JPH07118959B2 - Induction motor control method - Google Patents

Induction motor control method

Info

Publication number
JPH07118959B2
JPH07118959B2 JP63175048A JP17504888A JPH07118959B2 JP H07118959 B2 JPH07118959 B2 JP H07118959B2 JP 63175048 A JP63175048 A JP 63175048A JP 17504888 A JP17504888 A JP 17504888A JP H07118959 B2 JPH07118959 B2 JP H07118959B2
Authority
JP
Japan
Prior art keywords
command signal
current
voltage
induction motor
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63175048A
Other languages
Japanese (ja)
Other versions
JPH0226289A (en
Inventor
孝行 松井
俊昭 奥山
敏雄 斉藤
潤一 高橋
繁 椙山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63175048A priority Critical patent/JPH07118959B2/en
Publication of JPH0226289A publication Critical patent/JPH0226289A/en
Publication of JPH07118959B2 publication Critical patent/JPH07118959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘導電動機の制御方法に関し、特に電動機の電
圧とトルクを高精度に制御するための制御方法に関す
る。
The present invention relates to a method for controlling an induction motor, and more particularly to a control method for controlling the voltage and torque of the motor with high accuracy.

〔従来の技術〕[Conventional technology]

誘導電動機の電流を励磁成分とトルク成分に分けてそれ
ぞれを独立に制御し、高速応答高精度な速度制御を行う
いわゆるベクトル制御が知られている。このものにおい
ては各電流成分指令信号に基づいて電動機電流が制御さ
れるが、電動機内部において磁束が指令値通りに制御さ
れるかどうかは、電動機の鉄心磁気飽和特性が関係す
る。電動機磁束の変化によつて負荷変化時にトルクの応
答遅れ及び脈動が生じ、また電動機電圧を指令値通りに
制御できないなどの不具合が生じる。
There is known a so-called vector control in which the current of an induction motor is divided into an excitation component and a torque component and each is independently controlled to perform high-speed response and highly accurate speed control. In this configuration, the electric motor current is controlled based on each current component command signal. Whether or not the magnetic flux is controlled according to the command value inside the motor depends on the iron core magnetic saturation characteristics of the electric motor. Due to the change in the magnetic flux of the electric motor, a response delay and pulsation of the torque occur when the load changes, and a problem occurs such that the electric motor voltage cannot be controlled according to the command value.

そこで、従来では特開昭59−156184号公報に記載のよう
に、インバータの出力電圧を検出してこの電圧検出信号
に基づいて励磁電流指令を修正する方法が提案されてい
る。
Therefore, conventionally, as disclosed in Japanese Patent Laid-Open No. 59-156184, a method has been proposed in which the output voltage of the inverter is detected and the exciting current command is corrected based on this voltage detection signal.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上記従来技術はインバータの出力電圧を
検出するための検出器が必要であり、ハード構成が複雑
となる問題があつた。
However, the above-mentioned conventional technique requires a detector for detecting the output voltage of the inverter, which causes a problem that the hardware configuration becomes complicated.

本発明の目的は出力電圧の検出器をなくし、電動機の鉄
心磁気飽和による磁束変化を補償して磁束を常に適正値
に制御することができる制御方法を提供することにあ
る。
An object of the present invention is to provide a control method which eliminates the detector of the output voltage and compensates the magnetic flux change due to the iron core magnetic saturation of the electric motor to always control the magnetic flux to an appropriate value.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、回転磁界座標系における電動機のトルク電
流指令信号とトルク電流の検出値との偏差に基づいて電
圧指令の基準値からの変動量を演算し、この電圧変動量
に応じて励磁電流指令信号を修正することにより達成さ
れる。
The purpose is to calculate the amount of fluctuation of the voltage command from the reference value based on the deviation between the torque current command signal of the electric motor and the detected value of the torque current in the rotating magnetic field coordinate system, and to generate the exciting current command in accordance with this voltage fluctuation amount. This is achieved by modifying the signal.

