat insulating material is pasted, and by disposing a plurality of discontinuous openings in this heat insulating material, the cooling metal efficiency is adjusted by adjusting the opening ratio, and there is almost the same cooling metal effect on the upper and lower sides. At the same time, it is preferable to ensure the hot water flow during pouring.

さらに請求項4のように、鋳造定盤、中空リング、鋳型にかぶせる鋳枠でドーナツ状の閉空間を形成し、注湯完了後、湯口の開放面側から溶湯を加圧する事で、湯口、湯道部の溶湯を押し湯として活用することが好ましい。   Further, as in claim 4, a donut-shaped closed space is formed by a casting platen, a hollow ring, and a casting frame that covers the mold, and after pouring is completed, the molten metal is pressurized from the open surface side of the pouring gate, It is preferable to use the molten metal in the runner as a hot water.

請求項1の発明によれば、従来は鋳枠(砂型)内に作り込んでいた湯道、堰構造を、定盤(鋼材等)に彫り込んでおき、使い捨てにする事無く、複数のリング鋳物鋳造に使いまわすことができる。請求項2の発明によれば、請求項1の発明における、鋳造定盤を鋳物より一回り大きくしなければならないと言う弱点を解消することができる。請求項3の発明によれば、任意に冷し金効率の調整が可能となる。請求項4の発明によれば、押し湯を極小化することができる。このため本発明を用いれば、従来法より簡易に安価に良い品質のタイヤ金型用リング鋳物を鋳造製作する事が出来る。本発明は、従来の重力鋳造法と低圧鋳造法の弱点を克服し、利点のみを融合させた最適な鋳造方案を提供するものであり、技術的な意義は極めて大きい。以下に各発明の好ましい実施形態を説明する。   According to the first aspect of the present invention, a plurality of ring castings can be used without engraving a runner and a weir structure, which have been conventionally made in a casting frame (sand mold), on a surface plate (steel material, etc.) and making it disposable. Can be used for casting. According to the second aspect of the present invention, the weak point in the first aspect of the present invention that the casting surface plate must be made slightly larger than the casting can be solved. According to the invention of claim 3, it is possible to arbitrarily adjust the cooling metal efficiency. According to the invention of claim 4, the hot water can be minimized. For this reason, if this invention is used, the ring casting for tire molds of good quality can be cast-manufactured more easily and cheaply than the conventional method. The present invention overcomes the weaknesses of the conventional gravity casting method and the low pressure casting method, and provides an optimum casting method in which only the advantages are fused, and has a great technical significance. Preferred embodiments of each invention will be described below.

(請求項1の発明)
図8は請求項1の発明の実施形態を示す分解斜視図、図9は断面図であり、タイヤ金型用リング鋳物を重力鋳造方法で製作する場合を示している。10は鋳造する合金溶湯で溶解・崩壊する事の無い材質からなる鋳造定盤であり、その上面に、鋳造されるリング鋳物の外径より一回り大きい内径を持ったリング状の溝11を上面開放構造で彫りこんでおく。このリング状の溝11は湯道に相当する部分であるが、湯口用溝12、堰用溝13もリング状の溝11に連続させて彫りこんでおく。
(Invention of Claim 1)
FIG. 8 is an exploded perspective view showing an embodiment of the invention of claim 1, and FIG. 9 is a cross-sectional view showing a case where a ring casting for a tire mold is manufactured by a gravity casting method. Reference numeral 10 denotes a casting surface plate made of a material that does not melt or collapse with the molten alloy to be cast, and a ring-shaped groove 11 having an inner diameter that is slightly larger than the outer diameter of the ring casting to be cast on the upper surface. Carved in an open structure. The ring-shaped groove 11 is a portion corresponding to a runner, but the gate groove 12 and the weir groove 13 are also continuously carved into the ring-shaped groove 11.

これらのリング状の溝11、湯口用溝12、堰用溝13の内部にはセラミックペーパーなどの断熱材14を貼り付け、またそれらの上面全体にもリング状の断熱材15を敷き、その上にこれに蓋をする事が出来る形状の中空リング16,17を上下合わせる形で組み立て、湯口用溝12の上にはシュートを立てて図9に示すように湯口18、湯道19、堰構造20を形成する。鋳造定盤10の材質としては、各種鋼材,ニッケル合金材が好適に用いられる。所謂『耐熱材料』であることが好ましいが、アルミ合金鋳造を前提とした場合は、一般鋼材でも充分使用可能である。鋳造定盤10に外部からの強制冷却機構を付与しても良く、この場合は定盤材質に銅合金を用いることも可能となる。   A heat insulating material 14 such as ceramic paper is attached to the inside of the ring-shaped groove 11, the gate groove 12, and the weir groove 13, and a ring-shaped heat insulating material 15 is laid on the entire upper surface of the heat insulating material 14. As shown in FIG. 9, a gate 18, a runner 19, and a weir structure are assembled by vertically assembling a hollow ring 16, 17 having a shape capable of covering the top and bottom. 20 is formed. As the material of the casting surface plate 10, various steel materials and nickel alloy materials are preferably used. A so-called “heat-resistant material” is preferable, but when an aluminum alloy casting is assumed, a general steel material can be used sufficiently. The casting surface plate 10 may be provided with a forced cooling mechanism from the outside. In this case, a copper alloy can be used as the surface plate material.

