JP5243157B2 - Manufacturing method of casting for tire mold - Google Patents

Manufacturing method of casting for tire mold Download PDF

Info

Publication number
JP5243157B2
JP5243157B2 JP2008233981A JP2008233981A JP5243157B2 JP 5243157 B2 JP5243157 B2 JP 5243157B2 JP 2008233981 A JP2008233981 A JP 2008233981A JP 2008233981 A JP2008233981 A JP 2008233981A JP 5243157 B2 JP5243157 B2 JP 5243157B2
Authority
JP
Japan
Prior art keywords
casting
mold
surface portion
block
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008233981A
Other languages
Japanese (ja)
Other versions
JP2010064115A (en
JP2010064115A5 (en
Inventor
泰之 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008233981A priority Critical patent/JP5243157B2/en
Priority to EP09812950.5A priority patent/EP2335844B1/en
Priority to CN2009801356881A priority patent/CN102149490A/en
Priority to PCT/JP2009/060904 priority patent/WO2010029802A1/en
Priority to US13/059,771 priority patent/US20110174460A1/en
Publication of JP2010064115A publication Critical patent/JP2010064115A/en
Publication of JP2010064115A5 publication Critical patent/JP2010064115A5/ja
Application granted granted Critical
Publication of JP5243157B2 publication Critical patent/JP5243157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/28Moulds for peculiarly-shaped castings for wheels, rolls, or rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明は、セクショナルモードタイプのタイヤ成型金型用鋳物の製造方法に関し、詳しくは、鋳造収縮時における各ブロック鋳物のネジレや反り変形が発生し難く、かつ上下で収縮率差が少なく、大型物件でも比較的短い溶湯凝固時間とすることができ、しかも健全な鋳物を得易いタイヤ成型金型用鋳物の製造方法に関する。   The present invention relates to a method for manufacturing a casting for a tire molding mold of a sectional mode type, and in particular, it is difficult for twisting and warping deformation of each block casting at the time of casting shrinkage, and there is little difference in shrinkage rate between the top and bottom, However, the present invention relates to a method for manufacturing a casting for a tire molding die, which can have a relatively short molten metal solidification time and easily obtain a sound casting.

タイヤ成型金型は、デザインの複雑さや、異種金属材料からなるサイプ、ブレード等の薄板を鋳包む特性を持つことから、鋳造製法で製作されるのが一般的であり、タイヤ金型鋳造製法として石膏鋳造法が広く採用されている。石膏鋳造法を採用するその他の理由としては、(1)アルミ合金程度までの融点を持つ鋳物を寸法精度高く製作できること、(2)石膏鋳型の段階での切断加工・組立てが容易に行えること、(3)サイプやブレードの鋳包みにも自由度高く対応できること、(4)ゴム型からの注型反転製作で、複雑なデザイン形状を精密に転写する事ができること、等が挙げられる。   Tire molding dies are generally produced by casting because of the complexity of the design and the ability to cast thin plates such as sipes and blades made of dissimilar metal materials. The plaster casting method is widely adopted. Other reasons for adopting the gypsum casting method are (1) the ability to produce castings with melting points up to the level of aluminum alloys with high dimensional accuracy, and (2) the ease of cutting and assembly at the gypsum mold stage. (3) It is possible to cope with casting of sipe and blade with a high degree of freedom, and (4) complicated design shape can be accurately transferred by casting inversion from a rubber mold.

タイヤ金型の金型分割構造には、タイヤ幅方向に2分割する2ピースモールドと、タイヤ円周方向に7〜11分割するセクショナルモールドの2種類が存在する。これらのうち、タイヤ成型脱型時の抵抗が少なく、寸法精度が高いセクショナルモールドが広く用いられている。セクショナルモールドの鋳造方法として、例えば、特許文献1には低圧鋳造法による溶湯注湯方法、特許文献2には重力鋳造で専用樋(シュート)を用いた溶湯注湯方法、特許文献3には重力鋳造で、繰り返し使用可能な湯道定盤を用いた溶湯注湯方法がそれぞれ開示されている。   There are two types of mold division structures for tire molds: a two-piece mold that divides into two in the tire width direction and a sectional mold that divides into 7 to 11 in the tire circumferential direction. Of these, sectional molds are widely used that have low resistance during tire molding and high dimensional accuracy. As a casting method of the sectional mold, for example, Patent Document 1 discloses a molten metal pouring method using a low pressure casting method, Patent Document 2 discloses a molten metal pouring method using a dedicated chute in gravity casting, and Patent Document 3 describes gravity. A molten metal pouring method using a runner surface plate that can be repeatedly used in casting is disclosed.

これらの方法の特徴としては、(1)鋳造した後、加工してセクショナルモールド化する、(2)出湯口が下面側に集中するため、セクショナルモールド一個単位で、上下で溶湯凝固時間が異なる、(3)冷やし型として鋳枠を活用する、等が挙げられる。   The characteristics of these methods are: (1) After casting, processing and forming a sectional mold, (2) Since the outlet is concentrated on the lower surface side, the melt solidification time is different at the top and bottom for each sectional mold. (3) Utilizing a casting frame as a cooling mold.

図19は、タイヤ金型をセクショナルモールドにて作製する際の工程例を図示したものである。(A)はタイヤ金型のリング鋳物100の平面図であり、(B)はその断面図である。この工程例では、先ず、タイヤ金型を鋳造し、次いでセクター分割により個々のブロック鋳物101に分割し、その後、外周を加工してセクショナルモールド化する。この方法によれば、複数のブロック鋳物のリング状同時鋳造およびブロック鋳物一個単位の鋳造双方が可能である。
特開昭57−58968号公報(特許請求の範囲等) 特許第2796010号(特許請求の範囲等) 特開2007−144480号公報(特許請求の範囲等)
FIG. 19 illustrates a process example when a tire mold is manufactured by a sectional mold. (A) is a top view of the ring casting 100 of a tire mold, (B) is the sectional view. In this process example, a tire mold is first cast, then divided into individual block castings 101 by sector division, and then the outer periphery is processed into a sectional mold. According to this method, it is possible to perform both ring-shaped simultaneous casting of a plurality of block castings and casting of one block casting.
JP-A-57-58968 (Claims etc.) Japanese Patent No. 2796010 (Claims etc.) JP 2007-144480 A (Claims etc.)

タイヤ金型用鋳物をセクショナルモールドで鋳造する場合には、鋳造収縮時にセクショナルモールドのブロック鋳物でのネジレや反り変形が発生しづらい、タイヤ金型用鋳物を1リングで鋳造できるため鋳造生産性が良い、という利点がある。しかしながら、従来のセクショナルモールドでは、出湯口が下面または上面側に存在するため、上下面で溶湯凝固時間に差が生じ、凝固が遅い所で鋳造収縮が大きくなるため、上下型寸法差が発生しやすいといった問題があった。   When casting a tire mold casting with a sectional mold, twisting and warping deformation in the sectional mold block casting is less likely to occur when the casting shrinks, and the casting for the tire mold can be cast with one ring. There is an advantage that it is good. However, in conventional sectional molds, there is a difference between the upper and lower surfaces of the molten metal solidification time due to the presence of the outlet on the lower or upper surface side, and the casting shrinkage increases where solidification is slow, resulting in a difference in the upper and lower mold dimensions. There was a problem that it was easy.

そこで、本発明の目的は、鋳造収縮時における各ブロック鋳物のネジレや反り変形が発生し難く、かつ上下で収縮率差が少なく、大型物件でも比較的短い溶湯凝固時間とすることができ、しかも健全な鋳物を得易いタイヤ成型金型用鋳物の製造方法を提供することにある。   Therefore, the object of the present invention is that twisting and warping deformation of each block casting hardly occur at the time of casting shrinkage, and there is little difference in shrinkage rate at the top and bottom, and even a large property can have a relatively short molten metal solidification time. It is providing the manufacturing method of the casting for tire molding dies which is easy to obtain a sound casting.

