JPS5899285A - Method for controlling converter for driving induction motor - Google Patents

Method for controlling converter for driving induction motor

Info

Publication number
JPS5899285A
JPS5899285A JP56196840A JP19684081A JPS5899285A JP S5899285 A JPS5899285 A JP S5899285A JP 56196840 A JP56196840 A JP 56196840A JP 19684081 A JP19684081 A JP 19684081A JP S5899285 A JPS5899285 A JP S5899285A
Authority
JP
Japan
Prior art keywords
signal
motor
output
polarity
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56196840A
Other languages
Japanese (ja)
Inventor
Toshiaki Okuyama
俊昭 奥山
Hidekazu Horiuchi
堀内 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56196840A priority Critical patent/JPS5899285A/en
Publication of JPS5899285A publication Critical patent/JPS5899285A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To compensate for variation in secondary resistance of the motor, by controlling the output frequency of an inverter which is controlled in proportion to the sum of a slip frequency command signal and a detected speed signal in correspondence with the variation in magnetic flux of the motor and the polarity of the slip frequency command signal. CONSTITUTION:The PWM inverter 1 is controlled in association with the operation of a comparator 13, and an induction motor 2 is driven. A magnetic flux detector 16 integrates the primary voltage of the motor 2 and detects the signal proportional to the magnitude of the magnetic flux. An amplifier 17 outputs a signal corresponding to the deviation between a command signal of the amount of the magnetic flux and the detected signal. The signal is added to an adder 6 through a polarity inverter 19. Meanwhile, a signal corresponding to the polarity of the output signal from the amplifier 5 is taken out of a comparator 18, and the polarity of the slip frequency command signal is judged. The inverter 19 inverts the polarity in correspondence with the signal from the comparator 18. A frequency proportional to a frequency command signal is generated by an oscillator 7. The output of an exciting current command circuit 8 and the output of the amplifier 5 are multiplied 10 and 9 and added 11. Thus the variation due to the temperature of the secondary resistance of the motor is corrected and controlled.

Description

【発明の詳細な説明】 本発v4は、誘導電動機をインバータ装置により制御す
る方法に関し、轡に、電動機の二次抵抗が温度にエリ変
動した場合にシける特性変化を補償するための制御方法
に関する。
Detailed Description of the Invention The present invention v4 relates to a method of controlling an induction motor using an inverter device, and more particularly, a control method for compensating for characteristic changes that occur when the secondary resistance of the motor fluctuates due to temperature. Regarding.

誘導電動機の一次電流を励磁分とトルク分に分解し、そ
れぞれを独立に制御することにエリ、^速応答の速度制
御が行なえるようにした、いわゆるベクトル制御方式が
知られている。この方式では、各電流成分の指令に基づ
いて、演算合成した、電流指令パターン信号に北回する
工うに、鴫LJI!J機の一次電流が制御されるが、電
動機内部において各成分が指令直通りに制御されるかど
うかは、すべり周波数(インバータ出力周波数)゛の制
#梢襄が関係する。すなわち、−次電流はすペリ周波数
tS本として励磁1分とトルク分に分解されると考えら
れ、その九めKすベシ周波数が適正でなければ、各成分
を指令直通りに分解制御することはできない。すべり周
波数が適正でなくなる原因には。
A so-called vector control method is known in which the primary current of an induction motor is divided into an excitation component and a torque component, and each component is controlled independently to perform speed control with a rapid response. In this method, a current command pattern signal is calculated and synthesized based on the commands of each current component. The primary current of the J machine is controlled, but whether each component inside the motor is controlled directly according to the command depends on the control of the slip frequency (inverter output frequency). In other words, the -order current is considered to be decomposed into one minute of excitation and one minute of torque as a periphery frequency tS, and if the frequency is not appropriate, each component can be decomposed and controlled directly according to the command. I can't. What causes the slip frequency to become inappropriate?

電IIh機二次抵抗の温度変化の影響がるる。The effect of temperature change on the secondary resistance of the electric IIh machine can be seen.

本発明の目的は、二次抵抗の温度による変化がめる場合
においても、すべり周波数を適正直に制御することがで
きる制御方法を提供するにある。
An object of the present invention is to provide a control method that can appropriately and honestly control the slip frequency even when changes in secondary resistance due to temperature are considered.