鋳造定盤10の中央にはリング状に組み立てられた石膏鋳型2をセットし、更にその上部に鋳枠21を載せる。なお、石膏セル22で湯口18の口径を絞り込んでおくが、その理由は、1)注湯時の巻き込み気泡をシュート内部で浮上分離させる為、2)シュートの高さと該当部の断面積で、単位時間当たりの注湯流量の上限値を制御する為、3)後述する型バラシ時に、この部分を破断し易くする為である。   A gypsum mold 2 assembled in a ring shape is set in the center of the casting surface plate 10, and a casting frame 21 is placed on the upper part thereof. In addition, the diameter of the spout 18 is narrowed down with the gypsum cell 22, but the reason is 1) In order to float and separate the entrained bubbles during pouring inside the chute, 2) The height of the chute and the cross-sectional area of the relevant part, In order to control the upper limit value of the pouring flow rate per unit time, 3) to make this part easy to break during mold disassembly described later.

この図9の状態で湯口18から合金溶湯を注湯すると、合金溶湯はリング状の湯道19を通って全周に回り、堰構造20から石膏鋳型2と中空リング16,17の間の空間に流入して固化する。その後の型バラシ手順は、次の通りである。
1)シュート部脱型(石膏セルによる鋳物リディューサ部を破断し、シュートを取り外す)
2)鋳枠脱型
3)中空リング脱型
4)リング鋳物を鋳造定盤から脱型(堰構造の断熱ボードごと脱型)
5)リング鋳物から湯道、堰部を破断除去
When the molten alloy is poured from the gate 18 in the state of FIG. 9, the molten alloy travels around the entire circumference through the ring-shaped runner 19, and the space between the gypsum mold 2 and the hollow rings 16, 17 from the weir structure 20. It flows into and solidifies. The subsequent mold separation procedure is as follows.
1) Chute demolding (breaking the cast reducer with gypsum cell and removing the chute)
2) Casting frame removal
3) Hollow ring demolding
4) Demolding the ring casting from the casting surface plate (demolding the insulation board with the weir structure)
5) Breaking and removing runners and weirs from ring castings

この方法では、シュート部と湯道部の溶湯が、中空リング16をサンドイッチにする形となる事は避けられない。型バラシの時に、この部位を如何にして対処するかが、一つのポイントとなる。図9では、この部位の片側を『破断』する事で対処しているが、これ以外の方法を採用しても当然良い。   In this method, it is inevitable that the melt of the chute portion and the runner portion becomes a sandwich of the hollow ring 16. One point is how to deal with this part at the time of mold separation. In FIG. 9, this is dealt with by “breaking” one side of this portion, but other methods may naturally be adopted.

なおこのような機構を取る場合に注意すべき点には、以下の様なものが挙げられる。
1) 湯道19内の溶湯が注湯完了まで凝固しない様、湯口18、湯道19、堰構造部20を保温・断熱しておく。鋳造定盤10の材質が『金属材料』となり、熱伝導率が高いことから、溝内面への断熱材14の貼り付けは必須となる。
2) 鋳造後に『型バラシ』が出来る様な溝構造にしておく。例えば図9の様に、鋳造定盤10の上側に抜き勾配をつけた溝形状とする、抜き勾配が逆となる部位をつくらない、と言った工夫をする。
3) 鋳造定盤10への断熱材14の貼り付けは、必ずしも『貼り付ける』必要は無い。接着せず断熱材14を嵌めこめる構造にしておく事が、より好ましい。(定盤の準備工数低減や、鋳造時の溶湯汚染を防ぐ為。)
この様にする事で、タイヤ金型用リング鋳物製作に重力鋳造法を用いる場合でも、湯口18、湯道19、堰構造20を使い捨てにする事無く対応する事が出来る。
The following points should be noted when taking such a mechanism.
1) Keep the hot water tap 18, the runway 19 and the weir structure 20 warm and insulated so that the molten metal in the runway 19 does not solidify until the pouring is completed. Since the material of the casting surface plate 10 is “metal material” and the thermal conductivity is high, it is essential to attach the heat insulating material 14 to the inner surface of the groove.
2) Create a groove structure that allows for "type breaks" after casting. For example, as shown in FIG. 9, a contrivance is made such that a groove shape with a draft is formed on the upper surface of the casting surface plate 10, and a portion where the draft is reversed is not created.
3) The affixing of the heat insulating material 14 to the casting surface plate 10 is not necessarily “adhering”. It is more preferable to have a structure in which the heat insulating material 14 is fitted without being bonded. (To reduce the preparation man-hours for the surface plate and prevent molten metal contamination during casting.)
By doing in this way, even when the gravity casting method is used for manufacturing the ring casting for the tire mold, it is possible to cope without making the gate 18, the runner 19 and the dam structure 20 disposable.