本発明者は、上記課題を解決するために、鋭意検討した結果、下記構成とすることにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventor has found that the above object can be achieved by adopting the following configuration, and has completed the present invention.

すなわち、本発明のタイヤ成型金型用鋳物の製造方法は、円周方向に複数分割することで金型の開閉動作を行うセクショナルモールドタイプのタイヤ成型金型用鋳物の製造方法において、
分割された個々のブロック鋳物を個別に鋳造して作製する工程を含み、該工程において、金型との接触面である意匠面を四方から囲む上面部、下面部および両側の円周方向分割面の4面に、少なくとも前記意匠面を連続的に包囲するように冷やし金を配置した鋳型に溶湯を注湯することを特徴とするものである。
That is, the method for producing a casting for a tire molding die of the present invention is a method for producing a casting for a tire molding die of a sectional mold type in which a mold is opened and closed by dividing into a plurality in the circumferential direction.
Including a step of individually casting the divided block castings to produce them, and in this step, an upper surface portion, a lower surface portion, and circumferentially divided surfaces on both sides that surround the design surface that is a contact surface with the mold from four sides The molten metal is poured into a mold in which a cooling metal is disposed so as to continuously surround at least the design surface on the four surfaces.

本発明においては、前記上面部、下面部および両側の円周方向分割面の4面に対し、対向する前記冷やし金同士を夫々対称に配置することが好ましい。また、前記鋳型に対する一対の出湯口を前記上面部および下面部に対称に配置するか、または前記鋳型に対する一対の出湯口を前記両側の円周方向分割面に対称に配置することが好ましい。さらに、出湯口および/または出湯口に溶湯を供給するランナーを前記冷やし金の内部に形成することが好ましい。   In this invention, it is preferable to arrange | position the said cooling metal facing each other symmetrically with respect to four surfaces of the said upper surface part, a lower surface part, and the circumferential direction division surface of both sides. Further, it is preferable that a pair of outlets for the mold is arranged symmetrically on the upper surface part and the lower surface part, or a pair of outlets for the mold is arranged symmetrically on the circumferential dividing surfaces on both sides. Furthermore, it is preferable to form a runner for supplying molten metal to the hot water outlet and / or the hot water outlet inside the cooling metal.

本発明によれば、鋳造収縮時における各ブロック鋳物のネジレや反り変形が発生し難く、かつ上下で収縮率差が少なく、大型物件でも比較的短い溶湯凝固時間とすることができ、しかも健全な鋳物を得易いタイヤ成型金型用鋳物の製造方法を提供することができる。   According to the present invention, twisting and warping deformation of each block casting hardly occur at the time of casting shrinkage, and there is little difference in shrinkage rate between the upper and lower sides, and even a large property can have a relatively short molten metal solidification time, and sound. It is possible to provide a method for producing a casting for a tire molding die that is easy to obtain a casting.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。
(第1〜3実施形態)
図1(A)は、本発明の第1実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの意匠面6側略半面と、下面部2bの背面4側略半面と、両側の円周方向分割面のうち、一方の円周方向分割面3aの背面4側略半面と、もう一方の円周方向分割面3bの背面4側略半面とに、ブロック鋳物1内部の冷却速度を高めるための冷やし金を配置する。図中、冷やし金が当接する箇所を斜線にて示す。本発明においては、図示するように冷やし金が意匠面6を連続的に包囲するように鋳型を形成することが肝要である。これにより、鋳造後の溶湯凝固時に、当該部位の凝固が速やかに生じ、凝固した当該部位がブロック鋳物1の全体の凝固・冷却収縮時の拘束具として機能することになる。その結果、製造されたブロック鋳物1に、ネジレや反りといった変形を生じ難くなり、また、上面部2aと下面部2bとで収縮率差が少なくなる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First to third embodiments)
FIG. 1 (A) is a perspective view of the block casting 1 according to the first embodiment of the present invention. Of the design surface 6 side of the upper surface 2a of the block casting 1, the substantially half surface of the lower surface 2b, the back surface 4 of the lower surface 2b, and the circumferentially divided surfaces of both sides, the back surface 4 side of one circumferentially divided surface 3a. A chiller for increasing the cooling rate inside the block casting 1 is disposed on the half surface and the substantially half surface on the back surface 4 side of the other circumferentially divided surface 3b. In the figure, the portion where the chiller abuts is indicated by hatching. In the present invention, it is important to form the mold so that the cooling metal continuously surrounds the design surface 6 as shown. Thereby, the solidification of the said site | part rapidly arises at the time of the molten metal solidification after casting, and the said solidified site | part functions as a restraint tool at the time of the solidification and cooling shrinkage | contraction of the block casting 1 whole. As a result, the produced block casting 1 is less likely to be deformed such as twisting and warping, and the difference in shrinkage between the upper surface portion 2a and the lower surface portion 2b is reduced.

尚、図19に示すような従来のセクショナルモールドにてタイヤ金型をリング鋳造すると、上面部または下面部のいずれか一方に押し湯穴部を形成しなければならず、また円周方向に分割面が存在しないために円周方向分割面に冷やし金を接触させることができないことから、冷やし金が意匠面を連続的に包囲するように型を形成することは不可能である。よって、従来のセクショナルモールドの場合は、鋳物のリング構造自体が、収縮時のネジレや反り変形の発生を極小化するものの、押し湯側の凝固が遅れ、上面部と下面部とで収縮率差が大きくなることは避けられなかった。   In addition, when the tire mold is ring-cast by the conventional sectional mold as shown in FIG. 19, a hot water hole portion must be formed on either the upper surface portion or the lower surface portion, and divided in the circumferential direction. Since there is no surface, the cooling metal cannot be brought into contact with the circumferentially divided surface. Therefore, it is impossible to form a mold so that the cooling metal continuously surrounds the design surface. Therefore, in the case of conventional sectional molds, the casting ring structure itself minimizes the occurrence of twisting and warping deformation during shrinkage, but solidification on the feeder side is delayed, and there is a difference in shrinkage rate between the upper surface and the lower surface. It was inevitable that the size would increase.

本発明においては、意匠面6の対向面である背面4側に関しては、ブロック鋳物1に対する冷やし金の配置について特に制限はなく、押し湯5の穴部以外、全面冷やし金を接触させても、あるいは冷やし金を全く配置せず、型枠のみとしてもよい。   In the present invention, with respect to the back surface 4 side, which is the facing surface of the design surface 6, there is no particular limitation on the arrangement of the cooling metal with respect to the block casting 1, even if the entire surface cooling metal other than the hole of the hot water 5 is contacted, Or it is good also as only a formwork, without arrange | positioning a cooling metal at all.

図1(B)は、本発明の第2実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの全面と、下面部2bの全面と、両側の円周方向分割面のうち、一方の円周方向分割面3aの意匠面6側略半面と、もう一方の円周方向分割面3bの背面4側略半面とに、冷やし金を配置する。また、図1(C)は、本発明の第3実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの意匠面6側略半面と、下面部2bの背面4側略半面と、両側の円周方向分割面3a、3bの全面とに、冷やし金を配置する。これら実施形態においても、第1実施形態と同様に、冷やし金が意匠面6を連続的に包囲することができ、結果として、鋳造後の溶湯凝固時に、当該部位の凝固が速やかに生じ、凝固した当該部位がブロック鋳物1の全体の凝固・冷却収縮時の拘束具として機能することになる。   FIG. 1B is a perspective view of a block casting 1 according to the second embodiment of the present invention. The entire upper surface portion 2a, the entire lower surface portion 2b of the block casting 1, and the design surface 6 side substantially half surface of one circumferential direction divided surface 3a among the circumferential direction divided surfaces on both sides, and the other circumference A cooling metal is disposed on the substantially half surface on the back surface 4 side of the direction dividing surface 3b. FIG. 1C is a perspective view of a block casting 1 according to the third embodiment of the present invention. Cooling metal is disposed on the design surface 6 side substantially half surface of the upper surface portion 2a of the block casting 1, the back surface 4 side substantially half surface of the lower surface portion 2b, and the entire circumferential dividing surfaces 3a and 3b on both sides. In these embodiments, similarly to the first embodiment, the cooling metal can continuously surround the design surface 6, and as a result, the solidification of the part rapidly occurs at the time of the solidification of the molten metal after casting. The said site | part functions as a restraint tool at the time of the solidification and cooling shrinkage | contraction of the block casting 1 whole.

