JPH1141999A - Induction motor controller - Google Patents

Induction motor controller

Info

Publication number
JPH1141999A
JPH1141999A JP9205387A JP20538797A JPH1141999A JP H1141999 A JPH1141999 A JP H1141999A JP 9205387 A JP9205387 A JP 9205387A JP 20538797 A JP20538797 A JP 20538797A JP H1141999 A JPH1141999 A JP H1141999A
Authority
JP
Japan
Prior art keywords
frequency
harmonic
induction motor
current
designated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9205387A
Other languages
Japanese (ja)
Other versions
JP3957369B2 (en
Inventor
Takeshi Kaku
斌 霍
Shinichi Ginya
慎一 銀屋
Shinobu Yasukawa
忍 保川
Ichiro Miyashita
一郎 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP20538797A priority Critical patent/JP3957369B2/en
Publication of JPH1141999A publication Critical patent/JPH1141999A/en
Application granted granted Critical
Publication of JP3957369B2 publication Critical patent/JP3957369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure stability of a system against temperature fluctuation by generating a harmonic voltage of a frequency designated through carrier frequency modulation, varying the harmonic frequency and detecting the corresponding harmonic current. SOLUTION: The induction motor controller utilizes carrier frequency sine wave modulation for generating a harmonic voltage component of a frequency designated through carrier frequency modulation. A voltage of a designated frequency is generated from a harmonic voltage generating means 4 of designated frequency (output basic frequency f1 of inverter-frequency Δ of carrier frequency sine wave modulation function). The frequency is then varied and a harmonic current corresponding to that frequency is detected by a means 8 for detecting harmonic current of designated frequency and a frequency (f1-fΔ) designated when the harmonic current is minimized is estimated as the rotational frequency of an induction motor 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電圧形インバータに
より誘導電動機を駆動するもので,特に誘導電動機の一
次側抵抗R1と二次側の抵抗R2の変動による特性変化
を抑制する誘導電動機制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor driven by a voltage type inverter, and more particularly to an induction motor control device for suppressing a characteristic change due to a change in a primary resistance R1 and a secondary resistance R2 of the induction motor. Things.

【0002】[0002]

【従来の技術】誘導電動機の回転速度検出器を付けない
で誘導電動機のトルクと回転速度を高精度高速に制御す
る誘導電動機の制御装置の従来の制御ブロックを図2に
示し,以下,図2に従って従来の技術を説明する。図2
において,1はモータ,2はインバータ,3と4は電
圧,電流検出器である。5は3相固定子座標系(u,
v,w)から2相固定子座標系(α,β)への座標変換
器である。6は一次側磁束ベクトル演算器,7は二次側
磁束ベクトル演算器,8はトルク演算器,9は誘導電動
機の回転速度演算器,10は速度PI制御器である。1
1は一次側磁束の目標値に対する偏差を判断するための
2値のヒステリシスコンパレータ,12はトルクの目標
値に対する偏差を判断するための3値のヒステリシスコ
ンパレータである。13は磁束ベクトルが存在するベク
トル領域を判断するものである。14は11,12,1
3の出力により決めるスイッチングテーブルである。
2. Description of the Related Art FIG. 2 shows a conventional control block of a control device for an induction motor for controlling the torque and the rotation speed of the induction motor with high accuracy and high speed without attaching a rotation speed detector of the induction motor. According to the prior art. FIG.
In the figure, 1 is a motor, 2 is an inverter, and 3 and 4 are voltage and current detectors. 5 is a three-phase stator coordinate system (u,
v, w) to a two-phase stator coordinate system (α, β). Reference numeral 6 denotes a primary magnetic flux vector calculator, 7 denotes a secondary magnetic flux vector calculator, 8 denotes a torque calculator, 9 denotes a rotation speed calculator of an induction motor, and 10 denotes a speed PI controller. 1
1 is a binary hysteresis comparator for judging the deviation of the primary magnetic flux from the target value, and 12 is a ternary hysteresis comparator for judging the deviation of the torque from the target value. Reference numeral 13 determines a vector area where a magnetic flux vector exists. 14 is 11, 12, 1
3 is a switching table determined by the output of No. 3.