(請求項2の発明)
上記した請求項1の発明は、湯口18・湯道19・堰構造20の基本構造部を鋳造定盤10に溝形状として予め作り込んでおき、繰り返し使用出来る様にしたものであるが、鋳造定盤10を鋳物より一回り大きくしなければならないと言う弱点を併せ持っている。特に鋳型材に石膏材を用いた場合には、大気中からの吸湿により、鋳物でピンホール欠陥の発生が危惧されることから、リング状に組み立てられた石膏鋳型2は、鋳造直前まで再乾燥(二次乾燥)する場合が多い。この鋳型の二次乾燥は、通常外熱式の加熱炉内で行われる為、鋳型を組み立てている定盤ごと、加熱炉内に投入する必要が有り、定盤が大きすぎると、二次乾燥に必要な加熱炉も、それに見合う大きなものが必要となり、大きな設備投資が必要となってしまう。請求項2は、この問題点を解消する為のものである。
(Invention of Claim 2)
In the invention of claim 1 described above, the basic structure of the gate 18, the runner 19 and the weir structure 20 is previously formed as a groove shape in the casting surface plate 10 so that it can be used repeatedly. It also has a weak point that the platen 10 must be made slightly larger than the casting. In particular, when gypsum material is used as the mold material, pinhole defects may occur in the casting due to moisture absorption from the atmosphere, so the gypsum mold 2 assembled in a ring shape is re-dried until just before casting ( Often secondary drying). Since the secondary drying of the mold is usually performed in an external heating type heating furnace, it is necessary to put the platen in which the mold is assembled into the heating furnace. If the surface plate is too large, the secondary drying is performed. The heating furnace required for this is also required to be large, and a large capital investment is required. Claim 2 is for solving this problem.

そこで請求項2の発明では、図10に示すように鋳造定盤10の中央部に円形座グリ溝30を形成し、ここに脱着出来る形の脱着定盤31を別途製作しておき、鋳造時にこの脱着定盤31にリング状の石膏鋳型2を載せる事で、鋳型組み立て、再乾燥作業と、鋳造定盤10の湯口18、湯道19、堰構造部20への断熱材貼り付け作業を独立して行う事が出来るようにした。すなわち、加熱炉内には脱着定盤31と石膏鋳型2のみを入れて二次乾燥させればよく、大型の鋳造定盤10は加熱炉に入れる必要がなくなる。   Therefore, in the invention of claim 2, as shown in FIG. 10, a circular counterbore groove 30 is formed in the center of the casting surface plate 10, and a detachable surface plate 31 of a form that can be detached is separately manufactured, and during casting, By mounting the ring-shaped gypsum mold 2 on the detachable surface plate 31, the mold assembly and re-drying operations and the operation of attaching the heat insulating material to the gate 18, the runner 19 and the dam structure portion 20 of the casting surface plate 10 are independent. I was able to do it. That is, only the desorption surface plate 31 and the gypsum mold 2 may be put in the heating furnace and secondarily dried, and the large casting surface plate 10 need not be placed in the heating furnace.

(請求項3の発明)
先の事例では、鋳物への冷し金設置は、概略図11の様なものとしている。すなわち、背面側鋳枠C部と、上部鋳枠B部、及び定盤A部を冷し金として活用している。鋳物の顕微鏡組織の健全性および上下型間での均一性、上下型間寸法差の問題から言って、A部とB部は、ほぼ同等に大きな冷し金効果を持たせる事が望ましいと言えるが、特にA部の冷し金効果を高め過ぎると、注湯時に溶湯が凝固してしまい、鋳枠内への溶湯充填を阻害してしまう場合が存在する。請求項3の発明は、この問題を解消する為のものである。
(Invention of Claim 3)
In the previous case, the installation of the cooling metal to the casting is as shown in FIG. That is, the rear side casting frame C part, the upper casting frame B part, and the surface plate A part are utilized as cooling metal. In view of the soundness of the microstructure of the casting, the uniformity between the upper and lower molds, and the dimensional difference between the upper and lower molds, it can be said that it is desirable that the A part and B part have approximately the same large cooling effect. However, if the chilling effect of part A is excessively increased, the molten metal solidifies during pouring, and there is a case where the molten metal filling the casting frame is hindered. The invention of claim 3 is for solving this problem.

そこで請求項3の発明では、鋳型の下側の冷し金として脱着定盤31および鋳造定盤10を用い、上側の冷し金として鋳型直上に設置する鋳枠21を利用し、これらの溶湯接触面に不連続な開口部を複数個配置した断熱材40を貼り付ける事で、この開口率調整で冷し金効率を調整し、上下側でほぼ同等な冷し金効果を持たせると同時に、注湯時の湯流れ性をも確保する。具体的には図12、図13の様に、冷し金として溶湯と接触する鋳枠面に、『虫食い穴空きの断熱材(パンチング断熱材)』40を貼り付け、断熱材40の開口率(面積%)で冷し金効率を制御し、注湯時の湯流れには支障をきたさない範囲内で最大の冷し金効果を発揮させられる様にする。   Therefore, in the invention of claim 3, the desorption surface plate 31 and the casting surface plate 10 are used as the cooling metal on the lower side of the mold, and the casting frame 21 installed immediately above the mold is used as the cooling metal on the upper side. By attaching a heat insulating material 40 having a plurality of discontinuous openings arranged on the contact surface, the cooling efficiency is adjusted by adjusting the opening ratio, and at the same time, an approximately equivalent cooling effect is provided on the upper and lower sides. Also ensure hot water flow during pouring. Specifically, as shown in FIG. 12 and FIG. 13, “insulation material with punched holes” (punching insulation material) 40 is pasted on the surface of the casting frame that is in contact with the molten metal as cooling metal, and the opening ratio of the insulation material 40 Cooling efficiency is controlled by (area%) so that the maximum cooling effect can be achieved within a range that does not hinder hot water flow during pouring.