本発明の特徴は、すべり周波数指令信号と速度検出信号
の和に比例して制御されるイ/ノ(−夕の出力周波数を
、電動機磁束(ろるいは電jlIIIIA電圧)の変動
及びすべり周波数指令信号の極性に応じて。
A feature of the present invention is that the output frequency of I/NO (-), which is controlled in proportion to the sum of the slip frequency command signal and the speed detection signal, is controlled in proportion to the fluctuation of the motor magnetic flux (Rorui or electric voltage) and the slip frequency command. depending on the polarity of the signal.

修正制御するようにしたことにある。The problem lies in the fact that it is controlled by correction.

第1図に1本発明の一実施列であるPWMインバータ装
置の回路構成図を示す。図中、1はGTO(Qat@T
ern−ott Thyristor )及びダイオー
ドなどで構成されるPWMインバータ、2は銹導電動機
、3は電動機の回転速度及び磁束量の指令信号を出力す
る運転指令回路、4は速[検出器。
FIG. 1 shows a circuit configuration diagram of a PWM inverter device which is one embodiment of the present invention. In the figure, 1 is GTO (Qat@T
2 is a rust conduction motor, 3 is an operation command circuit that outputs command signals for the rotational speed and magnetic flux of the motor, and 4 is a speed detector.

5は速度指令信号と速度検出信号の間座を増巾する速度
l差増巾器、6は速度検出信号と増巾器5からのすべり
周波数指令信号及び後述する極性反転器の出力信号を加
算する加算器、7は加算器6の出力信号に比例した周波
数の二相正弦波信号を出力する発振器、8は電動機2の
励ia峨流を指令する励ta電流指令回路、9は増巾4
5からのトルク指令11I号と発掘a7の一方の信号を
米真し、鑞鯛礪−次電流のトルク分指令)くターフ(5
号(正弦波信号)を出す乗Jl器、10は励Iadt流
畑令信号と発振器7のもう一方のjf1号全乗算し、−
次(訛の励磁分指令パターン信号(正弦波信号)t−出
す乗算器、11は各成分指令パターン+1!号のベクト
ル加算を行ないインバータ出力電流の指令パターン信号
を出すlA算器、12riインバータ出力嵐xを検出す
るだめのit流検出器、13は電流指令バター/信号と
電流検出信号を比較し、PWMイ/バータ1のGTOt
−オ/・オフ制御するためのPWM信号を出力する比較
器、14はGTOにゲート信号を与えるためのゲート回
路でろる。なお。
5 is a speed l difference amplifier that amplifies the gap between the speed command signal and the speed detection signal, and 6 is a speed difference amplifier that adds the speed detection signal, the slip frequency command signal from the amplifier 5, and the output signal of the polarity inverter to be described later. 7 is an oscillator that outputs a two-phase sine wave signal with a frequency proportional to the output signal of adder 6; 8 is an excitation current command circuit that commands the excitation IA current of the motor 2; 9 is an amplification circuit 4;
The torque command No. 11I from 5 and one of the signals of excavation a7 are used as a signal, and the torque command of the next current is applied to the turf (5
The multiplier Jl generator 10 outputs the signal (sine wave signal), and the excitation Iadt signal is fully multiplied by the other jf1 signal of the oscillator 7, -
Multiplier that outputs the next (excitation component command pattern signal (sine wave signal) t-, 11 is a lA calculator that performs vector addition of each component command pattern + 1! and outputs a command pattern signal of the inverter output current, 12ri inverter output The IT current detector 13 which detects the storm x compares the current command butter/signal and the current detection signal,
- A comparator that outputs a PWM signal for on/off control; 14 is a gate circuit that provides a gate signal to the GTO; In addition.

11′〜14に同様のものはインバータ出力相数に比例
し3組めるが、他の2組は図示を省略する。
There are three sets of similar parts 11' to 14 in proportion to the number of inverter output phases, but the other two sets are omitted from illustration.

15はインバータ出力電圧を検出するための変圧器、1
6は1圧検出信号を積分しtvJ機磁束の大きさ音検出
するための磁釆蓋検出器、17は磁束量の指令信号と検
出信号のl差を増巾する員宋扇差増巾器、18は増巾器
5の出力1g号憾性に応じた二1直信号を出力する比較
器、17は増巾417の出力信号極性を比[418の出
力111号に応じて切換えるための極性反転−である。
15 is a transformer for detecting the inverter output voltage;
6 is a magnetic lid detector for integrating the 1-pressure detection signal and detecting the magnitude of the magnetic flux of the tvJ machine; 17 is a magnetic difference amplification device for amplifying the difference between the magnetic flux command signal and the detection signal. , 18 is a comparator that outputs a 21 direct signal according to the output 1g of the amplifier 5, and 17 is a polarity for switching the output signal polarity of the amplifier 417 according to the output 111 of the amplifier 418. It is inverted.