(第4〜8実施形態)
以下の第4〜8実施形態では、ブロック鋳物1の上面部、下面部および両側の円周方向分割面の4面に対し、対向する冷やし金同士を夫々対称に配置する好適実施形態について説明する。
(Fourth to eighth embodiments)
In the following fourth to eighth embodiments, preferred embodiments will be described in which opposed chillers are arranged symmetrically with respect to the four surfaces of the upper surface portion, the lower surface portion, and the circumferentially divided surfaces on both sides of the block casting 1. .

図2(A)は、本発明の第4実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの全面と、下面部2bの全面と、両側の円周方向分割面3a、3bの全面とに、冷やし金を配置することにより、対向する冷やし金同士が夫々対称に配置されている。   FIG. 2A is a perspective view of a block casting 1 according to the fourth embodiment of the present invention. By disposing chillers on the entire upper surface portion 2a, the entire lower surface portion 2b of the block casting 1, and the entire circumferential dividing surfaces 3a and 3b on both sides, the opposing chillers are symmetrical with each other. Has been placed.

図2(B)は、本発明の第5実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの意匠面6側略半面と、下面部2bの意匠面6側略半面と、両側の円周方向分割面3a、3bの意匠面6側略半面とに、冷やし金を配置することにより、対向する冷やし金同士が夫々対称に配置されている。   FIG. 2B is a perspective view of the block casting 1 according to the fifth embodiment of the present invention. Cooling metal on the design surface 6 side approximately half surface of the upper surface portion 2a of the block casting 1, the design surface 6 side approximately half surface of the lower surface portion 2b, and the design surface 6 side approximately half surface of the circumferentially divided surfaces 3a and 3b on both sides. By arrange | positioning, the opposing cooling metal is arrange | positioned symmetrically, respectively.

図2(C)は、本発明の第6実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの背面4側略半面と、下面部2bの背面4側略半面と、両側の円周方向分割面3a、3bの背面4側略半面とに、冷やし金を配置することにより、対向する冷やし金同士が夫々対称に配置されている。   FIG. 2C is a perspective view of the block casting 1 according to the sixth embodiment of the present invention. Cooling metal is arranged on the back half 4 side of the upper surface 2a of the block casting 1, the back side 4 of the lower face 2b, and the back side 4 of the circumferentially divided surfaces 3a and 3b on both sides. Thus, the opposing chillers are arranged symmetrically.

図2(D)は、本発明の第7実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの意匠面6側略半面と、下面部2bの意匠面6側略半面と、両側の円周方向分割面3a、3bの背面4側略半面とに、冷やし金を配置することにより、対向する冷やし金同士が夫々対称に配置されている。   FIG. 2D is a perspective view of the block casting 1 according to the seventh embodiment of the present invention. Cooling metal is applied to the design surface 6 side approximately half surface of the upper surface portion 2a of the block casting 1, the design surface 6 side approximately half surface of the bottom surface portion 2b, and the back surface 4 side approximately half surface of the circumferentially divided surfaces 3a and 3b on both sides. By arrange | positioning, the chillers which oppose are arrange | positioned symmetrically, respectively.

図2(E)は、本発明の第8実施形態に係るブロック鋳物1の透視斜視図である。ブロック鋳物1の上面部2aの背面4側略半面と、下面部2bの背面4側略半面と、両側の円周方向分割面3a、3bの意匠面6側略半面とに、冷やし金を配置することにより、対向する冷やし金同士が夫々対称に配置されている。なお、いずれの図も、冷やし金が当接する箇所を斜線にて示す。   FIG. 2E is a perspective view of the block casting 1 according to the eighth embodiment of the present invention. Cooling metal is arranged on the back half 4 side of the upper surface 2a of the block casting 1, the back side 4 of the bottom face 2b, and the design side 6 half of the circumferentially divided surfaces 3a and 3b on both sides. By doing so, the opposing chillers are arranged symmetrically. In each figure, the portion where the chiller abuts is indicated by hatching.

第4〜8実施形態においては、いずれも冷やし金が意匠面6を連続的に包囲しており、よって、第1実施形態に係る発明と同様の効果を得ることができる。加えて、第4〜8実施形態では、ブロック鋳物1の上面部2a、下面部2bおよび両側の円周方向分割面3a、3bの4面において、対向する冷やし金同士を夫々対称に配置することにより、上面部2a、下面部2bおよび両側の円周方向分割面3a、3bからの溶湯凝固が、対称にほぼ同時間で始まることになり、ブロック鋳物1で上下左右(矢印方向)対称の寸法特性を得易くなる。鋳物の背面4側の冷やし金の配置については、特に制限はない。   In the fourth to eighth embodiments, the chiller continuously surrounds the design surface 6, and thus the same effect as that of the invention according to the first embodiment can be obtained. In addition, in the fourth to eighth embodiments, the opposing chillers are arranged symmetrically on the four surfaces of the upper surface portion 2a and the lower surface portion 2b of the block casting 1 and the circumferentially divided surfaces 3a and 3b on both sides. Accordingly, the solidification of the molten metal from the upper surface portion 2a, the lower surface portion 2b, and the circumferentially divided surfaces 3a and 3b on both sides starts symmetrically at substantially the same time, and the block casting 1 is symmetrical in the vertical and horizontal directions (arrow direction). It becomes easy to obtain characteristics. There is no restriction | limiting in particular about arrangement | positioning of the cooling metal at the back surface 4 side of a casting.

上述のようにブロック鋳物1の上下左右(矢印方向)対称の凝固形態を狙うと、必然的に押し湯5は、背面4側に設置しなければならなくなり、ブロック鋳物1の背面4側の溶湯凝固を遅らせることが必要となる。よって、背面4での溶湯初期凝固層によるブロック鋳物1全体の凝固・冷却収縮の拘束効果は得ることは不要となるため、背面4側の冷やし金の設置は必要ない。   As described above, when aiming at a solidification form that is symmetrical in the vertical and horizontal directions (in the direction of the arrow) of the block casting 1, the hot water 5 must be installed on the back surface 4 side, and the molten metal on the back surface 4 side of the block casting 1. It is necessary to delay clotting. Therefore, it is not necessary to obtain the restraining effect of the solidification / cooling shrinkage of the entire block casting 1 by the molten metal initial solidified layer on the back surface 4, so that it is not necessary to install a cooling metal on the back surface 4 side.

(第9〜11実施形態)
以下の第9〜11実施形態では、鋳型に対する一対の出湯口を上面部および下面部に対称に配置するか、または鋳型に対する一対の出湯口を両側の円周方向分割面に対称に配置する好適実施形態について説明する。
(Ninth to 11th embodiments)
In the following ninth to eleventh embodiments, the pair of outlets for the mold are arranged symmetrically on the upper surface part and the lower surface part, or the pair of outlets for the mold are arranged symmetrically on the circumferential dividing surfaces on both sides. Embodiments will be described.