請求項3の発明は、大きな冷し金を用いても任意に冷し金効率を調整出来、かつ、断熱材40への穴の開口率調整は簡易に行える為、現場向きの冷し金制御方法と言える。なお上記模式図では、A部,B部のみの解説をしているが、C部に用いても当然良い。また注湯作業完了後に、該当部の鋳枠,定盤を強制空冷もしくは強制水冷して、鋳物の冷却を加速することもできる。この手法と請求項3を併せて用いる事で、注湯作業中は、湯流れに阻害を起こさない程度に冷し金効果を抑え込み、注湯作業完了後に冷し金効果を最大限に発揮させる事が出来る様になる。   The invention of claim 3 can adjust the cooling metal efficiency arbitrarily even if a large cooling metal is used, and can easily adjust the opening ratio of the hole to the heat insulating material 40. It's a method. In the above schematic diagram, only the A part and the B part are explained, but it may naturally be used for the C part. Moreover, after the pouring operation is completed, the casting frame and the surface plate of the corresponding part can be forcedly air-cooled or forced water-cooled to accelerate the cooling of the casting. By using this method and claim 3 together, during the pouring operation, the cooling metal effect is suppressed to such an extent that the hot water flow is not hindered, and after the pouring operation is completed, the cooling metal effect is maximized. I can do things.

(請求項4の発明)
先頁までの解説では、鋳物に『押し湯』を設置する事を前提としていたが、請求項4の発明は、この押し湯を極小化出来る技術を提供するものである。このために鋳造定盤10、中空リング、鋳型にかぶせる鋳枠50でドーナツ状の閉空間を形成し、注湯完了後、湯口の開放面側から溶湯を加圧する事で、湯口18、湯道19の部分の溶湯を押し湯として活用する。
(Invention of Claim 4)
The explanation up to the previous page was based on the premise that a “push-up” is installed in the casting, but the invention of claim 4 provides a technique capable of minimizing this push-up. For this purpose, a donut-shaped closed space is formed by the casting platen 10, the hollow ring, and the casting frame 50 that covers the mold, and after pouring is completed, the molten metal is pressurized from the open surface side of the pouring gate, so The molten metal of the 19 part is utilized as a hot water.

具体的には、図14の様に、鋳型を密閉型の鋳枠50で囲み、請求項1〜3の技術を用いて鋳枠−鋳型内に溶湯を充填した後、シュート開口面を加圧蓋51で覆い、ガス加圧する事で、湯口18の溶湯、及び湯道19内の溶湯を押し湯として活用出来る様になる。なお、シュート部、湯口部から加圧して押し湯効果を発揮させる際に、湯口部の溶湯の絶対量が不足する(押し湯量として不足する)、又は石膏セルによる断面積減少部の溶湯が先に凝固して、最後まで充分な押し湯供給がなされないと言った問題が生じる場合がある。この場合は以下の様に、湯口の反対側に加圧口52を新たに設定して対応してもよい。   Specifically, as shown in FIG. 14, the mold is surrounded by a closed mold 50, the molten metal is filled into the mold and mold using the techniques of claims 1 to 3, and then the chute opening surface is pressurized. By covering with the lid 51 and pressurizing the gas, the molten metal in the gate 18 and the molten metal in the runway 19 can be used as the hot water. In addition, when pressurizing from the chute part and the sprue part to exert the hot water effect, the absolute amount of the molten metal in the spout part is insufficient (insufficient as the amount of the molten metal), or the molten metal in the cross-sectional area reducing part by the gypsum cell is first There is a case where a problem arises that the hot water supply is not sufficiently supplied until the end. In this case, the pressure port 52 may be newly set on the opposite side of the gate as follows.

加圧方法としては、図15に示したガス加圧、図16に示したピストン加圧、図17に示した溶湯の高低差を利用したヘッド圧による加圧と言った具合に、様々な手法を活用出来る。またガス加圧とヘッド圧とを組み合わせて使用しても良い。この方法は、加圧スリーブ部にのみ外熱を加えて、加圧スリーブ内の溶湯凝固を遅延すると言う手法も取り易い利点がある。   As the pressurizing method, there are various methods such as gas pressurization shown in FIG. 15, piston pressurization shown in FIG. 16, pressurization by the head pressure using the height difference of the molten metal shown in FIG. Can be used. Further, a combination of gas pressurization and head pressure may be used. This method has an advantage that it is easy to take a method of applying external heat only to the pressure sleeve portion to delay the solidification of the molten metal in the pressure sleeve.