次に、上記回路の動作を説明する。先づ、従来回路の動
作につき説明する。インノく一夕1の出力m訛は、比f
!器13の−1に従い、 XtIt指令)(ターン信号
に比例する工うに制御される。この電流指令バター/信
号は次のようにして作られる。先(づ、壇−巾器5の出
力信号と速度−黒信号が加算−′  6において加算さ
れ、電動機の一次周波数を指令する周波数指令信号が取
り出される。このと111壇巾器5−からの信号は次式
の関係に従い、すべり周波数1−指令する1g号となる
Next, the operation of the above circuit will be explained. First, the operation of the conventional circuit will be explained. Innoku Ichiyo 1's output m accent is the ratio f
! According to -1 of the circuit 13, it is controlled to be proportional to the XtIt command (turn signal). This current command signal is created as follows. The speed-black signal is added in addition-' 6, and a frequency command signal that commands the primary frequency of the motor is taken out.This signal and the signal from the 111 swivel 5- are combined into the slip frequency 1-command according to the relationship of the following equation. This will be the 1g issue.

f、=f、+f、          ・・・・・・・
・・(1)ここに、f、:すべり周波数 (増巾a5の出力信号に比例) f、:′#L気的回転周波数 (速度検出信号に比例) 発振器7は前記周波数指令信号に比例した周波数の二相
正弦波信号を出力する。これらは電流指令バター741
1′@の位相基準となるものである。
f, = f, +f, ...
...(1) Here, f,: Slip frequency (proportional to the output signal of the amplification a5) f,:'#L mechanical rotation frequency (proportional to the speed detection signal) The oscillator 7 is proportional to the frequency command signal. Outputs a two-phase sine wave signal of the frequency. These are the current command butter 741
This is the phase reference for 1'@.

乗算49.10及び加算器11は一1前述の演算全行な
い、インバータ出力電流の一時1直を2指令するt流指
令パターン信号を出力する。この1g号に比例して、イ
ンバータ出力*gが制御される結果。
The multiplier 49.10 and the adder 11 perform all of the above-mentioned calculations and output a t-flow command pattern signal that commands two shifts of the inverter output current at one time. The result is that the inverter output *g is controlled in proportion to this 1g.

−次電流の大きさは励磁分とトルク分のベクトル和に比
例する工うに制御される。しかし、電動機内部において
一次電流が各成分に正しく分解されるかどうかは1次式
に示すようにすべり周波数W、が関係する。
-The magnitude of the secondary current is controlled in such a way that it is proportional to the vector sum of the excitation component and the torque component. However, whether or not the primary current is correctly decomposed into each component within the motor is related to the slip frequency W, as shown in the linear equation.

ここに、■、:トルク分 ■、:励磁分 に1 :比例定数 W、:すべり角周波数 rl :二次抵抗 すなわち、各成分への分解はW、により定まり。Here, ■, : Torque ■,: Excitation amount 1: Constant of proportionality W: Slip angle frequency rl: Secondary resistance That is, the decomposition into each component is determined by W.

もし、W、が適正でなければ、たとえ−次屯流の大きさ
が所定直に制御され九としても、各成分をそれぞれ所定
1直に市1」仰することはできない。このとき電動機磁
束(電圧)は基準嘘から変動し、電動機電圧の上昇ある
いはトルクの低下が起こる。
If W is not appropriate, it is not possible to calculate each component individually in a predetermined direction even if the magnitude of the negative current is controlled in a predetermined direction. At this time, the motor magnetic flux (voltage) varies from the reference value, causing an increase in motor voltage or a decrease in torque.

このような不具合の起こる原因は前述し友が1図示15
〜19がこれを解決するための回路であり、本発明に関
係する部分でるる。
The reason why such a problem occurs is as described above and shown in Figure 15.
19 are circuits for solving this problem and are related to the present invention.

回路の動作t−貌明する前に、先づ原理を簡単に述べる
。罐勧磯二次は抗が基準源から変動した場合、(2)式
の関係に従い、1./1.が適正直から変化する。その
結果、■、の変動により電動Ca束(あるいは電am′
眠圧)が基準源から変動するため、この変a′ik′I
IL動機1束の検出信号とその指令信号の備差から検出
し、七のCatに応じてインバータ出力周波数を修正I
tt111I41シ、それにより前述した不具合を防止
する。
Before explaining the operation of the circuit, the principle will be briefly explained. When the resistance changes from the reference source, the second order of can-kaniso is 1. According to the relationship of equation (2). /1. changes from being honest. As a result, due to the fluctuation of ■, electric Ca flux (or electric
As sleep pressure) varies from the reference source, this change a′ik′I
Detect from the difference between the detection signal of one bundle of IL motors and its command signal, and correct the inverter output frequency according to the Cat of 7.
tt111I41, thereby preventing the above-mentioned problems.

次に、回路の動作を説明する。111を束検出器16は
、電動機−次電圧を積分し、t11束の大きさに比例し
た信号を検出する。次に、増巾器17は、磁束量の指令
1M号と検出信号の1差に厄じ良信号を出力し、その信
号は極性反転器19=に介して加算器6に加えられる。
Next, the operation of the circuit will be explained. 111, the bundle detector 16 integrates the motor voltage and detects a signal proportional to the size of the t11 bundle. Next, the amplifier 17 outputs an error signal for the difference of 1 between the magnetic flux command number 1M and the detection signal, and the signal is added to the adder 6 via the polarity inverter 19=.

一方、比llRa1sからは増巾65の出力信号極性に
応じた信号が取り出されるが、これはすべり周波数指令
信号の極性、すなわち、電IIIJろるいは回生運転全
判別する信号でるる。
On the other hand, a signal corresponding to the polarity of the output signal of the amplifier 65 is extracted from the ratio 11Ra1s, and this is a signal for determining the polarity of the slip frequency command signal, that is, the electric IIIJ low or regenerative operation.

極性休転619Fiこの信号に応じて増巾器17の出力
信号極性を反転させるが、それは次のように一次周波数
t 1t11111するためにある。先づ、111E動
運転時においては、を動機磁束蓋が低下すると一次周波
数は下降する向きに制御される。その結果、すべり周波
数は小となる側に制御され、i束蓋は増加して適正直に
修正される。このとき、二次抵抗rt(D変動に応じて
、すべり周波数W、がtllJ11i4またことになる
。ff1束量が増力口し友場&ハ、以上とは逆に一次m
波数が上昇方向に制御され、やはり磁束tは適正直に修
正される。
Polarity Deactivation 619Fi Inverts the output signal polarity of the amplifier 17 in response to this signal, which is for the primary frequency t 1t11111 as follows. First, during the 111E dynamic operation, when the magnetic flux cover decreases, the primary frequency is controlled to decrease. As a result, the slip frequency is controlled to be small, and the i-bundle lid is increased to be properly corrected. At this time, the secondary resistance rt (according to the variation of D, the slip frequency W, changes tllJ11i4.
The wave number is controlled in an upward direction, and the magnetic flux t is also corrected appropriately.

一方、回生運転時においては、磁束量が低Fすると偽性
反転a19のm咋に従い、前述とは逆に一次周波数は上
昇する向きに制御される。その結果、すべり周波数は小
となる側に?ff1J御され、磁束11は増加して適正
直に修正される。このときrlの変動に応じて、W、が
修正制御されることは前述と同様でるる。
On the other hand, during regenerative operation, when the amount of magnetic flux is low F, the primary frequency is controlled to increase in accordance with the pseudo inversion a19, contrary to the above. As a result, does the slip frequency become smaller? ff1J is controlled, the magnetic flux 11 increases and is corrected properly. At this time, W is corrected and controlled in accordance with the fluctuation of rl, as described above.

本発明によれば電動機二次抵抗の変化の影響を補償でき
、電動機電圧の上昇並びにトルク低下を防止することが
できる。
According to the present invention, it is possible to compensate for the influence of changes in motor secondary resistance, and it is possible to prevent increases in motor voltage and decreases in torque.

前記実施列においては、磁束量検出器16において電動
fa磁束を検出し、la束の変動に応じてすべり周波数
を修正制御したが、@東上検出する代りに、 tEEt
−検出するも−のでめっても、同様の制御を行なわせる
こともできる。この場合の目wIは、第1図における1
6〜190部品の機能が若干異なるが、構成は同様であ
る。相異点につき述べると、16相当の回路に、おいて
電動−電圧の大きさt検出する。17相当の増巾器にお
いて運転指令回路3からの電圧指令信号と検出信号の1
差が検出される。−動機磁束と電圧は比−関係にあるこ
とから、この実!M的においても前記実施列と同様の制
御が行なえ、同様の効果が得られる。
In the above implementation, the electric FA magnetic flux was detected by the magnetic flux amount detector 16, and the slip frequency was corrected and controlled according to the variation of the LA flux, but instead of @Higashijo detection, tEEt
Even if something is not detected, similar control can be performed. In this case, the eye wI is 1 in Figure 1.
Although the functions of the 6 to 190 parts are slightly different, the configurations are the same. Regarding the difference, in the circuit corresponding to 16, the magnitude t of the electric voltage is detected. 1 of the voltage command signal and detection signal from the operation command circuit 3 in an amplifier equivalent to 17.
A difference is detected. - Motivation magnetic flux and voltage have a ratio - relationship, so this is true! The same control as in the above-mentioned embodiment can be performed in the M mode, and the same effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施列でろる訪導邂wJ機駆動用変
換装置の回路図である。
FIG. 1 is a circuit diagram of a conversion device for driving a WJ machine, which is one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、誘導電動機とこの誘導電動機に可変周波数の交流を
供給する変換器ξ、前記銹導電動機の一次電流の励磁分
及びトルク分をそれぞれ指令する信号に基づいて、前記
f換器の出力電@0大きさを制御し、また前記誘導電動
機の速度検出信号とすべり周波数指令信号の和に応じて
前記変換器の出力周波数を制御する制御装置とからなる
ものにおいて、前記誘導電動機の磁束の指令直に対する
変amに応じた信号を噴出し、前記速度検出信号と前記
すべり周波数指令信号を加算する第1手段、前記すべり
周波数指令信号の信号極性會判別する第2手段會偏見、
前記第2手段の出力信号に応じて前記第1手段の出力信
号の変化方向を切換えるようにし九ことを待機とする誘
導電#1機駆動用変換装置の制御方法。
1. An induction motor and a converter ξ that supplies variable frequency alternating current to the induction motor, and an output voltage of the f converter based on signals that respectively command the excitation and torque components of the primary current of the rust conduction motor. 0 magnitude, and a control device that controls the output frequency of the converter according to the sum of the speed detection signal and the slip frequency command signal of the induction motor. a first means for ejecting a signal according to a change am to and adds the speed detection signal and the slip frequency command signal; a second means for determining the signal polarity of the slip frequency command signal;
A method of controlling a conversion device for driving an induction electric #1 machine, wherein the direction of change of the output signal of the first means is switched in accordance with the output signal of the second means, and the first step is standby.
JP56196840A 1981-12-09 1981-12-09 Method for controlling converter for driving induction motor Pending JPS5899285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196840A JPS5899285A (en) 1981-12-09 1981-12-09 Method for controlling converter for driving induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196840A JPS5899285A (en) 1981-12-09 1981-12-09 Method for controlling converter for driving induction motor

Publications (1)

Publication Number Publication Date
JPS5899285A true JPS5899285A (en) 1983-06-13

Family

ID=16364531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196840A Pending JPS5899285A (en) 1981-12-09 1981-12-09 Method for controlling converter for driving induction motor

Country Status (1)

Country Link
JP (1) JPS5899285A (en)

Similar Documents

Publication Publication Date Title
US5253155A (en) Circuit and method for controlling output current balance between parallel driven PWM-type power inverting units
SU1114358A3 (en) A.c. electric drive
EP0000530A1 (en) Feedback control for reduction of cogging torque in controlled current AC motor drives and method
JPS5850119B2 (en) Control device for commutatorless motor
JPH1127951A (en) Pwm inverter controller
JPS5899285A (en) Method for controlling converter for driving induction motor
US7053584B2 (en) Motor driving device
JPS6387195A (en) Controller for synchronous motor
JP3536114B2 (en) Power converter control method and power converter
JPS583586A (en) Torque controller for thyristor motor
JPS63228992A (en) Inverter controller
JP3074687B2 (en) Induction motor control device
JP2560962Y2 (en) AC motor control device
JP2560963Y2 (en) AC motor control device
JPS5923195B2 (en) Thyristor motor control device
JPS6412194B2 (en)
JPH08182377A (en) Circuit for automatic phase correction of synchronous motor
JPH0634614B2 (en) AC motor controller
JPS5936517B2 (en) AC motor control device
JPS6115582A (en) Controlling method of induction motor
JPH0496681A (en) Vector controller for induction motor
JPH1141999A (en) Induction motor controller
SU1594671A1 (en) Device for controlling double-supply machine
JPH07118959B2 (en) Induction motor control method
JPS6332032B2 (en)