【0003】外部から与えられる磁束指令|φ*1|及
びトルク指令T*に対し制御回路内部で演算された磁
束,トルクとの偏差をそれぞれヒステリシスコンパレー
タに加え,この偏差が所定のヒステリシス偏差内に保た
れるようにインバータの出力電圧の瞬時制御を行い,通
電信号を発生させる。
A deviation from the magnetic flux and torque calculated inside the control circuit with respect to a magnetic flux command | φ * 1 | and a torque command T * given from the outside is added to a hysteresis comparator, and the deviation is set within a predetermined hysteresis deviation. Instantaneous control of the output voltage of the inverter is performed to maintain the voltage, and a conduction signal is generated.

【0004】座標変換器5の出力の誘導電動機の一次側
電圧V1,電流i1から誘導電動機の一次側磁束φ1は
(1)式により演算する。ただし,R1は誘導電動機の
一次側抵抗である。
The primary magnetic flux φ1 of the induction motor is calculated from the primary voltage V1 and current i1 of the induction motor output from the coordinate converter 5 according to equation (1). Here, R1 is the primary resistance of the induction motor.

【0005】[0005]

【数1】 (Equation 1)

【0006】一次側磁束演算器6の出力の一次側磁束φ
1と5の座標変換器の出力の一次側電流i1から,誘導
電動機の二次側磁束φ2は(2)式により演算する。た
だし,L1,L2は誘導電動機の一次側,二次側の自己
インダクタンスであり,Mは一次巻き線と二次巻き線間
の相互インダクタンスである。
The primary magnetic flux φ output from the primary magnetic flux calculator 6
From the primary current i1 output from the coordinate converters 1 and 5, the secondary magnetic flux φ2 of the induction motor is calculated by equation (2). Here, L1 and L2 are self-inductances on the primary and secondary sides of the induction motor, and M is a mutual inductance between the primary winding and the secondary winding.

【0007】[0007]

【数2】 (Equation 2)

【0008】一次側磁束演算器6の出力の一次側磁束φ
1と5の座標変換器の出力の一次側電流i1から,誘導
電動機のトルクTは(3)式により演算する。
The primary magnetic flux φ output from the primary magnetic flux calculator 6
From the primary current i1 output from the coordinate converters 1 and 5, the torque T of the induction motor is calculated by equation (3).

【0009】[0009]

【数3】 (Equation 3)

【0010】二次側磁束演算器7の出力の二次側磁束φ
2とトルク演算器8の出力の誘導電動機のトルクTか
ら,誘導電動機の回転速度ωmは(4)式により演算す
る。ただし,φ2α,φ2βは二相座標変換後のα軸分
量とβ軸分量である。
The secondary magnetic flux φ of the output of the secondary magnetic flux calculator 7
2 and the torque T of the induction motor output from the torque calculator 8, the rotation speed ωm of the induction motor is calculated by the equation (4). Here, φ2α and φ2β are the α-axis component and the β-axis component after the two-phase coordinate conversion.

【0011】[0011]

【数4】 (Equation 4)

【0012】誘導電動機の回転速度演算器9の出力ωm
から速度指令値との偏差をとって,速度制御器10から
トルクの指令を生成する。更に,一次側磁束指令φ*1
と一次側磁束演算器6の出力の一次側磁束の演算値φ1
との偏差,速度制御器10の出力のトルク指令T*とト
ルク演算器8の出力のトルクの演算値Tとの偏差,及び
出力の一次側磁束6の演算値φ1をそれぞれ11,1
2,13に入力する。スイッチングテーブル14は1
1,12,13の出力によって一次電圧ベクトルを決定
してインバータの制御を行う。このように磁束,回転速
度推定演算などの各ブロックを基本トルク制御システム
ブロックに追加し速度センサレス速度制御系を構成して
いる。
Output ωm of rotational speed calculator 9 of the induction motor
The torque controller 10 generates a torque command from the speed controller 10 by calculating a deviation from the speed command value. In addition, the primary magnetic flux command φ * 1
And the calculated value φ1 of the primary magnetic flux output from the primary magnetic flux calculator 6
, The deviation between the torque command T * of the output of the speed controller 10 and the calculated value T of the torque of the output of the torque calculator 8, and the calculated value φ1 of the primary magnetic flux 6 of the output are 11, 1
Input to 2 and 13. Switching table 14 is 1
The inverters are controlled by determining the primary voltage vector based on the outputs of 1, 12, and 13. As described above, the respective blocks for the calculation of the magnetic flux and the rotation speed estimation are added to the basic torque control system block to constitute a speed sensorless speed control system.