このように加圧口52を新たに設定する場合の鋳造定盤10および脱着定盤31の斜視図を図18に示し、鋳造法案の断面図を図19に示す。これらの図に示されるように、鋳造定盤10の湯口用溝12の反対側に加圧口用溝53を形成しておき、その上に加圧スリーブ54を立てればよい。中空リング16にも加圧口52を形成しておく。   FIG. 18 shows a perspective view of the casting surface plate 10 and the detachable surface plate 31 when the pressure port 52 is newly set as described above, and FIG. 19 shows a sectional view of the casting method. As shown in these drawings, a pressure port groove 53 may be formed on the opposite side of the pouring groove 12 of the casting surface plate 10 and a pressure sleeve 54 may be erected thereon. A pressure port 52 is also formed in the hollow ring 16.

通常鋳物で凝固収縮分を補うのに必要な押し湯量の理論値は、製品部湯量の10%程度であるのに対し、重力鋳造、転倒鋳造、吸引鋳造の実際の鋳造方案では、20〜50%もの押し湯を設定する事が多い。これは、押し湯の100%を製品部の溶湯凝固収縮分を補充するのに使用する事が出来ない為と、押し湯高さによるヘッド圧効果を活用したい為であると言える。(押し湯部の溶湯が最後まで凝固しない様に熱容量を確保する意味もある。)これに対して、低圧鋳造やダイキャストは鋳造方案をうまく設定すると、理論上必要最低限レベルの押し湯で済ませる事が出来る。(但し、低圧鋳造の方は、加圧炉内に最後まで溶湯が残っていなければならない。この溶湯は再利用が可能であるが、この分も『捨て湯』として考えなければならないのであるとすると、低圧鋳造法は合金効率の良い鋳造方案とは必ずしも言えない。)この事から請求項4の手法は、基本的には重力鋳造方案であるが、低圧鋳造法にも勝る合金効率を狙えるものである。   The theoretical value of the amount of hot water required to compensate for the solidification shrinkage in a normal casting is about 10% of the amount of hot water in the product part, whereas in the actual casting plans of gravity casting, overturning casting, and suction casting, 20-50 % Hot water is often set. This is because 100% of the hot water cannot be used to replenish the melt solidification shrinkage of the product part, and it is desired to utilize the head pressure effect due to the height of the hot water. (There is also a meaning to secure the heat capacity so that the molten metal in the hot metal part does not solidify until the end.) On the other hand, if low pressure casting and die casting are set up well, the theoretically minimum level of hot water is required. I can finish it. (However, in the case of low-pressure casting, the molten metal must remain in the pressurizing furnace until the end. This molten metal can be reused, but this part must also be considered as “discarded hot water”. Therefore, the low-pressure casting method is not necessarily a casting method with good alloy efficiency. From this, the method of claim 4 is basically a gravity casting method, but it can aim for an alloy efficiency superior to that of the low-pressure casting method. Is.

以下に各発明の実施例を示す。
図20に全実施例を通して製作したタイヤ金型用リング鋳物の形状を示す。タイヤ意匠面の形状はφ1100の内周面に形成されている。使用材質及び鋳造条件は下記の通りである。
☆石膏鋳型,石膏セル材質
(株)ノリタケジプサムG-6非発泡石膏、石膏1kgに対して水500gで調合したもの。
☆使用合金材質
JISアルミニウム合金 AC4C(7%Si,0.4%Mg,0.4%Fe 残Al)
☆鋳造条件
鋳枠,鋳造定盤材質 : FC250(ねずみ鋳鉄)
脱着定盤材質:S45C(炭素鋼)
鋳枠予熱温度 : 150〜200℃
鋳造定盤、脱着定盤温度 : 25℃(室温)
合金鋳込み開始温度 : 660℃
☆使用した断熱材
新日鉄化学(株)SCペーパー1260I 3mm厚品
Examples of each invention are shown below.
FIG. 20 shows the shape of a ring casting for a tire mold manufactured through all the examples. The shape of the tire design surface is formed on the inner peripheral surface of φ1100. The materials used and casting conditions are as follows.
☆ Gypsum mold, gypsum cell material
Noritake Gypsum G-6 non-foamed gypsum, 1 g of gypsum, formulated with 500 g of water.
☆ Alloy material used
JIS aluminum alloy AC4C (7% Si, 0.4% Mg, 0.4% Fe remaining Al)
☆ Casting conditions
Cast frame, casting surface plate material: FC250 (gray cast iron)
Desorption platen material: S45C (carbon steel)
Casting frame preheating temperature: 150 ~ 200 ℃
Casting surface plate, desorption surface plate temperature: 25 ℃ (room temperature)
Alloy casting start temperature: 660 ℃
☆ Insulating material used Nippon Steel Chemical Co., Ltd. SC paper 1260I 3mm thick product