図3は、本発明の第9実施形態に係るブロック鋳物1の鋳型に対する出湯口の配置を示す模式図である。図示する好適実施形態では、上面部2aおよび下面部2bに対称に配置された一対の出湯口7が意匠面6の上面部2a側および下面部2b側縁部に形成されている。この出湯口7へは、重力鋳造法により、注湯口10から注湯された溶湯が絞り口11および1本のランナー8を介して供給される。   Drawing 3 is a mimetic diagram showing arrangement of a tapping gate with respect to a mold of block casting 1 concerning a 9th embodiment of the present invention. In the preferred embodiment shown in the figure, a pair of hot water outlets 7 arranged symmetrically on the upper surface 2a and the lower surface 2b are formed on the upper surface 2a side and the lower surface 2b side edge of the design surface 6. The molten metal poured from the pouring port 10 is supplied to the pouring gate 7 through the throttle port 11 and one runner 8 by the gravity casting method.

図4は、本発明の第10実施形態に係るブロック鋳物1の鋳型に対する出湯口の配置を示す模式図である。図示する好適実施形態では、第9実施形態と同様に、上面部2aおよび下面部2bに対称に配置された一対の出湯口7が意匠面6の上面部2a側および下面部2b側縁部に形成されている。この出湯口7へは、重力鋳造法により、注湯口10から注湯された溶湯が絞り口11および二手に分かれたランナー8を介して供給される。   FIG. 4 is a schematic diagram showing the arrangement of the outlets with respect to the mold of the block casting 1 according to the tenth embodiment of the present invention. In the preferred embodiment shown in the figure, as in the ninth embodiment, a pair of outlets 7 arranged symmetrically on the upper surface portion 2a and the lower surface portion 2b are provided at the upper surface portion 2a side and the lower surface portion 2b side edge of the design surface 6. Is formed. The molten metal poured from the pouring port 10 is supplied to the pouring gate 7 through the throttle port 11 and the runner 8 divided into two hands by the gravity casting method.

図5は、本発明の第11実施形態に係るブロック鋳物1の鋳型に対する出湯口の配置を示す模式図である。図示する好適実施形態では、上面部2aおよび下面部2bに対称に配置された二対の出湯口7が意匠面6の上面部2a側および下面部2b側縁部に夫々形成されている。この出湯口7へは、重力鋳造法により、注湯口10から注湯された溶湯が絞り口11および二手に分かれたランナー8を介して供給される。   FIG. 5 is a schematic diagram showing the arrangement of the outlets with respect to the mold of the block casting 1 according to the eleventh embodiment of the present invention. In the preferred embodiment shown in the figure, two pairs of hot water outlets 7 arranged symmetrically on the upper surface 2a and the lower surface 2b are formed on the upper surface 2a side and the lower surface 2b side edges of the design surface 6, respectively. The molten metal poured from the pouring port 10 is supplied to the pouring gate 7 through the throttle port 11 and the runner 8 divided into two hands by the gravity casting method.

第9〜11実施形態においては、いずれも冷やし金が意匠面6を連続的に包囲していることが前提であり、よって、第1実施形態に係る発明と同様の効果を得ることができる。加えて、第9〜11実施形態では、いずれも、注湯開始から注湯完了までの間の出湯口7からの溶湯入熱(過熱)状態も、上下左右均等にすることができ、ブロック鋳物1で上下左右対称の寸法特性を得やすくなると言う利点が得られる。   In the ninth to eleventh embodiments, it is premised that the cooling metal continuously surrounds the design surface 6, and thus the same effect as that of the invention according to the first embodiment can be obtained. In addition, in any of the ninth to eleventh embodiments, the molten metal heat input (overheating) state from the hot water outlet 7 from the start of pouring to the completion of pouring can be made even in the vertical and horizontal directions, and the block casting 1 is advantageous in that it is easy to obtain symmetrical characteristics in the vertical and horizontal directions.

(第12〜15実施形態)
以下の第12〜15実施形態では、出湯口と、出湯口に溶湯を供給するランナーとの双方またはいずれか一方を、冷やし金12の内部に形成する好適実施形態について説明する。
(Twelfth to fifteenth embodiments)
In the following twelfth to fifteenth embodiments, preferred embodiments in which both or one of the outlet and the runner that supplies the molten metal to the outlet are formed inside the chiller 12 will be described.

図6は、本発明の第12実施形態に係るブロック鋳物1の鋳型に対する出湯口の配置を示す模式図である。図示する好適実施形態では、出湯口7が意匠面6の上面部2a側縁部に形成されている。この出湯口7へは、重力鋳造法により、注湯口10から注湯された溶湯が絞り口11および1本のランナー8を介して供給される。ここで、この第12実施形態では、出湯口7が冷やし金12の内部に、即ち、冷やし金12を貫通して形成されている。   FIG. 6 is a schematic view showing the arrangement of the outlets with respect to the mold of the block casting 1 according to the twelfth embodiment of the present invention. In the illustrated preferred embodiment, the tap 7 is formed on the side edge of the upper surface 2 a of the design surface 6. The molten metal poured from the pouring port 10 is supplied to the pouring gate 7 through the throttle port 11 and one runner 8 by the gravity casting method. Here, in the twelfth embodiment, the tap 7 is formed inside the chiller 12, that is, through the chiller 12.

図7は、本発明の第13実施形態に係るブロック鋳物1の鋳型に対する出湯口の配置を示す模式図である。図示する好適実施形態では、上面部2aおよび下面部2bに対称に配置された一対の出湯口7が意匠面6の上面部2a側および下面部2b側縁部に形成されている。この出湯口7へは、重力鋳造法により、一対の注湯口10から注湯された溶湯が夫々別個の絞り口11およびランナー8を介して供給される。ここで、この第13実施形態では、出湯口7が冷やし金の内部12に形成されている。   FIG. 7 is a schematic diagram showing the arrangement of the outlets with respect to the mold of the block casting 1 according to the thirteenth embodiment of the present invention. In the preferred embodiment shown in the figure, a pair of hot water outlets 7 arranged symmetrically on the upper surface 2a and the lower surface 2b are formed on the upper surface 2a side and the lower surface 2b side edge of the design surface 6. The molten metal poured from the pair of pouring ports 10 is supplied to the pouring gate 7 through separate throttle ports 11 and runners 8 by gravity casting. Here, in the thirteenth embodiment, the tap 7 is formed in the inside 12 of the chiller.

第12、13実施形態においては、いずれも冷やし金12が意匠面6を連続的に包囲していることが前提であり、よって、第1実施形態に係る発明と同様の効果を得ることができる。加えて、これら実施形態では、出湯口7を冷やし金内部12に設置することにより、注湯完了後すみやかに出湯口7の溶湯が凝固、冷却し、第12実施形態のように出湯口7が上下に対称に配置されていない場合でも、第13実施形態と同様にブロック鋳物1が上下左右ほぼ均等に凝固、冷却するという利点が得られる。   In the twelfth and thirteenth embodiments, it is premised that the cooling metal 12 continuously surrounds the design surface 6, and thus the same effects as those of the invention according to the first embodiment can be obtained. . In addition, in these embodiments, the pouring gate 7 is installed in the cooling metal interior 12 so that the molten metal in the pouring gate 7 is solidified and cooled immediately after pouring is completed, and the pouring gate 7 is provided as in the twelfth embodiment. Even in the case where they are not symmetrically arranged in the vertical direction, the advantage that the block casting 1 solidifies and cools substantially uniformly in the vertical and horizontal directions as in the thirteenth embodiment can be obtained.

図8は、本発明の第14実施形態に係るブロック鋳物1の鋳型に対する出湯口の配置を示す模式図である。図示する好適実施形態では、ランナー8を冷やし金12の内部に形成する他は第12実施形態と同様である。   FIG. 8 is a schematic diagram showing the arrangement of the outlets with respect to the mold of the block casting 1 according to the fourteenth embodiment of the present invention. The preferred embodiment shown is the same as the twelfth embodiment except that the runner 8 is formed inside the cooler 12.

図9は、本発明の第15実施形態に係るブロック鋳物1の鋳型に対する出湯口の配置を示す模式図である。図示する好適実施形態では、上面部2aおよび下面部2bに対称に配置された一対の出湯口7が意匠面6の上面部2a側および下面部2b側縁部に形成されている。この出湯口7へは、重力鋳造法により、一つ注湯口10から注湯された溶湯が絞り口11と二手に分かれたランナー8を介して供給される。ここで、この第15実施形態では、出湯口7とランナー8の双方が冷やし金12の内部に形成されている。   FIG. 9 is a schematic diagram showing the arrangement of the outlets with respect to the mold of the block casting 1 according to the fifteenth embodiment of the present invention. In the preferred embodiment shown in the figure, a pair of hot water outlets 7 arranged symmetrically on the upper surface 2a and the lower surface 2b are formed on the upper surface 2a side and the lower surface 2b side edge of the design surface 6. The molten metal poured from one pouring port 10 is supplied to the pouring gate 7 through a runner 8 that is divided into two portions with the throttle port 11 by gravity casting. Here, in the fifteenth embodiment, both the hot water outlet 7 and the runner 8 are formed inside the cooling metal 12.

第14、15実施形態においては、上述の第12、13実施形態に係る発明の効果をより一層高めることができるとともに、鋳造の度に外付け湯口を脱着しなければならないという手間も省くことができるという利点もある。   In the fourteenth and fifteenth embodiments, the effects of the inventions according to the above twelfth and thirteenth embodiments can be further enhanced, and the trouble of having to attach and detach the external gate every time of casting can be saved. There is also an advantage of being able to do it.

なお、本発明のセクショナルモールドタイプのタイヤ成型金型用鋳物の製造方法は、分割された個々のブロック鋳物を個別に鋳造して作製する工程に特徴があり、その他の工程、例えば、原型作製工程、ゴム型反転工程、石膏鋳型反転工程、鋳型乾燥工程、型ばらし工程、型合わせ工程などの工程は既知の方法に従い適宜行うことができる。   In addition, the method for manufacturing a sectional mold type casting for tire molding mold according to the present invention is characterized by a process of individually casting the divided block castings, and is characterized by other processes such as a prototype manufacturing process. The steps such as the rubber mold reversal step, the gypsum mold reversal step, the mold drying step, the mold separation step, and the mold matching step can be appropriately performed according to known methods.

以下、本発明を、実施例を用いてより詳細に説明する。
(実施例1)
図10は、実施例1のブロック鋳物1の鋳造方法を示す透視斜視図である。図示するように、ブロック鋳物1の上面部2a、下面部2bおよび円周方向分割面3a、3bの4面の鋳枠に、意匠面6を連続的に包囲するように冷やし金12を配置した。ブロック鋳物1、ランナー8、出湯口7、冷やし金12を取り囲む鋳枠は、全て水ガラス硬化珪砂製の砂型を使用した。上面部2aの冷やし金接触面積率は80%、下面部2bの冷やし金接触面積率は50%、円周方向分割面3a、3bの冷やし金接触面積は60%であり、鋳造時の鋳型、鋳枠、冷やし金温度を25℃、鋳込み開始温度を680℃として、ブロック鋳物1を作製した。なお、タイヤ金型用鋳物の合金としてはAC4C(アルミ合金)を使用した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
FIG. 10 is a perspective view showing a casting method of the block casting 1 of the first embodiment. As shown in the figure, a cooling metal 12 is arranged on the four casting frames of the upper surface portion 2a, the lower surface portion 2b and the circumferentially divided surfaces 3a and 3b of the block casting 1 so as to continuously surround the design surface 6. . The cast frame surrounding the block casting 1, the runner 8, the tap 7 and the chill metal 12 was all made of a sand mold made of water glass hardened silica sand. The cooling metal contact area rate of the upper surface portion 2a is 80%, the cooling metal contact area rate of the lower surface portion 2b is 50%, and the cooling metal contact area of the circumferentially divided surfaces 3a and 3b is 60%. A block casting 1 was produced with a casting frame and cooling metal temperature of 25 ° C. and a casting start temperature of 680 ° C. In addition, AC4C (aluminum alloy) was used as the alloy for the casting for the tire mold.

(実施例2)
図11は、実施例2のブロック鋳物1の鋳造方法を示す透視斜視図である。図示するように、ブロック鋳物の上面部2a、下面部2bおよび円周方向分割面3a、3bの4面の鋳枠に、意匠面6を連続的に包囲するように冷やし金12を夫々対称に配置した。ブロック鋳物1、ランナー8、出湯口7、冷やし金12を取り囲む鋳枠は、全て水ガラス硬化珪砂製の砂型を使用した。上面部2aの冷やし金接触面積率は50%、下面部2bの冷やし金接触面積率は50%、円周方向分割面3a、3bの冷やし金接触面積は60%であり、鋳造時の鋳型、鋳枠、冷やし金温度を25℃、鋳込み開始温度を680℃として、ブロック鋳物を作製した。なお、タイヤ金型用鋳物の合金としてはAC4C(アルミ合金)を使用した。
(Example 2)
FIG. 11 is a perspective view illustrating a casting method of the block casting 1 of the second embodiment. As shown in the figure, the cooling metal 12 is symmetrically arranged so as to continuously surround the design surface 6 in the four-sided casting frame of the upper surface portion 2a, the lower surface portion 2b and the circumferentially divided surfaces 3a and 3b of the block casting. Arranged. The cast frame surrounding the block casting 1, the runner 8, the tap 7 and the chill metal 12 was all made of a sand mold made of water glass hardened silica sand. The cooling metal contact area ratio of the upper surface portion 2a is 50%, the cooling metal contact area ratio of the lower surface portion 2b is 50%, and the cooling metal contact area of the circumferentially divided surfaces 3a and 3b is 60%. A block casting was produced by setting the casting frame and cooling metal temperature to 25 ° C. and casting start temperature to 680 ° C. In addition, AC4C (aluminum alloy) was used as the alloy for the casting for the tire mold.

(実施例3)
図12は実施例3のブロック鋳物1の鋳造方法を示す透視斜視図である。図示するように、ブロック鋳物の上面部2a、下面部2b、円周方向分割面3a、3b、ランナー8、出湯口7、冷やし金12を取り囲む鋳枠(下型)13は、全て鋳鉄製とした。ブロック鋳物背面側の鋳枠(上型)は水ガラス硬化珪砂製とした。また、ランナー8、出湯口7は、下方構造内に掘り込み作製した。上面部2a、下面部2bおよび円周方向分割面3a、3bの冷やし金接触面積率を100%として、鋳造時の鋳型および鋳枠温度を200℃、鋳込み開始温度を680℃として、ブロック鋳物を作製した。なお、タイヤ金型用鋳物の合金としてはAC4C(アルミ合金)を使用した。
(Example 3)
FIG. 12 is a transparent perspective view showing a casting method of the block casting 1 of the third embodiment. As shown in the drawing, the upper surface 2a, the lower surface 2b, the circumferentially divided surfaces 3a and 3b, the runner 8, the outlet 7 and the casting frame (lower mold) 13 surrounding the cooling metal 12 are all made of cast iron. did. The casting frame (upper mold) on the back side of the block casting was made of water glass hardened silica sand. Moreover, the runner 8 and the tap 7 were dug into the lower structure. Block castings with an upper surface portion 2a, a lower surface portion 2b and circumferentially divided surfaces 3a, 3b having a chill metal contact area ratio of 100%, a casting mold and casting frame temperature of 200 ° C., and a casting start temperature of 680 ° C. Produced. In addition, AC4C (aluminum alloy) was used as the alloy for the casting for the tire mold.