【0013】[0013]

【発明が解決しようとする課題】上述の従来技術では,
誘導電動機回転速度の演算に二次抵抗R2を用いてい
る。このR2は電動機の温度によって変動するもので,
温度変動によりR2が変動し,それにより回転速度演算
の誤差が生じるようになる。
In the above-mentioned prior art,
The secondary resistance R2 is used for calculating the induction motor rotation speed. This R2 varies depending on the temperature of the motor,
R2 fluctuates due to temperature fluctuations, thereby causing an error in the rotation speed calculation.

【0014】上述の従来技術では,一磁側磁束ベクトル
の演算に一次抵抗R1を用いている。このR1は電動機
の温度によって変動するもので,温度変動によりR1が
変動し,それにより回転速度演算の誤差が生じるように
なる。本発明はこれらの問題を解決するために成された
ものである。
In the above-mentioned prior art, the primary resistor R1 is used for calculating the magnetic flux vector on the one magnetic side. This R1 fluctuates depending on the temperature of the electric motor, and R1 fluctuates due to the temperature fluctuation, thereby causing an error in the rotation speed calculation. The present invention has been made to solve these problems.

【0015】[0015]

【課題を解決するための手段】前述の問題点を解決する
ために,本発明の誘導電動機制御装置はキャリア周波数
変調により指定する周波数の高調波電圧の発生手段を利
用して,指定する周波数の高調波電圧を発生し,この高
調波の周波数を変えながら,これに対応する高調波電流
を検出する。指定する周波数の高調波電圧に対応する高
調波電流が最小になるとき,この高調波電圧の周波数は
誘導電動機の回転周波数となる。このようにして,誘導
電動機の一次側抵抗R1と二次側抵抗R2に依存しない
誘導電動機の回転速度を推定する手段を備えることを特
徴とする。
In order to solve the above-mentioned problems, an induction motor control device according to the present invention utilizes a means for generating a harmonic voltage having a frequency designated by carrier frequency modulation, thereby obtaining a signal having a designated frequency. A harmonic voltage is generated, and a corresponding harmonic current is detected while changing the frequency of the harmonic. When the harmonic current corresponding to the harmonic voltage of the designated frequency is minimized, the frequency of this harmonic voltage becomes the rotation frequency of the induction motor. In this way, a means for estimating the rotational speed of the induction motor independent of the primary resistance R1 and the secondary resistance R2 of the induction motor is provided.

【0016】以下は,前記解決するための手段が前記問
題点を解決できる理由を述べる。固定子座標における誘
導電動機の電圧・電流基本式が次の(5)式のように示
される。
The reason why the means for solving the problem can solve the above problem will be described below. The basic expression of voltage and current of the induction motor in the stator coordinates is expressed by the following expression (5).

【0017】[0017]

【数5】 (Equation 5)

【0018】誘導電動機の入力周波数は誘導電動機の回
転周波数と同じようになるとき,二次側電流はゼロにな
り,これに対応して一次側電流も最小になる。これは本
提案の基本原理である。
When the input frequency of the induction motor becomes the same as the rotation frequency of the induction motor, the secondary current is zero and the primary current is correspondingly minimized. This is the basic principle of the proposal.

【0019】指定する周波数の高調波電圧成分を発生す
るために,キャリア周波数正弦波変調を利用する。キャ
リア周波数正弦波変調は瞬時キャリア周波数を次の
(6)式のような正弦波関数で変調する。ただし,Aは
正弦波変調の幅,fs0は平均キャリア周波数,fΔは
正弦波変調の周波数である。
In order to generate a harmonic voltage component of a designated frequency, carrier frequency sine wave modulation is used. The carrier frequency sine wave modulation modulates the instantaneous carrier frequency with a sine wave function as shown in the following equation (6). Here, A is the width of sine wave modulation, fs0 is the average carrier frequency, and fΔ is the frequency of sine wave modulation.

【0020】[0020]

【数6】 (Equation 6)

【0021】この場合に,誘導電動機の入力高調波成分
は次の(7)式のようになる。ただし,f1は誘導電動
機の入力基本波周波数である。
In this case, the input harmonic component of the induction motor is expressed by the following equation (7). Here, f1 is the input fundamental frequency of the induction motor.