<実施例1>請求項1、2、3の実施例
図20に記載の鋳物を、図12、13に記載の鋳造方案で鋳造した(押し湯高さは300mm)。但し、鋳造定盤、脱着定盤および、石膏鋳型直上の鋳枠底面の溶湯接触面には、φ16の丸穴を開口率20%で空けたパンチングプレート状の断熱材を全面に貼り付けた状態で鋳造を実施した。この様にして得られた鋳物は鋳造欠陥も無く健全で、タイヤ金型として必要な全形状(デザイン)が忠実に鋳出しされたものであった。
<Example 1> Examples of Claims 1, 2, and 3 The casting shown in FIG. 20 was cast by the casting method shown in FIGS. 12 and 13 (the height of the feeder is 300 mm). However, a punching plate-like heat insulating material with a hole diameter of 20% is attached to the entire surface of the casting surface plate, the desorption surface plate, and the molten metal contact surface on the bottom of the casting frame directly above the gypsum mold. The casting was carried out. The casting thus obtained was sound with no casting defects, and the entire shape (design) required for the tire mold was faithfully cast.

<実施例2>請求項4の実施例
上記の様な鋳物を、図14に記載の鋳造方案で鋳造した。加圧スリーブ内径は250mmとし、その上端部を鋳物製品部高さより700mm程高い位置とし、製品部への注湯完了後、加圧スリーブ内に溶湯を追加補充し、加圧口に蓋をしたのち0.12MPaの工場エアーで加圧し、溶湯凝固を完了させた。(鋳造定盤、脱着定盤および、石膏鋳型直上の鋳枠底面への断熱材貼り付け条件は、実施例1に準じた。)この様にして得られた鋳物は鋳造欠陥も無く健全で、タイヤ金型として必要な全形状(デザイン)が忠実に鋳出しされたものであった。また、実施例1に比べて鋳込み重量を150kgほど減少させる事が出来た。
<Example 2> Example of Claim 4 A casting as described above was cast by the casting method shown in FIG. The inner diameter of the pressure sleeve is 250 mm, and the upper end of the pressure sleeve is about 700 mm higher than the height of the casting product. After the pouring of the product is completed, the molten metal is additionally replenished in the pressure sleeve and the pressure port is covered. Later, it was pressurized with 0.12 MPa of factory air to complete the melt solidification. (The conditions for applying the heat insulating material to the bottom surface of the casting frame immediately above the casting surface plate, the desorption surface plate, and the gypsum mold were the same as in Example 1.) The casting thus obtained was healthy without casting defects, The entire shape (design) required for the tire mold was faithfully cast. Compared with Example 1, the casting weight could be reduced by about 150 kg.

図1は重力鋳造法を説明する模式的な断面図である。FIG. 1 is a schematic cross-sectional view illustrating the gravity casting method. 転倒鋳造法を説明する模式的な断面図である。It is typical sectional drawing explaining the falling casting method. 吸引鋳造法を説明する模式的な断面図である。It is typical sectional drawing explaining the suction casting method. 低圧鋳造法を説明する模式的な断面図である。It is typical sectional drawing explaining a low pressure casting method. ダイキャスト法を説明する模式的な断面図である。It is typical sectional drawing explaining the die-casting method. タイヤ金型用リング鋳物を重力鋳造方法で製造する場合の公知技術を説明する工程説明図である。It is process explanatory drawing explaining the well-known technique in the case of manufacturing the ring casting for tire molds with a gravity casting method. タイヤ金型用リング鋳物を低圧鋳造方法で製造する場合の公知技術を説明する工程説明図である。It is process explanatory drawing explaining the well-known technique in the case of manufacturing the ring casting for tire molds by a low pressure casting method. 請求項1の発明の実施形態を示す分解斜視図である。It is a disassembled perspective view which shows embodiment of invention of Claim 1. FIG. 請求項1の発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of invention of Claim 1. 請求項2の発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of invention of Claim 2. 請求項2の発明における鋳物への冷し金設置を説明する断面図である。It is sectional drawing explaining the cooling metal installation to the casting in invention of Claim 2. 請求項3の発明における冷し金を説明する斜視図である。It is a perspective view explaining the cooling metal in invention of Claim 3. 請求項3の発明における冷し金を説明する斜視図である。It is a perspective view explaining the cooling metal in invention of Claim 3. 請求項4の発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of invention of Claim 4. ガス加圧方式を示す断面図である。It is sectional drawing which shows a gas pressurization system. ピストン加圧方式を示す断面図である。It is sectional drawing which shows a piston pressurization system. ヘッド圧による加圧方式を示す断面図である。It is sectional drawing which shows the pressurization system by a head pressure. 請求項4の発明における鋳造定盤および脱着定盤の斜視図である。It is a perspective view of the casting surface plate and the removal | desorption surface plate in invention of Claim 4. 請求項4の発明における鋳造方案の断面図である。It is sectional drawing of the casting method in invention of Claim 4. 実施例で製作したタイヤ金型用リング鋳物の斜視図である。It is a perspective view of the ring casting for tire molds manufactured in the Example.

符号の説明Explanation of symbols

1 定盤
2 石膏鋳型
3 鋳枠
4 鋳枠
5 冷し金
6 石膏定盤
7 湯道ボード
8 加圧炉
10 鋳造定盤
11 リング状の溝
12 湯口用溝
13 堰用溝
14 断熱材
15 リング状の断熱材
16 中空リング
17 中空リング
18 湯口
19 湯道
20 堰構造
21 鋳枠
22 石膏セル
30 円形座グリ溝
31 脱着定盤
40 断熱材
50 鋳枠
52 加圧蓋
52 加圧口
DESCRIPTION OF SYMBOLS 1 Surface plate 2 Gypsum mold 3 Casting frame 4 Casting frame 5 Cooling metal 6 Gypsum surface plate 7 Runway board 8 Pressurizing furnace 10 Casting surface plate 11 Ring-shaped groove 12 Groove for pouring gate 13 Groove for weir 14 Heat insulating material 15 Ring Shaped heat insulating material 16 hollow ring 17 hollow ring 18 sprue 19 runner 20 weir structure 21 cast frame 22 gypsum cell 30 circular counterbored groove 31 demounting surface plate 40 heat insulating material 50 cast frame 52 pressure lid 52 pressure port

Claims (4)

タイヤ金型用リング鋳物を重力鋳造方法で製作する場合に、鋳造する合金溶湯で溶解・崩壊する事の無い材質からなる鋳造定盤上に、上面開放構造でリング鋳物の外径より一回り大きい内径を持ったリング状の溝形状を彫りこんでおき、その上にこれに蓋をする事が出来る形状の中空リングを上下合わせる形で組み立て、溝形状の内面に断熱材を貼り付けて湯口、湯道、堰構造を形成することにより、湯口、湯道、堰構造を繰り返し使用出来るようにしたことを特徴とするタイヤ金型の鋳造方法。   When manufacturing ring castings for tire molds by the gravity casting method, on the casting surface plate made of a material that does not melt or collapse with the molten alloy to be cast, it is slightly larger than the outer diameter of the ring casting with an open top structure A ring-shaped groove shape with an inner diameter is engraved, and a hollow ring with a shape that can be capped on it is assembled on the top and bottom, and a heat insulator is attached to the inner surface of the groove shape. A casting method for a tire mold, wherein a runner, runner, and dam structure can be used repeatedly by forming a runner and a dam structure. 請求項1に記載のタイヤ金型の鋳造方法において、鋳造定盤の中央部に円形座グリ溝を形成しておき、ここに脱着出来る形の脱着定盤を別途製作しておき、この脱着定盤にリング鋳型を載せる事で、鋳型組み立て、再乾燥作業と、鋳造定盤の湯口、湯道、堰構造部への断熱材貼り付け作業を独立して行う事が出来るようにしたことを特徴とするタイヤ金型の鋳造方法。   In the tire mold casting method according to claim 1, a circular counterbore groove is formed in the center portion of the casting surface plate, and a detachable surface plate in a form that can be detached is separately manufactured. By mounting a ring mold on the panel, the mold assembly and re-drying work can be performed independently and the insulation work can be applied to the gate, runner and weir structure of the casting surface plate independently. The tire mold casting method. 請求項1または2に記載のタイヤ金型の鋳造方法において、鋳型の下側の冷し金として脱着定盤および鋳造定盤を用い、上側の冷し金として鋳型直上に設置する鋳枠を利用し、これらの溶湯接触面に断熱材を貼り付けておき、この断熱材に不連続な開口部を複数個配置する事で、この開口率調整で冷し金効率を調整し、上下側でほぼ同等な冷し金効果を持たせると同時に、注湯時の湯流れ性をも確保することを特徴とするタイヤ金型の鋳造方法。   3. The method for casting a tire mold according to claim 1 or 2, wherein a desorption surface plate and a casting surface plate are used as the lower cooling metal of the mold, and a casting frame installed immediately above the mold is used as the upper cooling metal. Then, heat insulating material is pasted on these molten metal contact surfaces, and by disposing a plurality of discontinuous openings in this heat insulating material, the cooling efficiency is adjusted by adjusting the opening ratio, and the upper and lower sides are substantially adjusted. A method for casting a tire mold characterized by having an equivalent cooling metal effect and at the same time ensuring hot water flow during pouring. 請求項1〜3の何れかに記載のタイヤ金型の鋳造方法において、鋳造定盤、中空リング、鋳型にかぶせる鋳枠でドーナツ状の閉空間を形成し、注湯完了後、湯口の開放面側から溶湯を加圧する事で、湯口、湯道部の溶湯を押し湯として活用することを特徴とするタイヤ金型の鋳造方法。   The casting method of the tire mold according to any one of claims 1 to 3, wherein a donut-shaped closed space is formed by a casting surface plate, a hollow ring, and a casting frame covering the mold, and after pouring is completed, an open surface of the gate is formed. A method for casting a tire mold, wherein the molten metal is pressurized from the side to utilize the molten metal at the gate and runner as the hot water.
JP2005343662A 2005-11-29 2005-11-29 Tire mold casting method Active JP4789241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343662A JP4789241B2 (en) 2005-11-29 2005-11-29 Tire mold casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343662A JP4789241B2 (en) 2005-11-29 2005-11-29 Tire mold casting method