(比較例1)
図13は、比較例1のタイヤ金型用鋳物の従来の鋳造方法を示す透視斜視図である。図示するように、リング下側にリング状ランナー18、その上に6等配した出湯口17を設置した。冷やし金接触面積率については、リング鋳物の外周円筒面の全面の100%、下側平面のドーナツ状内側では40%程度、押し湯15が生ずる上面部22aでは0%(冷やし金接触無し)とした。また、鋳造時の鋳型および鋳枠温度を200℃、鋳込み開始温度を680℃として、ブロック鋳物を作製した。なお、タイヤ金型用鋳物の合金としてはAC4C(アルミ合金)を使用した。
(Comparative Example 1)
FIG. 13 is a perspective view showing a conventional casting method for a tire mold casting of Comparative Example 1. FIG. As shown in the figure, a ring-shaped runner 18 was installed on the lower side of the ring, and a hot water outlet 17 was arranged on the top thereof. The contact area ratio of the chill metal is 100% of the entire surface of the outer peripheral cylindrical surface of the ring casting, about 40% in the donut-shaped inner side of the lower plane, and 0% (no chill metal contact) in the upper surface portion 22a where the hot water 15 is generated. did. In addition, a block casting was produced at a casting mold temperature and a casting frame temperature of 200 ° C. and a casting start temperature of 680 ° C. In addition, AC4C (aluminum alloy) was used as the alloy for the casting for the tire mold.

(比較例2)
図14は、比較例2のブロック鋳物1の鋳造方法を示す透視斜視図である。図示するように、ブロック鋳物の上面部2a、下面部2bおよび円周方向分割面3a、3bの4面の鋳枠に、夫々冷やし金12を2個ずつ配置した。冷やし金の接触面積は全て30%とした。また、鋳造時の鋳型および鋳枠温度を25℃、鋳込み開始温度を680℃として、ブロック鋳物1を作製した。なお、タイヤ金型用鋳物の合金としてはAC4C(アルミ合金)を使用した。
(Comparative Example 2)
FIG. 14 is a perspective view showing a casting method of the block casting 1 of Comparative Example 2. As shown in the drawing, two chillers 12 are arranged on each of the four cast frames of the upper surface portion 2a, the lower surface portion 2b and the circumferentially divided surfaces 3a and 3b of the block casting. The contact area of the chillers was all 30%. Moreover, the block casting 1 was produced by setting the casting mold and casting frame temperature to 25 ° C. and casting start temperature to 680 ° C. In addition, AC4C (aluminum alloy) was used as the alloy for the casting for the tire mold.

(金型との接触面である意匠面の形成法)
トレッドパターンが形成された木型を型枠内に配置し、型枠内にシリコーンゴム材を流し込むことにより、ゴム型の製造を行った。木型の材質は合成木材(基本収縮率設定:11.5/1000)、ゴム型は石膏裏打ち付きシリコーンゴム型(ゴム層肉厚15mm)とした。
(Formation method of the design surface that is the contact surface with the mold)
A rubber mold was manufactured by placing a wooden mold on which a tread pattern was formed in a mold and pouring a silicone rubber material into the mold. The wood mold was made of synthetic wood (basic shrinkage setting: 11.5 / 1000), and the rubber mold was a gypsum-lined silicone rubber mold (rubber layer thickness 15 mm).

上記ゴム型内に石膏(ノリタケジプサム製G−1発泡石膏:混水率70%、発泡増量50%)を流し込むことにより、意匠面φ600±20mm、タイヤ幅寸法195±30mm、鋳物肉厚70〜100mm、鋳物全高300±30mm、セクター分割数9ヶ/1リングの鋳型と接触する意匠面部を製造した。この意匠面部を用いて鋳造を行って、実施例1〜3および比較例2のブロック鋳物および比較例1のタイヤ金型用鋳物を得た。タイヤ金型用鋳物の基本寸法、およびその製法を下記の表1にまとめて示す。   By pouring gypsum (G-1 foamed gypsum manufactured by Noritake Gypsum: 70% water mixing, 50% foaming increase) into the rubber mold, the design surface φ600 ± 20 mm, tire width dimension 195 ± 30 mm, casting thickness 70˜ A design surface portion that contacts a mold having a size of 100 mm, a total casting height of 300 ± 30 mm, and a sector division number of 9/1 ring was manufactured. Casting was performed using this design surface portion, and block castings of Examples 1 to 3 and Comparative Example 2 and tire mold castings of Comparative Example 1 were obtained. The basic dimensions of the tire mold casting and the manufacturing method thereof are shown in Table 1 below.

Figure 0005243157
Figure 0005243157

実施例1〜3、および比較例1、2を通して製作したタイヤ金物用鋳物の鋳放し寸法精度について、弦寸法、ネジレ、円周方向反りおよび幅方向反りの4項目を下記の評価方法に従い評価した。   Regarding the as-cast dimensional accuracy of the castings for tire hardware manufactured through Examples 1 to 3 and Comparative Examples 1 and 2, four items of string dimensions, twist, circumferential warpage and width direction warpage were evaluated according to the following evaluation methods. .

<弦寸法>
図15は、弦寸法測定の説明図である。得られた夫々のタイヤ金物用鋳物の上弦寸法、中央弦寸法、下弦寸法を測定し、夫々の図面寸法からの差の平均を算出した。併せて上弦寸法と下弦寸法の差を算出した。なお、弦寸法の図面値からの差は、
弦寸法差 = 鋳物実測寸法 − 図面寸法
で算出した。プラス数値の時、鋳物弦寸法は図面値より大きいことを意味する。また、上下間の差は、
上下間差 = 下弦寸法 − 上弦寸法
で算出した。プラス数値の時、上型の弦寸法の方が小さいことを意味する。
<String dimensions>
FIG. 15 is an explanatory diagram of the chord dimension measurement. The upper chord dimension, the central chord dimension, and the lower chord dimension of each of the obtained casts for tire hardware were measured, and the average of the differences from the respective drawing dimensions was calculated. In addition, the difference between the upper chord dimension and the lower chord dimension was calculated. In addition, the difference from the drawing value of the chord dimension is
String dimensional difference = found casting actual measurement size-drawing size. A positive value means that the casting chord dimension is larger than the drawing value. The difference between the top and bottom is
Difference between top and bottom = lower chord dimension-upper chord dimension. A positive value means that the upper chord dimension is smaller.

<ネジレ>
図16は、ネジレ測定の説明図である。鋳放し鋳物の真円度測定により、ブロック鋳物の上下両端部近傍4点(A〜D)における、理論寸法からの差分値を算出した。得られた差分値の絶対値の合計(|+A|+|−B|+|−C|+|+D|)をネジレ量として、ネジレの大小につき評価した。
<Twist>
FIG. 16 is an explanatory diagram of twist measurement. By measuring the roundness of the as-cast product, difference values from theoretical dimensions were calculated at four points (A to D) in the vicinity of the upper and lower end portions of the block cast product. The total absolute value of the obtained difference values (| + A | + | −B | + | −C | + | + D |) was used as the amount of twist, and the amount of twist was evaluated.

<円周方向反り>
図17は、円周方向反り測定の説明図である。真円度測定により、1セクターブロックの円周方向での理論寸法からの凹凸量(X、Y)を算出し、円周方向反り量=−Xまたは+Yを評価した。
<Circumferential warpage>
FIG. 17 is an explanatory diagram of circumferential warpage measurement. By measuring the roundness, the amount of unevenness (X, Y) from the theoretical dimension in the circumferential direction of one sector block was calculated, and the amount of warpage in the circumferential direction = −X or + Y was evaluated.