〔作用〕[Action]

回転磁界座標系における電動機のトルク電流指令信号と
トルク電流の検出値との偏差が0となるように電動機電
圧を制御するものにおいて、その電圧の変動量には、1
次抵抗の変化による電圧降下成分と、鉄心磁気飽和によ
る磁束変化に伴う電圧変動成分が含まれているが、1次
角周波数の高い範囲では1次抵抗の変化による影響が少
ない。また、1次角周波数の高い範囲で磁束弱め制御が
必要となることから、本発明では、電圧指令信号の変動
量に基づいて電動機電圧の変動成分を決定し、この変動
成分から鉄心磁気飽和による磁束変化に関係の信号を取
出し、それが0となるように励磁電流指令の基準値を修
正するようにしているので、出力電圧の検出器が不用で
ある。
In the one in which the motor voltage is controlled so that the deviation between the torque current command signal of the motor and the detected value of the torque current in the rotating magnetic field coordinate system becomes 0, the fluctuation amount of the voltage is 1
Although the voltage drop component due to the change of the secondary resistance and the voltage fluctuation component due to the magnetic flux change due to the magnetic saturation of the iron core are included, the influence of the change of the primary resistance is small in the high primary angular frequency range. Further, since magnetic flux weakening control is required in a high primary angular frequency range, in the present invention, the fluctuation component of the motor voltage is determined based on the fluctuation amount of the voltage command signal, and the fluctuation component due to iron core magnetic saturation is determined from this fluctuation component. Since the signal related to the change in the magnetic flux is taken out and the reference value of the exciting current command is corrected so that it becomes 0, the detector of the output voltage is unnecessary.