Publications (2)

Publication Number Publication Date
JP2007144480A JP2007144480A (en) 2007-06-14
JP4789241B2 true JP4789241B2 (en) 2011-10-12

Family

ID=38206504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343662A Active JP4789241B2 (en) 2005-11-29 2005-11-29 Tire mold casting method

Country Status (1)

Country Link
JP (1) JP4789241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448011A (en) * 2017-12-04 2020-07-24 株式会社普利司通 Casting device for tire molding die and casting method for tire molding die

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634665B2 (en) * 2008-05-09 2014-12-03 株式会社ブリヂストン Tire molding die casting apparatus and tire molding die casting method using the same
KR100969333B1 (en) * 2008-06-24 2010-07-09 조선대학교산학협력단 Device of manufacturing 2piece mold for manufacturing tire
JP5243157B2 (en) 2008-09-11 2013-07-24 株式会社ブリヂストン Manufacturing method of casting for tire mold
JP5427589B2 (en) * 2009-12-22 2014-02-26 株式会社ブリヂストン Manufacturing method of tire mold
JP6377409B2 (en) * 2014-05-23 2018-08-22 株式会社ブリヂストン Mold casting equipment
JP5814440B2 (en) * 2014-09-03 2015-11-17 株式会社ブリヂストン Tire molding die casting apparatus and tire molding die casting method using the same
JP5814441B2 (en) * 2014-09-03 2015-11-17 株式会社ブリヂストン Tire molding die casting apparatus and tire molding die casting method using the same
JP2018187655A (en) * 2017-05-09 2018-11-29 株式会社ブリヂストン Method for producing molding mold for tire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911383B2 (en) * 1980-09-27 1984-03-15 橋場鉄工株式会社 Low-pressure casting mold for tire molding and vulcanization
JPH0357533A (en) * 1989-07-24 1991-03-12 Aisin Takaoka Ltd Mold for metallic mold casting
JP2796010B2 (en) * 1992-04-22 1998-09-10 日本碍子株式会社 Tire mold casting method and tire mold casting chute
JP2000246419A (en) * 1999-02-25 2000-09-12 Hitachi Ltd Forming die and forming method
JP2001150099A (en) * 1999-11-30 2001-06-05 Takata Physics International Kk Metallic mold
JP4745532B2 (en) * 2001-05-24 2011-08-10 旭テック株式会社 Multi-gate casting mold and casting method
JP3853222B2 (en) * 2002-01-30 2006-12-06 日本碍子株式会社 Manufacturing method of tire mold
JP2004174518A (en) * 2002-11-25 2004-06-24 Asahi Tec Corp Metal mold for casting
JP4268024B2 (en) * 2003-11-28 2009-05-27 日本碍子株式会社 Tire molding mold manufacturing method and tire molding mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448011A (en) * 2017-12-04 2020-07-24 株式会社普利司通 Casting device for tire molding die and casting method for tire molding die

Also Published As

Publication number Publication date
JP2007144480A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4789241B2 (en) Tire mold casting method
KR20130061174A (en) Free casting method, free casting apparatus, and casting
CN104174819B (en) The climb casting technique of machine third-level planetary frame of a kind of ocean platform
CN103691887B (en) The casting technique of the high manganese steel lining plate that a kind of as cast condition uses
CN102935493B (en) Method for manufacturing large hollow steel ingots by forced cooling with single sleeves
CN109047667A (en) A kind of buhl saw bearing block casting technique
CN106001446A (en) Method and mold for producing passenger car engine single-chip main bearing cover
JP5634665B2 (en) Tire molding die casting apparatus and tire molding die casting method using the same
CN102350485A (en) Device and process for repairing shrinkage holes during steel billet casting through intermediate-frequency electric heating
JPH0138590B2 (en)
AU633154B2 (en) Method of controlling the rate of heat extraction in mould casting
JP4170793B2 (en) Compound mold manufacturing method
US11897028B2 (en) Controlled nozzle cooling (CNC) casting
CN109396359A (en) A kind of hollow thin-wall aluminum alloy control arm metal mold gravity casting technique
CN207746378U (en) A kind of hollow thin-wall cast aluminium control arm metal gravity verts mold
JP5729642B2 (en) Columnar ingot casting equipment
CN105772688A (en) Automobile mold casting compositely casted through Cr12 type steel and gray iron, pouring system and casting method
JPH02151344A (en) Apparatus for casting wheel for vehicles
CN109402427A (en) A kind of aluminum alloy chassis hollow thin-wall fore sub frame metal mold gravity casting technique
CN202377488U (en) Metal shell covering casting die
CN101733387B (en) Low pressure casting method of aluminium alloy lost foam
CN207746374U (en) A kind of aluminum alloy chassis rear axle support metal gravity casting die
EP0110854A1 (en) Method for casting ingots and apparatus for carrying out the method
CN104209471A (en) Preparation method of triplet shell casting
CN110605359B (en) Low-cost titanium alloy machining graphite mold casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110610

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150