JPS59101863A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59101863A
JPS59101863A JP57210954A JP21095482A JPS59101863A JP S59101863 A JPS59101863 A JP S59101863A JP 57210954 A JP57210954 A JP 57210954A JP 21095482 A JP21095482 A JP 21095482A JP S59101863 A JPS59101863 A JP S59101863A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
epitaxial layer
type
memory cell
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57210954A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yadoiwa
宿岩 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57210954A priority Critical patent/JPS59101863A/en
Publication of JPS59101863A publication Critical patent/JPS59101863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Abstract

PURPOSE:To improve the deterioration of electric characteristics due to the micro defect of a semiconductor substrate by a method wherein the impurity concentration of the semiconductor substrate to form an epitaxial layer is thickened much more than the oxygen concentration of the semiconductor substrate. CONSTITUTION:A memory cell is equipped with the epitaxial layer 2 formed on the semiconductor substrate 1, a field oxide film 3, a diffused layer (digit line) 4, a poly Si gate electrode 5 serving as a transfer gate to write or read an electric signal, a poly Si electrode 6 serving as a capacitor part to accumulate the amount of charges of the electric signal, and an interlayer insulator 7. First, the P type epitaxial layer 2 is formed on the semiconductor substrate 1 made of P type Si, and next the dynamic type MOS memory using a poly Si composed of a double layer is prepared by using RIE technique or ion implantation technique, etc., according to the manufacturing process for a normal N-channel Si gate type MOSIC. This memory cell is a generally used transistor type dynamic MOS memory cell.

Description

【発明の詳細な説明】 本発明は半導体装置に係シ、とくにエピタキシャル層上
にメタル・オキサイド拳セミコンダクタ(MOS)型の
半導体素子を形成した半導体装置のエピタキシャル層の
不純物濃度及びエピタキシャル層を形成すべき半導体基
板の不純物濃度に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to impurity concentration of an epitaxial layer and formation of an epitaxial layer of a semiconductor device in which a metal oxide semiconductor (MOS) type semiconductor element is formed on an epitaxial layer. This relates to the impurity concentration of the semiconductor substrate.

近年、半導体装置に高密度化、高集積化が要求され、そ
れを実現する為に、微細パターンの形成が必要になって
きている。これらのパターン微細化にともない、従来あ
まり問題視されていなかった半導体基板の微小な結晶欠
陥が、半導体装置の特性に重大な影響を与えるようにな
ってきている。
In recent years, there has been a demand for higher density and higher integration of semiconductor devices, and in order to achieve this, it has become necessary to form fine patterns. As these patterns become finer, minute crystal defects in semiconductor substrates, which have not been regarded as a problem in the past, have come to have a significant impact on the characteristics of semiconductor devices.

特にダイナミック型のMOSメモリーでは、高集積化が
進むにつれて微細パターンが必要となシ、パターンの設
計基準も1μ前後と超微細パターンとなってきている。
Particularly in dynamic MOS memories, as the degree of integration increases, finer patterns are required, and the pattern design standard is also becoming ultra-fine, around 1μ.

これにともない、ダイナミック型MOSメモリーの信号
として使う電荷量も微小になってくる。従って、このダ
イナミック型MOSメモリーの信号として使っている微
量な電荷量は、半導体基板の微小な結晶欠陥によって容
易に消滅してしまい、これがダイナミックMOSメモリ
ーの動作不良となり、製造歩留の低下及びメモリーのホ
ールド特性の劣化となって現る。っまp1従来ではメモ
リーの禾−ルド特性等の電気的特性に影響のなかった微
小な半導体基板の結晶欠陥が、パターンの超微細化にと
もなう信号量の微小化によって、半導体装置の電気的特
性に重要な影響を与えている。
Along with this, the amount of charge used as a signal in a dynamic MOS memory also becomes minute. Therefore, the small amount of charge used as a signal in this dynamic MOS memory is easily erased by minute crystal defects in the semiconductor substrate, which causes a malfunction of the dynamic MOS memory, resulting in a decrease in manufacturing yield and This appears as a deterioration of the hold characteristics. p1 Microscopic crystal defects in semiconductor substrates, which conventionally did not affect the electrical characteristics such as memory lead characteristics, are now changing due to the miniaturization of the signal amount due to ultra-fine patterns, which has caused an impact on the electrical characteristics of semiconductor devices. has an important influence on