〔実施例〕〔Example〕

以下、本発明の第1の実施例を第1図により説明する。
誘導電動機2は電力変換回路1より給電され、電動機2
に流れる3相交流電流が電流検出器3U,3V,3Wにより検出
される。この3相交流電流は3相−2相変換器4によ
り、2相交流電流に変換され、その出力が座標変換器5
に入力され回転磁界座標系における励磁電流とトルク電
流成分にベクトル分解され、その検出値はそれぞれの指
令信号と加算器6,7で突合せられる。電動機2の回転速
度は速度検出器8で検出され、その出力はその指令信号
ω*と加算器9において突合せられると共に、加算器
10に入力される。加算器9の出力は速度制御器11に入力
されて電動機2のトルク電流指令信号Iq*を出力し、そ
の出力はすべり演算器12と加算器7に入力される。すべ
り演算器12の出力信号ω*は加算器10において回転速
度ωと加算され、その出力信号ω*が座標基準発生
器13と電圧指令演算回路14に入力される。加算器6の出
力は励磁電流指令信号Id**と座標変換器5の検出値Id
との偏差を出力し、その出力信号は電流制御器15に入力
され、その偏差が0となるように回転磁界座標系の電圧
成分指令信号Δvd*を加算器21に出力する。加算器7の
出力信号はトルク電流指令信号Iq*と座標変換器5の検
出値Iqとの偏差信号を出力し、その出力信号は電流制御
器16に入力され、その偏差が0となるように回転磁界座
標系の電圧成分指令Δvd*を加算器22に出力する。電圧
指令演算回路14は励磁電流指令信号Id**とトルク電流
指令信号Iq*と1次角周波数指令信号ω*に基づいて
回転磁界座標系の電圧成分指令信号vd*とvq*とを演算
し、その出力信号は加算器21,22に入力される。これら
加算器21,22の出力信号は座標変換器17に入力され、座
標基準発生器13の出力信号に基づいて固定子座標系の電
圧指令信号vu*,vv*,vw*を出力する。これらの電圧指
令信号vu*,vv*,vw*は、パルス幅変調(PWM)制御回
路19に入力され、搬送波周波数に基づいてPWM制御され
た出力信号vu,vv,vwが電力変換器1に出力される。速度
指令信号ω*は磁束指令発生器25に入力され、その出
力信号φ*が励磁電流指令演算器24に入力され、その出
力信号Id*が加算器23に出力される。また、電流制御器
16の出力信号Δvq*は演算回路18に入力され、電動機2
の鉄心磁気飽和による磁束変化分を補償する励磁電流指
令信号ΔId*を加算器23に出力する。この励磁電流指令
信号ΔId*は加算器23において励磁電流指令信号Id*と
加算され、修正された励磁電流指令信号Id**を加算器
6に出力する。
The first embodiment of the present invention will be described below with reference to FIG.
The induction motor 2 is supplied with power from the power conversion circuit 1,
The three-phase AC current flowing in the is detected by the current detectors 3U, 3V, 3W. This three-phase alternating current is converted into a two-phase alternating current by the three-phase / two-phase converter 4, and its output is the coordinate converter 5.
Are vector-divided into exciting current and torque current components in the rotating magnetic field coordinate system, and the detected values are matched with respective command signals by adders 6 and 7. The rotation speed of the electric motor 2 is detected by the speed detector 8, the output of which is matched with the command signal ω r * in the adder 9 and the adder 9 is added.
Entered in 10. The output of the adder 9 is input to the speed controller 11 to output the torque current command signal I q * of the electric motor 2, and the output thereof is input to the slip calculator 12 and the adder 7. The output signal ω s * of the slip calculator 12 is added to the rotation speed ω r in the adder 10, and the output signal ω 1 * is input to the coordinate reference generator 13 and the voltage command calculation circuit 14. The output of the adder 6 is the exciting current command signal I d ** and the detected value I d of the coordinate converter 5.
And the output signal is input to the current controller 15, and the voltage component command signal Δv d * of the rotating magnetic field coordinate system is output to the adder 21 so that the deviation becomes zero. The output signal of the adder 7 outputs a deviation signal between the torque current command signal I q * and the detected value I q of the coordinate converter 5, and the output signal is input to the current controller 16 and the deviation becomes zero. Thus, the voltage component command Δv d * of the rotating magnetic field coordinate system is output to the adder 22. The voltage command calculation circuit 14 calculates the voltage component command signals v d * and v q of the rotating magnetic field coordinate system based on the excitation current command signal I d **, the torque current command signal I q *, and the primary angular frequency command signal ω 1 *. * And are calculated, and the output signals are input to the adders 21 and 22. The output signals of these adders 21 and 22 are input to the coordinate converter 17, and the voltage command signals v u *, v v *, v w * of the stator coordinate system are output based on the output signals of the coordinate reference generator 13. To do. These voltage command signals v u *, v v *, v w * are input to the pulse width modulation (PWM) control circuit 19 and output signals v u , v v , v w PWM-controlled based on the carrier frequency. Is output to the power converter 1. The speed command signal ω r * is input to the magnetic flux command generator 25, its output signal φ * is input to the excitation current command calculator 24, and its output signal I d * is output to the adder 23. Also the current controller
The output signal Δv q * of 16 is input to the arithmetic circuit 18, and the motor 2
An exciting current command signal ΔI d * for compensating the magnetic flux change due to the iron core magnetic saturation is output to the adder 23. This exciting current command signal ΔI d * is added to the exciting current command signal I d * in the adder 23, and the corrected exciting current command signal I d ** is output to the adder 6.

まず、以上の構成による動作を簡単に説明する。この実
施例では回転磁界座標系の励磁電流指令信号Id**とト
ルク電流指令信号Iq*に基づいて電流指令信号vd*とvq
*が演算されると共に、励磁電流とトルク電流に対して
フイードバツク制御系が構成されており、指令値と実際
値の偏差が0となるように、各電流制御器の出力信号に
より前記電圧指令信号vd*,vq*を修正し、この修正さ
れた電圧指令信号vd**,vq**が座標変換器17におい
て、固定子座標系の3相交流電圧指令信号に変換され、
この変換された3相交流電圧指令信号に基づいて電力変
換器1により電動機2へ供給する電圧が制御される。
First, the operation of the above configuration will be briefly described. In this embodiment, the current command signals v d * and v q are based on the exciting current command signal I d ** and the torque current command signal I q * in the rotating magnetic field coordinate system.
* Is calculated, and a feedback control system is constructed for the exciting current and the torque current, and the voltage command signal is output by the output signal of each current controller so that the deviation between the command value and the actual value becomes zero. v d *, v q * is corrected, and the corrected voltage command signal v d **, v q ** is converted into the three-phase AC voltage command signal of the stator coordinate system by the coordinate converter 17,
The voltage supplied to the electric motor 2 is controlled by the power converter 1 based on the converted three-phase AC voltage command signal.

次に本発明に関する演算回路18の詳細と動作を第2図を
用いて述べる。電動機2は通常では電圧指令演算回路14
の出力信号vd*,vq*によつて決定される電圧により運
電される。ところで、励磁電流指令演算回路24において
電動機2の定格電圧時の励磁電流に対する相互インダク
タンスM,2次時定数T2を用いて次式に示すように磁束指
令信号φ*から励磁電流Id*を演算するが、電動機2に
は第2図に示すような鉄心の磁気飽和特性があるため、
磁束弱め時においては、相互インダクタンスM,2次時定
数T2の実際値が変化し、相互インダクタンスM,2次時定
数T2の設定値と一致しなくなる。
Next, details and operation of the arithmetic circuit 18 relating to the present invention will be described with reference to FIG. The motor 2 is normally a voltage command calculation circuit 14
Is carried by a voltage determined by the output signals v d *, v q * of the. By the way, in the exciting current command calculating circuit 24, the exciting current I d * is calculated from the magnetic flux command signal φ * using the mutual inductance M and the secondary time constant T 2 with respect to the exciting current at the rated voltage of the motor 2 as shown in the following equation. Although the calculation is performed, since the electric motor 2 has the magnetic saturation characteristics of the iron core as shown in FIG.
During flux weakening, the mutual inductance M, the actual value of the secondary time constant T 2 is changed, no longer matches the mutual inductance M, a secondary time set value of the constant T 2.

ここに、Sは微分演算子である。 Here, S is a differential operator.

さらに、速度制御器11は電動機2に所要のトルクが発生
するようにトルク電流指令信号Iq*を修正し、電動機内
部の磁束と磁束指令信号φ*との相違によるトルク変化
を補償する。以上の動作の結果、磁束弱め制御が必要と
なる1次角周波数の高い範囲において、トルク電流の電
流制御器16の出力信号Δvq*には電動機内部の磁束と磁
束指令信号φ*との相違による出力電圧成分が出力され
る。その大きさは次式で表わされる。
Further, the speed controller 11 corrects the torque current command signal I q * so that a required torque is generated in the electric motor 2, and compensates the torque change due to the difference between the magnetic flux inside the electric motor and the magnetic flux command signal φ *. As a result of the above operation, in the high primary angular frequency range where the magnetic flux weakening control is required, the output signal Δv q * of the torque current of the current controller 16 is different from the magnetic flux inside the motor and the magnetic flux command signal φ *. The output voltage component by is output. Its size is expressed by the following equation.

Δvq*=(φ*−φ)・ω* …(2) 従つて、相互インダクタンスMに対する励磁電流指令の
修正量ΔId*は次式で表わされる。
Δv q * = (φ * −φ d ) · ω 1 * (2) Therefore, the correction amount ΔI d * of the exciting current command for the mutual inductance M is expressed by the following equation.

ここに、kは比例ゲインである。すなわち、1次角周波
数ω*が正の時、電動機内部磁束φが磁束指令信号
φ*より小さい場合にはΔId*が正となり励磁電流指令
を増加するように作用し、逆にφがφ*より大きい場
合にはΔId*が負となり励磁電流指令を減少させる。こ
れらの動作はω*の符号を自動的に考慮することがで
きる。
Here, k is a proportional gain. That is, when the primary angular frequency ω 1 * is positive and the internal magnetic flux φ d of the motor is smaller than the magnetic flux command signal φ *, ΔI d * becomes positive and acts to increase the exciting current command, and conversely φ When d is larger than φ *, ΔI d * becomes negative and the exciting current command is decreased. These operations can automatically consider the sign of ω 1 *.

ここに、Sgn(ω*)はω*の極性+1,−1を出力
する。
Here, S gn1 *) outputs the polarities +1 and −1 of ω 1 *.

(2a)式あるいは(2b)式が演算回路18の演算内容であ
る。
The expression (2a) or the expression (2b) is the operation content of the operation circuit 18.

本実施例によれば、(2a)あるいは(2b)式に用いる相
互インダクタンスM(=Δφ/ΔId)も鉄心磁気飽和に
より変化するが、閉ループ制御を行つているので相互イ
ンダクタンスの変化を含めて自動的に補償して励磁電流
を修正することができる。
According to this embodiment, the mutual inductance M (= Δφ / ΔI d ) used in the equation (2a) or (2b) also changes due to the magnetic saturation of the iron core, but since the closed loop control is performed, the mutual inductance change is also included. The exciting current can be corrected by automatically compensating.

第3図は本発明の第2の実施例である。第1図に示す第
1の実施例と同一物には同じ番号を付しているので説明
を省略する。第1実施例と異なるところは、スイツチ26
をa側に設定し実運転に先立ち調整運転を行ない励磁電
流指令発生器27の出力Id*に対する誘導電動機2の誘導
起電力eq*の特性を測定し、それらの関係をメモリに書
き込んでおき、さらに、後述の(6),(7)式により
相互インダクタンスM*,2次時定数T2*を演算し、第4
図に示すようにそれらを磁束φ*に対応してメモリに書
き込んでおく。実運転ではスイツチ26をb側とし、磁束
指令φ*に基づいてメモリからM*,T2*を読み出し、
これに基づいて励磁電流指令演算回路24においてId**
を演算するようにした点である。誘導起電力eq*は加算
器22の出力信号vq**から次式で演算して求めることが
できる。
FIG. 3 shows a second embodiment of the present invention. The same parts as those in the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The difference from the first embodiment is that the switch 26
Is set to the a side, the adjustment operation is performed prior to the actual operation, the characteristics of the induced electromotive force e q * of the induction motor 2 with respect to the output I d * of the exciting current command generator 27 is measured, and the relationship between them is written in the memory. Then, the mutual inductance M * and the second-order time constant T 2 * are calculated by the equations (6) and (7) described below, and the fourth value is calculated.
As shown in the figure, these are written in the memory corresponding to the magnetic flux φ *. In actual operation, switch 26 is on the b side, M *, T 2 * is read from the memory based on the magnetic flux command φ *,
Based on this, in the exciting current command calculation circuit 24, I d **
It is the point that is calculated. The induced electromotive force e q * can be calculated from the output signal v q ** of the adder 22 by the following equation.

eq*=vq**−r1*Iq*−ω*(l1*+l2′*)・Id
* …(4) ここに、r1*は1次抵抗、l1*,l2′*は1次と2次の
漏れインダクタンスの設定値である。
e q * = v q **-r 1 * I q * -ω 1 * (l 1 * + l 2 ′ *) ・ I d
* (4) Here, r 1 * is the primary resistance, and l 1 *, l 2 ′ * is the set value of the primary and secondary leakage inductances.

また、磁束φ*,相互インダクタンスM*,2次時定数T2
*は次式で表わされる。
Also, magnetic flux φ *, mutual inductance M *, second-order time constant T 2
* Is expressed by the following equation.

φ*=eq*/ω* …(5) M*=eq*/(ω*・Id*) …(6) T2*=(M*+l2′*)/r2* …(7) ここに、r2*は2次抵抗設定である。励磁電流指令信号
Id**は次式で与えられる。
φ * = e q * / ω 1 *… (5) M * = e q * / (ω 1 * · I d *)… (6) T 2 * = (M * + l 2 ′ *) / r 2 * (7) where r 2 * is the secondary resistance setting. Excitation current command signal
I d ** is given by the following equation.

Id**=φ*・(1+T2*・S)/M* …(8) ここに、Sは微分演算子である。I d ** = φ * · (1 + T 2 * · S) / M * (8) where S is a differential operator.

本実施例によれば、磁束指令信号φ*に基づいてフイー
ドフオワード補償することができ、第1実施例に比べて
電流制御系の動作に伴う外乱の影響を受けることがな
い。
According to the present embodiment, the feedforward compensation can be performed based on the magnetic flux command signal φ *, and the influence of the disturbance due to the operation of the current control system is not affected as compared with the first embodiment.

第5図は本発明の第3の実施例である。第1図に示す第
1実施例と同一物には同じ番号を付しているので説明を
省略する。第1の実施例と異なるところは、q軸の電圧
指令信号Δvq*に基づいて励磁電流指令演算器24に用い
る相互インダクタンスM*の大きさを修正して励磁電流
指令信号Id**を求めるようにした点である。本実施例
によつても第1の実施例と同様の効果が得られる。
FIG. 5 shows a third embodiment of the present invention. The same parts as those in the first embodiment shown in FIG. 1 are designated by the same reference numerals, and a description thereof will be omitted. The difference from the first embodiment is that the magnitude of the mutual inductance M * used in the exciting current command calculator 24 is modified based on the q-axis voltage command signal Δv q * to obtain the exciting current command signal I d **. This is the point I asked for. According to this embodiment, the same effect as that of the first embodiment can be obtained.

以上、説明を解り易くするためにアナログ回路によるブ
ロツクで表わし各実施例を説明したが、マイクロプロセ
ツサを用いたデイジタル制御で実施できることはもちろ
んである。
In the above, each of the embodiments has been described in the form of a block by an analog circuit in order to make the explanation easy to understand, but it goes without saying that it can be implemented by digital control using a microprocessor.

〔発明の効果〕〔The invention's effect〕

本発明によれば、インバータの出力電圧検出器を用いず
に、電動機の鉄心磁気飽和による磁束変化を補償して高
精度な磁束弱め制御を行うことができる。
According to the present invention, a magnetic flux weakening control can be performed with high accuracy by compensating for a magnetic flux change due to iron core magnetic saturation of an electric motor without using an output voltage detector of an inverter.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す制御構成図、第2
図は誘導電動機の鉄心磁気飽和がある場合の磁束と励磁
電流の関係を説明する特性図、第3図は本発明の第2の
実施例を示す制御構成図、第4図は第2の実施例の動作
原理を説明する特性図、第5図は本発明の第3の実施例
を示す制御構成図である。 1……電力変換器、2……誘導電動機、13……座標基準
発生器、14……電圧指令演算回路、15,16……電流制御
器、18……演算回路。
FIG. 1 is a control block diagram showing the first embodiment of the present invention, and FIG.
FIG. 3 is a characteristic diagram for explaining the relationship between magnetic flux and exciting current when the induction motor has iron core magnetic saturation, FIG. 3 is a control configuration diagram showing a second embodiment of the present invention, and FIG. 4 is a second embodiment. FIG. 5 is a characteristic diagram for explaining the operation principle of the example, and FIG. 5 is a control configuration diagram showing the third embodiment of the present invention. 1 ... Power converter, 2 ... Induction motor, 13 ... Coordinate reference generator, 14 ... Voltage command calculation circuit, 15, 16 ... Current controller, 18 ... Calculation circuit.

フロントページの続き (72)発明者 高橋 潤一 茨城県日立市大みか町5丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 椙山 繁 茨城県日立市大みか町5丁目2番1号 株 式会社日立製作所大みか工場内 (56)参考文献 特開 昭63−95879(JP,A)Front page continued (72) Inventor Junichi Takahashi 52-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Omika Plant, Ltd. (72) Inventor Shigeru Sugiyama 5-2-1 Omika-cho, Hitachi City, Ibaraki Incorporated company Hitachi Ltd. Omika factory (56) References JP-A-63-95879 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】誘導電動機の電流を回転磁界座標系のd−
q軸上における励磁電流成分(d軸)とトルク電流成分
(q軸)に分け、各電流成分指令信号に基づきそれぞれ
を独立に制御し、少なくとも電流制御器によりトルク電
流指令信号とトルク電流検出信号との偏差が無くなるよ
うに回転磁界座標系におけるq軸上の電圧を制御する誘
導電動機の制御方法において、 磁束指令の大きさから前記励磁電流指令信号を決定して
磁束弱め制御を行う誘導電動機の1次角周波数の高い領
域で、前記電流制御器から得られるq軸電圧指令信号の
基準値からの変動量を演算し、該変動量により前記励磁
電流指令信号を補正することで、誘導電動機の鉄心磁気
飽和による磁束変化を補償することにしたことを特徴と
する誘導電動機の制御方法。
1. An electric current of an induction motor is d- in a rotating magnetic field coordinate system.
The excitation current component (d-axis) and the torque current component (q-axis) on the q-axis are divided, and each is independently controlled based on each current component command signal, and at least the current controller uses the torque current command signal and the torque current detection signal. In the control method of the induction motor for controlling the voltage on the q-axis in the rotating magnetic field coordinate system so as to eliminate the deviation between the magnetic field weakening control and the induction current command signal from the magnitude of the magnetic flux command. In a region where the primary angular frequency is high, the amount of fluctuation of the q-axis voltage command signal obtained from the current controller from the reference value is calculated, and the exciting current command signal is corrected by the amount of fluctuation, so that the induction motor A method of controlling an induction motor, which is characterized in that a change in magnetic flux due to magnetic saturation of an iron core is compensated.
JP63175048A 1988-07-15 1988-07-15 Induction motor control method Expired - Lifetime JPH07118959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175048A JPH07118959B2 (en) 1988-07-15 1988-07-15 Induction motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63175048A JPH07118959B2 (en) 1988-07-15 1988-07-15 Induction motor control method

Publications (2)

Publication Number Publication Date
JPH0226289A JPH0226289A (en) 1990-01-29
JPH07118959B2 true JPH07118959B2 (en) 1995-12-18

Family

ID=15989317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175048A Expired - Lifetime JPH07118959B2 (en) 1988-07-15 1988-07-15 Induction motor control method

Country Status (1)

Country Link
JP (1) JPH07118959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583976A (en) * 1991-09-18 1993-04-02 Hitachi Ltd Alternating current motor controller and electric rolling stock controller with this
JP4798639B2 (en) * 2009-03-16 2011-10-19 日本輸送機株式会社 Induction motor control device, control method, and vehicle using the control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687674B2 (en) * 1986-10-09 1994-11-02 三菱電機株式会社 Induction motor speed / flux control device

Also Published As

Publication number Publication date
JPH0226289A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
RU2392732C1 (en) Device for control of asynchronous motor vector, method for control of asynchronous motor vector and device for control of asynchronous motor drive
JP3944955B2 (en) Induction electromotive force estimation method, speed estimation method, axis deviation correction method, and induction motor control apparatus for induction motor
EP0218729B1 (en) Method of controlling a three-phase induction motor
JP3152058B2 (en) Variable speed control device for induction motor
US20100308757A1 (en) Alternating-current motor control apparatus
JPH0334313B2 (en)
US5119007A (en) Inverter control apparatus
JP2585376B2 (en) Control method of induction motor
JPH11187699A (en) Speed control method for induction motor
JP2579119B2 (en) Vector controller for induction motor
JP3129173B2 (en) AC motor control device
JPH07118959B2 (en) Induction motor control method
JPH07107783A (en) Variable-speed driving gear of ac motor
JPH06335278A (en) Tuning of vector control inverter for induction motor
JP3124019B2 (en) Induction motor control device
JP3536114B2 (en) Power converter control method and power converter
JPH0344509B2 (en)
JP3323900B2 (en) Control device for linear motor electric vehicle
JP3302854B2 (en) Induction motor control device
JPH06233576A (en) Device for controlling induction motor
JP2821127B2 (en) Control method of induction motor
JPH0530792A (en) Equipment for controlling induction motor
JP4839552B2 (en) Induction motor control method
JPH03135389A (en) Method and device for controlling voltage type inverter
JP2713857B2 (en) Sensorless inverter device with resistance fluctuation compensation