【0022】[0022]

【数7】 (Equation 7)

【0023】基本波の付近の高調波の分布はν=1,n
=0,μ=1で,次の(8)式のようになる。
The distribution of harmonics near the fundamental wave is ν = 1, n
= 0 and μ = 1, and the following equation (8) is obtained.

【0024】[0024]

【数8】 (Equation 8)

【0025】このようにして,fΔの選択によって基本
波の付近で任意に指定する周波数(f1−fΔ)の高調
波成分を発生することができる。指定する周波数(f1
−fΔ)の高調波成分の電流を次のように検出する。3
相固定子座標系(u,v,w)から2相固定子座標系
(αーβ)への座標変換は次の(9)式のように行う。
In this way, it is possible to generate a harmonic component of a frequency (f1-fΔ) arbitrarily designated near the fundamental wave by selecting fΔ. Specified frequency (f1
−fΔ) is detected as follows. 3
The coordinate transformation from the phase stator coordinate system (u, v, w) to the two-phase stator coordinate system (α-β) is performed as in the following equation (9).

【0026】[0026]

【数9】 (Equation 9)

【0027】2相固定子座標系(αーβ)から(f1−
fΔ)の周波数で回転する2相回転座標系(d−q)へ
の座標変換は次の(10)式のように行う。
From the two-phase stator coordinate system (α-β), (f1-
The coordinate transformation to the two-phase rotating coordinate system (dq) rotating at the frequency of fΔ) is performed as in the following equation (10).

【0028】[0028]

【数10】 (Equation 10)

【0029】測定した電流値をこのように変換して,
(f1−fΔ)の周波数で回転する2相回転座標系(d
−q)の上で,指定する周波数(f1−fΔ)の高調波
成分の電流は直流量で現れる。このようにして,指定す
る周波数(f1−fΔ)の高調波成分の電流を検出する
ことができる。
By converting the measured current value in this way,
A two-phase rotating coordinate system (d which rotates at a frequency of (f1-fΔ)
-Q), the current of the harmonic component of the designated frequency (f1-fΔ) appears as a DC quantity. In this manner, the current of the harmonic component of the designated frequency (f1-fΔ) can be detected.

【0030】前記指定する周波数の高調波電圧発生手段
により,指定する周波数の高調波電圧を生成する。周波
数を変えながら,前記指定する周波数の高調波電流検出
手段によりこの周波数に対応する高調波電流を検出し,
高調波電流が最小になるときの指定する周波数(f1−
fΔ)が誘導電動機の回転周波数となる。このようにし
て,誘導電動機の回転周波数を推定できるし,推定した
結果は誘導電動機のR1,R2に依存しない。
The harmonic voltage generator of the designated frequency generates the harmonic voltage of the designated frequency. While changing the frequency, the harmonic current detecting means of the specified frequency detects the harmonic current corresponding to this frequency,
Specified frequency (f1-
fΔ) is the rotation frequency of the induction motor. In this way, the rotation frequency of the induction motor can be estimated, and the estimation result does not depend on R1 and R2 of the induction motor.

【0031】[0031]

【発明の実施の形態】図1に本発明の一実施例を示す。
従来技術の図2と同一部分の説明は省略する。図1にお
いて,4は瞬時キャリア周波数演算器であり,(6)式
によりPWM制御周期毎にキャリア周期を計算する。
FIG. 1 shows an embodiment of the present invention.
Description of the same parts as in FIG. 2 of the prior art is omitted. In FIG. 1, reference numeral 4 denotes an instantaneous carrier frequency calculator which calculates a carrier cycle for each PWM control cycle according to equation (6).

【0032】5は3相固定子座標系(u,v,w)から
2相固定子座標系(αーβ)への座標変換器である。6
は2相固定子座標系(αーβ)から基本波の周波数で回
転する2相回転座標系(d−q)への座標変換器であ
る。7は2相固定子座標系(αーβ)から(f1−f
Δ)の周波数で回転する2相回転座標系(d−q)への
座標変換器である。
Reference numeral 5 denotes a coordinate converter for converting a three-phase stator coordinate system (u, v, w) into a two-phase stator coordinate system (α-β). 6
Is a coordinate converter from a two-phase stator coordinate system (α-β) to a two-phase rotating coordinate system (dq) rotating at the frequency of the fundamental wave. 7 is obtained from the two-phase stator coordinate system (α-β) by (f1-f
It is a coordinate converter to a two-phase rotating coordinate system (dq) rotating at a frequency of Δ).