従来性なわれていた半導体基板の結晶欠陥の発生を減少
もしくは抑制する技術として、リンゲッタ一方式や半導
体基板の裏面に歪みを入れる方式、イントリンシックゲ
ッター処理方式等があるが、これらの技術で、従来の一
部のダイナミックMOSメモリーのホールド不良率を数
チ以下にすることが可能であったが、超微細パターンを
用いたダイナミックMOSメモリーでは、ホールド不良
が30乃至50%程度で不良のほとんどを占め、著しく
製造歩留シを低下させている。つまシ、超微細パターン
を用いた半導体装置おいては、リンゲッタ一方式および
半導体基板の裏面に歪みを入れる方式等では、微小結晶
欠陥の発生を抑えて電気的特性を改善する効果は全く見
られず、またイントリンシックゲッター処理方式では、
インドリングゲッター処理後の熱処理プロセスによって
ゲッター効果が左右され、バラツキが大きく、再現性が
乏しかった。
Conventional techniques for reducing or suppressing the occurrence of crystal defects in semiconductor substrates include a ring getter method, a method for applying strain to the back surface of the semiconductor substrate, and an intrinsic getter treatment method. It was possible to reduce the hold failure rate of some conventional dynamic MOS memories to a few chips or less, but in dynamic MOS memory using ultra-fine patterns, the hold failure rate is around 30 to 50%, which accounts for most of the failures. This significantly reduces manufacturing yield. In semiconductor devices using ultra-fine patterns, ring getter methods and methods that apply strain to the back side of the semiconductor substrate have no effect on suppressing the generation of microcrystal defects and improving electrical characteristics. Also, in the intrinsic getter processing method,
The getter effect was influenced by the heat treatment process after the indling getter treatment, resulting in large variations and poor reproducibility.

本発明の目的は、以上のような問題が解決され、半導体
基板の微小欠陥による電気的特性劣化を改善した半導体
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device in which the above-mentioned problems are solved and deterioration of electrical characteristics due to micro defects in a semiconductor substrate is improved.

本発明は、エピタキシャル層上にMOS型の半導体素子
を形成する半導体装置において、前記エピタキシャル層
管形成する為の半導体基板の不純物濃度が、半導体基板
の酸素濃度よシも濃いことを特徴とする半導体装置にあ
る。
The present invention provides a semiconductor device in which a MOS type semiconductor element is formed on an epitaxial layer, wherein the impurity concentration of the semiconductor substrate for forming the epitaxial layer tube is higher than the oxygen concentration of the semiconductor substrate. It's in the device.

以下、本発明を図面を参照しながら詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の実施例のメモリセルの製造途中の工程
を示す断面図である。同図において、本メモリセルは、
半導体基板1上に形成されたエピタキシャル層2と、フ
ィールド酸化膜3と、拡散層(デジットライン)4と、
電気信号の書き込みや読み出しを行うためのトランスフ
ァーゲートとなるポリシリコンゲート電極5と、電気信
号の電荷量を蓄えるための容量部とガるポリシリコン電
極6と、眉間絶縁物7とを備えている。まず、P型のシ
リコンからなる半導体基板上に、約10μのP型でlX
l0”(コ/CC)の濃度のエピタキシャル層2を形成
し、つづいて、通常のNチャンネルシリコンゲート型の
MOS ICの製造工程に従って、RIE(リアクティ
ブ・イオン・エツチング)技術やイオン注入技術等を使
って、2層からなる多結晶シリコンを用いたダイナミッ
ク型MO8メモリーを作成した。このメモリーセルは通
常使われている1トランジスター型のダイナミックMO
Sメモリーセルである。
FIG. 1 is a cross-sectional view showing a process in the middle of manufacturing a memory cell according to an embodiment of the present invention. In the figure, this memory cell is
An epitaxial layer 2 formed on a semiconductor substrate 1, a field oxide film 3, a diffusion layer (digit line) 4,
It includes a polysilicon gate electrode 5 that serves as a transfer gate for writing and reading electric signals, a polysilicon electrode 6 that serves as a capacitor for storing the electric signal charge, and a glabella insulator 7. . First, on a semiconductor substrate made of P-type silicon, about 10μ of P-type
An epitaxial layer 2 with a concentration of 10'' (Co/CC) is formed, and then RIE (reactive ion etching) technology, ion implantation technology, etc. are applied according to the normal N-channel silicon gate type MOS IC manufacturing process. We used this to create a dynamic MO8 memory using two layers of polycrystalline silicon.This memory cell is a commonly used one-transistor type dynamic MO8 memory cell.
S memory cell.

第2図は、本発明の実施例の効果を説明するためのシリ
コン基板のボロン濃度対ホールド不良率の特性図である
。同図の傾向線9から明らかなように、シリコンからな
る半導体基板のボロン濃度を、この基板の酸素濃度(図
中、矢印8)よシ濃くすることによシ、ホールド不良が
激減していることがわかる。同、第2図中の一つの丸印
は、一つのサンプルの特性を示している。
FIG. 2 is a characteristic diagram of the boron concentration of the silicon substrate versus the hold failure rate for explaining the effects of the embodiment of the present invention. As is clear from trend line 9 in the same figure, by increasing the boron concentration of the silicon semiconductor substrate to a higher oxygen concentration (arrow 8 in the figure), the hold failures are drastically reduced. I understand that. Each circle in FIG. 2 indicates the characteristics of one sample.

この現象は、シリコン基板の骨間を利用して半導体基板
の断面について通常のエツチング法を用いて内部欠陥の
発生、状況を観察したところ、エピタキシャル層2には
、全く微小欠陥の発生が見られず、ボロン濃度が酸素濃
度よシも濃い半導体基板では一様に微小欠陥が発生して
おり、一方ボロン濃度が酸素濃度よシも薄い半導体基板
では微小欠陥の発生がほとんど見られなかった。第3図
(a)。
This phenomenon was confirmed by observing the occurrence and condition of internal defects by using a normal etching method on a cross section of a semiconductor substrate using the interstices of the silicon substrate, and it was found that no micro defects were observed in the epitaxial layer 2. Micro-defects were uniformly generated on semiconductor substrates where the boron concentration was higher than the oxygen concentration, while micro-defects were hardly observed on semiconductor substrates where the boron concentration was lower than the oxygen concentration. Figure 3(a).

第3図(blに、このようすを示す。This situation is shown in Figure 3 (bl).

これら図において、lはシリコン基板、2はエピタキシ
ャル層を示す。第3図(a)にボロン濃度が酸素濃度よ
シも薄いシリコン基板の内部欠陥の発生状態を示し、第
3図(b)にボロン濃度が酸素濃度よシも濃いシリコン
基板の内部欠陥の発生状態を示す。第3図(b)におい
ては、第3図(a)の場合よシも多くの欠陥が発生して
いることがわかる。このように、半導体基板のボロン濃
度の変化によって微小欠陥の発生状態が異ることは、シ
リコン基板内のボロン濃度が酸素濃度よシも濃くなると
ボロン不純物が酸素の析出を増殖する作用があシ、半導
体装置作製工程の熱処理によって酸素の析出に基く微小
欠陥の発生な容易にするものと考えられる。
In these figures, l indicates a silicon substrate and 2 indicates an epitaxial layer. Figure 3(a) shows the occurrence of internal defects in a silicon substrate where the boron concentration is lower than the oxygen concentration, and Figure 3(b) shows the occurrence of internal defects in a silicon substrate where the boron concentration is higher than the oxygen concentration. Indicates the condition. In FIG. 3(b), it can be seen that more defects occur than in the case of FIG. 3(a). The reason why microdefects occur differently depending on changes in the boron concentration in the semiconductor substrate is that when the boron concentration in the silicon substrate becomes higher than the oxygen concentration, boron impurities act to multiply oxygen precipitation. This is thought to facilitate the generation of micro defects due to oxygen precipitation during heat treatment during the semiconductor device manufacturing process.

これら微小欠陥は、エピタキシャル層の表面近傍で半導
体累子の活性な領域に発生すると半導体素子の電気的特
性に悪影響を与えることは、前述してきた通シであるが
、シリコン基板の内部で発生した場合には、有害な不純
物を捕獲するゲッター作用があハ半導体装置の特性改善
2歩留向上に著しい効果がある。
As mentioned above, it is common knowledge that when these micro defects occur in the active region of the semiconductor layer near the surface of the epitaxial layer, they adversely affect the electrical characteristics of the semiconductor element. In some cases, the getter action that traps harmful impurities has a significant effect on improving the characteristics of semiconductor devices and increasing the yield.

従って、エピタキシャル)TJ2のボロンafを酸素濃
度よシも薄くシ、かつエピタキシャル層2を形成すべき
シリコン基板のボロン濃度が酸素濃度よりも濃いシリコ
ン基板を用いて半導体装置を作製した場合、エピタキシ
ャル層2には全く微小欠陥の発生が見られず、半導体基
板のみに微小欠陥が発生する。これらの基板の微小欠陥
がゲッター作用を有し、半導体装置の作製工程中に混入
してくる重金属等の電気的特性を悪化させる有害不純物
を捕獲してしまい、ダイナミック7f!!MO8メモリ
ーのホールド不良を飛躍的て減少させることができる。
Therefore, if a semiconductor device is manufactured using a silicon substrate in which the boron af of the epitaxial TJ2 is thinner than the oxygen concentration, and the silicon substrate on which the epitaxial layer 2 is to be formed has a higher boron concentration than the oxygen concentration, the epitaxial layer In No. 2, no microdefects are observed at all, and microdefects occur only in the semiconductor substrate. These minute defects on the substrate have a getter effect and capture harmful impurities such as heavy metals that are mixed in during the manufacturing process of semiconductor devices and deteriorate the electrical characteristics, resulting in dynamic 7f! ! Hold failures in MO8 memory can be dramatically reduced.

以上のように、本発明によハば、半導体装置にとって重
要な表面部分のエピタキシャル層には、酸素濃度よシも
薄い不純物濃度のエピタキシャル層を形成して特性の劣
化を招く微小欠陥の発生を防ぎ、エピタキシャル層を形
成すべき半導体基板は、不純物濃度を酸素濃度↓シも濃
くすることによシ、基板の内部に均一て発生した微小欠
陥のゲッター作用を活用した半導体装置の飛闘的な特性
が改善され製造歩留シも向上するという効果が得られる
As described above, according to the present invention, an epitaxial layer with an impurity concentration that is lower than the oxygen concentration is formed in the epitaxial layer in the surface portion that is important for a semiconductor device, thereby preventing the occurrence of micro defects that cause deterioration of characteristics. The semiconductor substrate on which the epitaxial layer should be formed can be made to have an impurity concentration that is lower than the oxygen concentration. The effect is that the characteristics are improved and the manufacturing yield is also improved.

以上の実施例では、シリコン基板中の不純物がボロンの
場合について述べたが、とfin限定されるものではな
く、燐や砒素、ガリウム、アンチモン、錫2等の、半導
体基板に悪影響を与えない不純物についても同様の効果
が得られる。また本実施例ではダイナミック型MOSメ
モリーについてその効果を述べたが、微量な電気量を扱
うさまざまな半導体装置に適用可能である。
In the above embodiment, the case where the impurity in the silicon substrate is boron is described, but the impurity is not limited to fin, and impurities such as phosphorus, arsenic, gallium, antimony, tin2, etc. that do not have an adverse effect on the semiconductor substrate are used. A similar effect can be obtained for . Further, in this embodiment, the effects have been described for a dynamic MOS memory, but the present invention can be applied to various semiconductor devices that handle a minute amount of electricity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のMOS型の半導体装置を説明
するための断面図、第2図は本発明の実施例の半導体装
置の効果を説明するためのシリコン基板濃度対ホールド
不良率の特性図、第3図(a)はシリコン基板のボロン
濃度が酸素濃度よシも薄い場合の微小欠陥の発生状況を
示すシリコン基板の襞開面の断面図、第3図(b)はシ
リコン基板のボロン濃度が酸素濃度よシも濃い場合金示
す断面図である。同図に於いて、 1・・・・・・シリコンからなる半導体基板、2・・・
・・・エピタキシャル層、3・・°・・・フィールド酸
化膜、4・・。 ・・・拡散層、訃・・・・・ポリシリコンゲート電極、
6・・・・・・容量部形成用ボリンリコン電極、7・・
・・・・層間絶縁物、8・・・・・・酸素濃度を示す矢
印、9・・・・・・嘱向線。 第1 図 ( \ ( 第3図(a−) 第3図 (b)
FIG. 1 is a cross-sectional view for explaining a MOS type semiconductor device according to an embodiment of the present invention, and FIG. 2 is a graph showing silicon substrate concentration versus hold failure rate for explaining the effects of a semiconductor device according to an embodiment of the present invention. Characteristic diagram, Figure 3 (a) is a cross-sectional view of the folded surface of the silicon substrate showing the occurrence of micro defects when the boron concentration of the silicon substrate is lower than the oxygen concentration, and Figure 3 (b) is the cross-sectional view of the folded surface of the silicon substrate. This is a cross-sectional view showing gold when the boron concentration is higher than the oxygen concentration. In the figure, 1... semiconductor substrate made of silicon, 2...
...Epitaxial layer, 3...°...Field oxide film, 4... ...Diffusion layer, ...Polysilicon gate electrode,
6...Borinlicon electrode for forming capacitive part, 7...
. . . Interlayer insulator, 8 . . . Arrow indicating oxygen concentration, 9 . . . Direction line. Figure 1 ( \ ( Figure 3 (a-) Figure 3 (b)

Claims (3)

【特許請求の範囲】[Claims] (1)エピタキシャル層上にMOS型の半導体素子を形
成する半導体装置において、前記エピタキシャル層を形
成する為の半導体基板の不純物濃度が、前記半導体基板
の酸素濃度よシも濃いことを特徴とする半導体装置。
(1) A semiconductor device in which a MOS type semiconductor element is formed on an epitaxial layer, wherein the impurity concentration of the semiconductor substrate for forming the epitaxial layer is higher than the oxygen concentration of the semiconductor substrate. Device.
(2)エピタキシャル層の不純物濃度が、前記エピタキ
シャル層の酸素濃度よシも薄いことを特徴とする特許請
求の範囲第(1)項記載の半導体装置。
(2) The semiconductor device according to claim (1), wherein the impurity concentration of the epitaxial layer is lower than the oxygen concentration of the epitaxial layer.
(3)エピタキシャル層を形成する為の半導体基板の不
純物濃度が2×10 コム以上であシ、前記エピタキシ
ャル層の不純物濃度が1×10 コ1以下であることを
特徴とする特許請求の範囲第(1)項記載の半導体装1
σ。
(3) The impurity concentration of the semiconductor substrate for forming the epitaxial layer is 2×10 com or more, and the impurity concentration of the epitaxial layer is 1×10 com or less. Semiconductor device 1 described in (1)
σ.
JP57210954A 1982-12-01 1982-12-01 Semiconductor device Pending JPS59101863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210954A JPS59101863A (en) 1982-12-01 1982-12-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210954A JPS59101863A (en) 1982-12-01 1982-12-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59101863A true JPS59101863A (en) 1984-06-12

Family

ID=16597854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210954A Pending JPS59101863A (en) 1982-12-01 1982-12-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59101863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287374A (en) * 1991-03-15 1992-10-12 Shin Etsu Handotai Co Ltd Manufacture of semiconductor device
JPH06338506A (en) * 1993-05-28 1994-12-06 Nec Corp Semiconductor substrate and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287374A (en) * 1991-03-15 1992-10-12 Shin Etsu Handotai Co Ltd Manufacture of semiconductor device
JPH06338506A (en) * 1993-05-28 1994-12-06 Nec Corp Semiconductor substrate and manufacture thereof

Similar Documents

Publication Publication Date Title
US5962891A (en) Nonvolatile semiconductor memory device
JP2666945B2 (en) Method for manufacturing semiconductor device
JPH01255269A (en) Semiconductor storage device
EP0145606A2 (en) Semiconductor memory device
JPS60130160A (en) Semiconductor memory device
JPH0418711B2 (en)
JP2005142484A (en) Semiconductor device and its manufacturing method
US4388121A (en) Reduced field implant for dynamic memory cell array
JPS59101863A (en) Semiconductor device
JPH11317465A (en) Nonvolatile semiconductor memory device and semiconductor integrated circuit device
US6611459B2 (en) Non-volatile semiconductor memory device
US4702796A (en) Method for fabricting a semiconductor device
JP3388121B2 (en) Nonvolatile semiconductor memory device, manufacturing method and charge storage method
JPH04253375A (en) Non-voltatile semiconductor memory device and its manufacture
TW201839960A (en) Semiconductor device and method for manufacturing the same
JPH05235308A (en) Semiconductor memory device and its manufacture
US4328510A (en) High density read/write memory cell
JPS61129872A (en) Manufacture of semiconductor device
JPH09129760A (en) Semiconductor device and its manufacturing method
JPS613415A (en) Semiconductor device
JP2803729B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3209204B2 (en) Semiconductor device and method of manufacturing the same
TW574756B (en) Method for enhancing retention time of memory module and memory cell structure thereof
JPS59175157A (en) Metal insulator semiconductor type semiconductor memory device and manufacture thereof
JPS62219653A (en) Semiconductor device