<幅方向反り>
図18は、幅方向反り測定の説明図である。幅方向R形状測定により、1セクターブロックの幅方向での理論寸法からの凹凸量(X、Y)を算出し、円周方向反り量=−Xまたは+Yを評価した。
得られた結果を表2にまとめて示す。
<Width warpage>
FIG. 18 is an explanatory diagram of the measurement of warpage in the width direction. By measuring the width direction R shape, the amount of unevenness (X, Y) from the theoretical dimension in the width direction of one sector block was calculated, and the amount of warpage in the circumferential direction = −X or + Y was evaluated.
The obtained results are summarized in Table 2.

Figure 0005243157
Figure 0005243157

表2より、比較例1(従来リング鋳造)は、ネジレ、円周方向反り、幅方向反り特性が良好である(平均値、バラツキ共に小さい)が、上下間の弦寸法の差が最も大きくなった。また、比較例2(従来ブロック鋳造)は、上下間の弦寸法差は小さいが、ネジレ、円周方向・幅方向反り特性が悪かった。   From Table 2, Comparative Example 1 (conventional ring casting) has good twist, circumferential warpage, and width direction warpage characteristics (both average value and variation are small), but the difference in chord dimension between the top and bottom is the largest. It was. Further, in Comparative Example 2 (conventional block casting), although the string size difference between the upper and lower sides was small, the twisting, circumferential direction and width direction warping characteristics were poor.

一方、実施例1は、比較例1以上に弦寸法差が小さく、かつ、比較例2以上にネジレ、反り変形を抑制することができた。すなわち、鋳造収縮時のネジレや反り変形が発生し難く、セクショナルモールドの上下型間で収縮率差が少ないブロック鋳造法を提供することが可能であることがわかる。また、実施例2では、実施例1より上下間弦寸法差を、更に抑制することができた。さらに、実施例3は、ネジレ・反りはリング鋳造並みであるが、リング鋳造に比べて上下間弦寸法差が大幅に改善することができた。   On the other hand, in Example 1, the string dimension difference was smaller than that in Comparative Example 1, and twisting and warping deformation could be suppressed more than in Comparative Example 2. That is, it can be seen that it is possible to provide a block casting method in which twisting and warping deformation during casting shrinkage hardly occur and the shrinkage rate difference between the upper and lower dies of the sectional mold is small. Further, in Example 2, the upper and lower chord dimension difference could be further suppressed as compared with Example 1. Further, in Example 3, twisting and warping were similar to ring casting, but the difference in the upper and lower chord dimensions could be greatly improved compared to ring casting.

以上より、本発明によれば、ブロック鋳造方法を用いても、リング鋳造製法並み、もしくはそれ以上の寸法精度特性を得ることができ、ブロック鋳造方法の利点である、大型物件対応自由度の高さを最大限発揮することができる。   As described above, according to the present invention, even if a block casting method is used, a dimensional accuracy characteristic equivalent to or higher than that of the ring casting method can be obtained, which is an advantage of the block casting method. You can make the most of it.

本発明の一実施の形態に係るブロック鋳物を示す透視斜視図である。It is a see-through | perspective perspective view which shows the block casting which concerns on one embodiment of this invention. 本発明の他の実施の形態に係るブロック鋳物を示す透視斜視図である。It is a see-through | perspective perspective view which shows the block casting which concerns on other embodiment of this invention. 本発明の他の実施の形態のタイヤ成型金型用鋳物の製造方法に係る透視斜視図である。It is a see-through | perspective perspective view which concerns on the manufacturing method of the casting for tire molding dies of other embodiment of this invention. 本発明の他の実施の形態のタイヤ成型金型用鋳物の製造方法に係る透視斜視図である。It is a see-through | perspective perspective view which concerns on the manufacturing method of the casting for tire molding dies of other embodiment of this invention. 本発明の他の実施の形態のタイヤ成型金型用鋳物の製造方法に係る透視斜視図である。It is a see-through | perspective perspective view which concerns on the manufacturing method of the casting for tire molding dies of other embodiment of this invention. 本発明の他の実施の形態のタイヤ成型金型用鋳物の製造方法に係る透視斜視図である。It is a see-through | perspective perspective view which concerns on the manufacturing method of the casting for tire molding dies of other embodiment of this invention. 本発明の他の実施の形態のタイヤ成型金型用鋳物の製造方法に係る透視斜視図である。It is a see-through | perspective perspective view which concerns on the manufacturing method of the casting for tire molding dies of other embodiment of this invention. 本発明の他の実施の形態のタイヤ成型金型用鋳物の製造方法に係る透視斜視図である。It is a see-through | perspective perspective view which concerns on the manufacturing method of the casting for tire molding dies of other embodiment of this invention. 本発明の他の実施の形態のタイヤ成型金型用鋳物の製造方法に係る透視斜視図である。It is a see-through | perspective perspective view which concerns on the manufacturing method of the casting for tire molding dies of other embodiment of this invention. 実施例1の製造方法を示す透視斜視図である。3 is a perspective view showing the manufacturing method of Example 1. FIG. 実施例2の製造方法を示す透視斜視図である。6 is a perspective view showing the manufacturing method of Example 2. FIG. 実施例3の製造方法を示す透視斜視図である。6 is a perspective view showing the manufacturing method of Example 3. FIG. 比較例1の製造方法を示す透視斜視図である。6 is a perspective view showing a manufacturing method of Comparative Example 1. FIG. 比較例2の製造方法を示す透視斜視図である。10 is a perspective view showing a manufacturing method of Comparative Example 2. FIG. 弦寸法測定の説明図である。It is explanatory drawing of a chord dimension measurement. ネジレ測定の説明図である。It is explanatory drawing of torsion measurement. 円周方向反りの説明図である。It is explanatory drawing of the circumferential direction curvature. 幅方向反りの説明図である。It is explanatory drawing of the width direction curvature. 従来法によりタイヤ金型をセクショナルモールドにて作製する工程図であ る。FIG. 6 is a process diagram for producing a tire mold by a sectional mold by a conventional method.

符号の説明Explanation of symbols

1、101 ブロック鋳物
2a、22a 上面部
2b 下面部
3a、3b 円周方向分割面
4 背面
5、15 押し湯
6 意匠面
7、17 出湯口
8、18 ランナー
10 注湯口
11 絞り口
12 冷やし金
13 下型
14 上型
100 リング鋳物
DESCRIPTION OF SYMBOLS 1,101 Block casting 2a, 22a Upper surface part 2b Lower surface part 3a, 3b Circumferential direction division surface 4 Back surface 5, 15 Hot water 6 Design surface 7, 17 Hot water outlet 8, 18 Runner 10 Pouring port 11 Restriction port 12 Cooling metal 13 Lower mold 14 Upper mold 100 Ring casting

Claims (5)

円周方向に複数分割することで金型の開閉動作を行うセクショナルモールドタイプのタイヤ成型金型用鋳物の製造方法において、
分割された個々のブロック鋳物を個別に鋳造して作製する工程を含み、該工程において、金型との接触面である意匠面を四方から囲む上面部、下面部および両側の円周方向分割面の4面に、少なくとも前記意匠面を連続的に包囲するように冷やし金を配置した鋳型に溶湯を注湯することを特徴とするタイヤ成型金型用鋳物の製造方法。
In the method of manufacturing a casting for a tire molding mold of a sectional mold type that performs opening and closing operations of the mold by dividing into multiple pieces in the circumferential direction,
Including a step of individually casting the divided block castings to produce them, and in this step, an upper surface portion, a lower surface portion, and circumferentially divided surfaces on both sides that surround the design surface that is a contact surface with the mold from four sides A molten metal is poured into a mold in which a cooling metal is disposed so as to continuously surround at least the design surface on the four surfaces.
前記上面部、下面部および両側の円周方向分割面の4面に対し、対向する前記冷やし金同士を夫々対称に配置する請求項1記載のタイヤ成型金型用鋳物の製造方法。   2. The method for manufacturing a casting for a tire molding die according to claim 1, wherein the cooling metal molds facing each other are arranged symmetrically with respect to the four surfaces of the upper surface portion, the lower surface portion, and the circumferential dividing surfaces on both sides. 前記鋳型に対する一対の出湯口を前記上面部および下面部に対称に配置する請求項1または2記載のタイヤ成型金型用鋳物の製造方法。   The method for manufacturing a casting for a tire molding die according to claim 1 or 2, wherein a pair of outlets for the mold are arranged symmetrically on the upper surface portion and the lower surface portion. 前記鋳型に対する一対の出湯口を前記両側の円周方向分割面に対称に配置する請求項1または2記載のタイヤ成型金型用鋳物の製造方法。   The method for manufacturing a casting for a tire molding die according to claim 1 or 2, wherein a pair of outlets for the mold are arranged symmetrically on the circumferential dividing surfaces on both sides. 出湯口および/または出湯口に溶湯を供給するランナーを前記冷やし金の内部に形成する請求項1〜4のうちいずれか一項記載のタイヤ成型金型用鋳物の製造方法。   The method for producing a casting for a tire molding die according to any one of claims 1 to 4, wherein a runner for supplying molten metal to the outlet and / or the outlet is formed inside the cooling metal.
JP2008233981A 2008-09-11 2008-09-11 Manufacturing method of casting for tire mold Active JP5243157B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008233981A JP5243157B2 (en) 2008-09-11 2008-09-11 Manufacturing method of casting for tire mold
EP09812950.5A EP2335844B1 (en) 2008-09-11 2009-06-15 Method of manufacturing casting for mold for molding tire
CN2009801356881A CN102149490A (en) 2008-09-11 2009-06-15 Method of manufacturing casting for mold for molding tire
PCT/JP2009/060904 WO2010029802A1 (en) 2008-09-11 2009-06-15 Method of manufacturing casting for mold for molding tire
US13/059,771 US20110174460A1 (en) 2008-09-11 2009-06-15 Method of manufacturing casting for mold for molding tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233981A JP5243157B2 (en) 2008-09-11 2008-09-11 Manufacturing method of casting for tire mold

Publications (3)

Publication Number Publication Date
JP2010064115A JP2010064115A (en) 2010-03-25
JP2010064115A5 JP2010064115A5 (en) 2011-06-23
JP5243157B2 true JP5243157B2 (en) 2013-07-24

Family

ID=42005064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233981A Active JP5243157B2 (en) 2008-09-11 2008-09-11 Manufacturing method of casting for tire mold

Country Status (5)

Country Link
US (1) US20110174460A1 (en)
EP (1) EP2335844B1 (en)
JP (1) JP5243157B2 (en)
CN (1) CN102149490A (en)
WO (1) WO2010029802A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427589B2 (en) * 2009-12-22 2014-02-26 株式会社ブリヂストン Manufacturing method of tire mold
JP6091996B2 (en) * 2013-05-20 2017-03-08 株式会社ブリヂストン Manufacturing method of tire mold
CN103551514B (en) * 2013-11-14 2015-07-08 沈阳工业大学 Dead head heating easily-cutting piece of large steel casting
JP5946492B2 (en) * 2014-06-05 2016-07-06 住友ゴム工業株式会社 Method and equipment for casting tire mold
JP2018187655A (en) * 2017-05-09 2018-11-29 株式会社ブリヂストン Method for producing molding mold for tire
JP7415884B2 (en) * 2020-11-12 2024-01-17 トヨタ自動車株式会社 Casting equipment and casting method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2086015A (en) * 1936-01-10 1937-07-06 Harry A Morgan Inkwell mounting
FR2287294A1 (en) * 1974-10-09 1976-05-07 Peugeot & Renault LOW PRESSURE FOUNDRY PARTS PERFECTIONING
US4129406A (en) * 1975-11-25 1978-12-12 Cima Costruzioni Industriali Metalmeccaniche E Affini S.A.S. Di Capecchi Floriano & C. Mold for the vulcanization or retreading of vehicle tires
DE2831219C2 (en) * 1978-07-15 1984-03-15 Maschinenbau HERBERT KG, 6000 Frankfurt Molding segment, in particular for tire vulcanizing molds and processes for its production
JPS5911383B2 (en) 1980-09-27 1984-03-15 橋場鉄工株式会社 Low-pressure casting mold for tire molding and vulcanization
US4714102A (en) * 1986-01-11 1987-12-22 Toshiba Machine Co., Ltd. Casting method and an apparatus therefor
JPH078406B2 (en) * 1989-02-23 1995-02-01 株式会社ブリヂストン Split mold for tire segment small segment casting
JP2796010B2 (en) 1992-04-22 1998-09-10 日本碍子株式会社 Tire mold casting method and tire mold casting chute
JP3606411B2 (en) * 1996-07-10 2005-01-05 株式会社ブリヂストン Tire vulcanization mold and manufacturing method thereof
SE513287C2 (en) * 1998-11-06 2000-08-21 Volvo Lastvagnar Ab Method and apparatus for mold casting
JP2006315065A (en) * 2005-05-16 2006-11-24 Yokohama Rubber Co Ltd:The Method for producing die for tire molding, and casting die used for the production method
JP4789241B2 (en) 2005-11-29 2011-10-12 日本碍子株式会社 Tire mold casting method
JP2008188620A (en) * 2007-02-02 2008-08-21 Bridgestone Corp Casting method and mold

Also Published As

Publication number Publication date
JP2010064115A (en) 2010-03-25
EP2335844A1 (en) 2011-06-22
EP2335844B1 (en) 2019-06-05
WO2010029802A1 (en) 2010-03-18
EP2335844A4 (en) 2013-11-27
US20110174460A1 (en) 2011-07-21
CN102149490A (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP5243157B2 (en) Manufacturing method of casting for tire mold
JP5361483B2 (en) Manufacturing method of tire mold
JP2006315065A (en) Method for producing die for tire molding, and casting die used for the production method
CN103240390A (en) Iron-typed cast ball die
CN110842150B (en) Assembled frog casting system and method
CN104070138B (en) A kind of mould for spiral crystal selector and manufacture method thereof
US8276644B2 (en) Mold and casting method using the mold and design method of the mold
JPH07155897A (en) Mold structure and casting method
KR102048571B1 (en) Molding device for manufacturing tetragonal product
US5092390A (en) Method and mold for sand casting varying thickness articles
JPH0399767A (en) Method for manufacturing internal chilling piping in casting metallic mold
JP2004268097A (en) Method for casting rim and disk of elastic wheel
JP2006263980A (en) Forming mold for tire vulcanizing mold, manufacturing method of tire vulcanizing mold using the forming mold and tire manufactured using tire vulcanizing mold
CN219169551U (en) Casting mould of cast steel stator clamping ring
US3287772A (en) T-shaped external chill
JP4373772B2 (en) Method for casting tire mold and tire mold
JPS6232674Y2 (en)
JPH04220151A (en) Method for making mold
JP2005066676A (en) Plaster mold used for manufacture of die for tire vulcanization and method for manufacturing the same plaster mold
JP6447404B2 (en) Mold design method
JPH0417942A (en) Metallic mold for casting
JP3833499B2 (en) Manufacturing method of casting parts having multiple passages
JPH0775851A (en) Metal mold casting method
JP2002307157A (en) Casting having rib structure
JP2005081384A (en) Casting method and casting

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250