【0033】8は7の座標変換器の出力の電流座標変換
値を算出し,これにより指定する周波数(f1−fΔ)
の高調波電流を検出する。
8 calculates the current coordinate conversion value of the output of the coordinate converter of 7, and thereby calculates the frequency (f1-fΔ)
Detect the harmonic current of

【0034】9は誘導電動機の回転速度の演算器であ
り,指定周波数fΔを変えながら,8の指定する周波数
の高調波電流演算器の出力の指定する周波数(f1−f
Δ)の高調波電流を判断し,この高調波電流が最小にな
る時点での指定する周波数(f1−fΔ)は誘導電動機
の回転周波数となる。 なお,10,11,12,1
3,14は周知の機能ブロックであるので,説明は省略
する。
Numeral 9 denotes an arithmetic unit for the rotational speed of the induction motor. The frequency (f1-f) designated by the output of the harmonic current arithmetic unit at the frequency designated by 8 while changing the designated frequency fΔ.
The harmonic current of Δ) is determined, and the specified frequency (f1-fΔ) at the time when the harmonic current is minimized is the rotation frequency of the induction motor. In addition, 10, 11, 12, 1
3 and 14 are well-known functional blocks, and a description thereof will be omitted.

【0035】[0035]

【発明の効果】本発明により,誘導電動機の一次側抵抗
R1及び二次側抵抗R2を使わず誘導電動機の回転速度
を推定でき,また,この方法を実現するための付加的な
設備を必要としない。よって,温度変動によるR1とR
2の変動が生じても回転速度やトルクの制御誤差が発生
せず,またシステムの安定性も確保される。
According to the present invention, the rotation speed of the induction motor can be estimated without using the primary resistance R1 and the secondary resistance R2 of the induction motor, and additional equipment for realizing this method is required. do not do. Therefore, R1 and R
Even if the fluctuation occurs in 2, the control error of the rotation speed and the torque does not occur, and the stability of the system is secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の機能ブロック図である。FIG. 1 is a functional block diagram of the present invention.

【図2】従来技術の機能ブロック図である。FIG. 2 is a functional block diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 モータ 2 インバータ 3 電圧検出器 4 電流検出器 5 座標変換器 6 一次側磁束ベクトル演算器 7 二次側磁束ベクトル演算器 8 トルク演算器 9 回転速度演算器 10 速度PI制御器 11 ヒステリシスコンパレータ 12 ヒステリシスコンパレータ 13 ベクトル領域判断 14 スイッチングテーブル Reference Signs List 1 motor 2 inverter 3 voltage detector 4 current detector 5 coordinate converter 6 primary magnetic flux vector calculator 7 secondary magnetic flux vector calculator 8 torque calculator 9 rotation speed calculator 10 speed PI controller 11 hysteresis comparator 12 hysteresis Comparator 13 Vector area judgment 14 Switching table

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮下 一郎 神奈川県大和市上草柳字扇野338番地1 東洋電機製造株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ichiro Miyashita 338-1, Ogino, Kamisakuyanagi, Yamato-shi, Kanagawa Prefecture Toyo Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電源により駆動される誘導電動機に
おいて,誘導電動機の入力電流を検出してベクトルに変
換する電流検出手段と,PWMインバータにおけるキャ
リア周波数正弦波変調により任意に指定する周波数(f
1−f△,ただし,f1はインバータの出力基本波周波
数,f△はキャリア周波数正弦波変調関数の周波数)の
高調波電圧を発生する高調波電圧発生手段と,前記電流
検出手段により検出した電流を前記指定する周波数(f
1−f△)で回転する座標系へ変換し,変換した値の直
流成分は指定する周波数(f1−f△)成分の振幅であ
り,このようにして指定する周波数(f1−f△)の高
調波電流を検出する高調波電流検出手段と,前記高調波
電圧発生手段により指定する周波数(f1−f△)の高
調波電圧を生成し,この高調波電圧の周波数(f1−f
△)を変えながら,前記高調波電流検出手段により,周
波数(f1−f△)の高調波電圧に対応する高調波電流
を検出し,更に,この高調波電流を判断し,電流が最小
になるとき,この特定の高調波電圧の周波数(f1−f
△)は誘導電動機の回転周波数fmと同じようになり,
これを利用して誘導電動機の回転周波数或いは回転速度
を推定することを特徴とする誘導電動機制御装置。
In an induction motor driven by an AC power supply, current detection means for detecting an input current of the induction motor and converting it into a vector, and a frequency (f) arbitrarily designated by carrier frequency sine wave modulation in a PWM inverter.
1-f △, where f1 is the output fundamental wave frequency of the inverter, f △ is the frequency of the carrier frequency sinusoidal modulation function), and the harmonic voltage generation means for generating a harmonic voltage of the carrier frequency, and the current detected by the current detection means. At the specified frequency (f
1-f △), and the DC component of the converted value is the amplitude of the designated frequency (f1-f △) component. A harmonic current detecting means for detecting a harmonic current and a harmonic voltage of a frequency (f1-f △) designated by the harmonic voltage generating means are generated, and a frequency (f1-f) of the harmonic voltage is generated.
While changing (Δ), the harmonic current detecting means detects a harmonic current corresponding to a harmonic voltage of a frequency (f1−f △), and further judges the harmonic current to minimize the current. Then, the frequency of this specific harmonic voltage (f1-f
△) becomes the same as the rotation frequency fm of the induction motor,
An induction motor control device characterized by estimating a rotation frequency or a rotation speed of the induction motor by utilizing this.
JP20538797A 1997-07-15 1997-07-15 Induction motor controller Expired - Fee Related JP3957369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20538797A JP3957369B2 (en) 1997-07-15 1997-07-15 Induction motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20538797A JP3957369B2 (en) 1997-07-15 1997-07-15 Induction motor controller

Publications (2)

Publication Number Publication Date
JPH1141999A true JPH1141999A (en) 1999-02-12
JP3957369B2 JP3957369B2 (en) 2007-08-15

Family

ID=16505986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20538797A Expired - Fee Related JP3957369B2 (en) 1997-07-15 1997-07-15 Induction motor controller

Country Status (1)

Country Link
JP (1) JP3957369B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1292011A3 (en) * 2001-09-10 2005-02-02 Nissan Motor Co., Ltd. Motor control for reducing high harmonic currents
JP2007267468A (en) * 2006-03-28 2007-10-11 Meidensha Corp Inverter control method and its device
JP2017108573A (en) * 2015-12-11 2017-06-15 ダイキン工業株式会社 Rotation detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1292011A3 (en) * 2001-09-10 2005-02-02 Nissan Motor Co., Ltd. Motor control for reducing high harmonic currents
JP2007267468A (en) * 2006-03-28 2007-10-11 Meidensha Corp Inverter control method and its device
JP2017108573A (en) * 2015-12-11 2017-06-15 ダイキン工業株式会社 Rotation detection device

Also Published As

Publication number Publication date
JP3957369B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
KR100354775B1 (en) Speed control apparatus of a synchronous reluctance motor
Casadei et al. Assessment of direct torque control for induction motor drives
Habetler et al. Stator resistance tuning in a stator-flux field-oriented drive using an instantaneous hybrid flux estimator
JP3755424B2 (en) AC motor drive control device
EP0330188B1 (en) Induction motor vector control
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
JP2004112898A (en) Control method and device for motor in position sensorless
JP5757304B2 (en) AC motor control device
JP2018042324A (en) Inverter controller and motor drive system
WO2015056541A1 (en) Drive device for electric motor
JP2002223599A (en) Inverter control method and its device
JP2013223308A (en) Synchronous machine control device
CN104052360A (en) Motor control device
JP2002136197A (en) Sensorless vector control apparatus and method
JP7094859B2 (en) Motor control device and motor control method
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP3547117B2 (en) Torque detection device and drive control device for AC motor
JP2011217575A (en) Power conversion apparatus
JPH1141999A (en) Induction motor controller
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JP3489259B2 (en) Permanent magnet type motor control method and control device
JP4023280B2 (en) Motor control device
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
KR102547385B1 (en) Apparatus for controlling inverter
JP3990044B2 (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees