JPS5899132A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS5899132A
JPS5899132A JP19523081A JP19523081A JPS5899132A JP S5899132 A JPS5899132 A JP S5899132A JP 19523081 A JP19523081 A JP 19523081A JP 19523081 A JP19523081 A JP 19523081A JP S5899132 A JPS5899132 A JP S5899132A
Authority
JP
Japan
Prior art keywords
base material
silica
optical fiber
vessel
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19523081A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
徳永 利秀
Junkichi Nakagawa
中川 順吉
Tsutomu Yabuki
矢吹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP19523081A priority Critical patent/JPS5899132A/en
Publication of JPS5899132A publication Critical patent/JPS5899132A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase

Abstract

PURPOSE:To obtain a base material for homogeneous optical fibers, having good dimensional accuracy and improved reproducibility of refractive index distributions by gelling colloidal silica to make a porous base material and doping metallic ions therein then drying and sintering the base material. CONSTITUTION:Colloidal silica 1 is poured into a glass vessel 2 or the like and the vessel is sealed with a cover 3. The temp. in the vessel is held to allow the silica to gel. The liquid phase content of the gel-like silica is decreased to <=5wt% by providing a fine hole to the cover 3 or the like whereby a porous base material 4 is obtained. The material 4 is immersed in a dopant soln. 6 which is an aq. phosphoric acid soln. or the like in a diffusing tank 5 and is heated to dope metallic ions therein. The base material is taken in an silica tube etc. and heated, dried while gaseous oxygen, etc. is flowed. Then gaseous chlorine is flowed to cause dehydroxylating reaction and further gaseous He or the like is fed to sinter the base material by heating, whereby the optical fiber base material is obtained as a transparent glass body.

Description

【発明の詳細な説明】 本発明は光ファイバ用゛母材の製造法に係り、特に、湿
式法による母材の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a preform for optical fibers, and particularly to a method of manufacturing a preform using a wet method.

光フアイバ用母材は原料の精製により高純度のシリカを
用いて作られるが、その製造法としては種々の方法が知
られている。しか−シ、製造するのに時間を要し量産に
適しないという問題点をもっており、母材の長さを均一
にすることが困難である等の欠点をもっていた。
The base material for optical fibers is made using highly purified silica by refining raw materials, and various methods are known for producing it. However, it has the disadvantage that it takes time to manufacture and is not suitable for mass production, and it is difficult to make the length of the base material uniform.

本発明は上記従来技術の欠点を解消し、均質で寸法精度
が良好であり、かつ、屈折率分布の再現性を向上させる
ことができる光フアイバ用母材の製造法を提供すること
を目的とし、その特徴とするところは、コロイダルシリ
カを容器内でゲル化する工程と、容器内のゲル状シリカ
の液相含有率を5%以下に減少させて多孔質母材を得る
工程と多孔質母材を屈折率制御用の金属イオンを含む液
相に浸漬する工程と、金属イオンを付加した多孔質母材
を乾燥させた後焼結する工程を用いることにある。
It is an object of the present invention to provide a method for manufacturing an optical fiber base material that is homogeneous, has good dimensional accuracy, and can improve the reproducibility of the refractive index distribution, eliminating the drawbacks of the above-mentioned prior art. , its features are a process of gelling colloidal silica in a container, a process of reducing the liquid phase content of gelled silica in the container to 5% or less to obtain a porous matrix, and a porous matrix. The method uses a step of immersing the material in a liquid phase containing metal ions for controlling the refractive index, and a step of drying and then sintering the porous base material to which the metal ions have been added.

第1図〜第4図は本発明の一実施例である光フアイバ母
材の製造法の工程を示す図で、以下図番の順に説明する
1 to 4 are diagrams showing the steps of a method for manufacturing an optical fiber base material according to an embodiment of the present invention, which will be explained below in the order of figure numbers.

第1図は角柱形のガラス容器2の中でコロイダルシリカ
をゲル化させるもので、シリカ含有量40重量%のコロ
イダルシリカ(粒子径300 A’以下)をゲル化速度
を制御するためにPH値を4〜6に調整し、ガラス容器
2に注入する。
Figure 1 shows the gelation of colloidal silica in a prismatic glass container 2, in which colloidal silica with a silica content of 40% by weight (particle size of 300 A' or less) is adjusted to a pH value to control the gelation rate. is adjusted to 4 to 6 and poured into glass container 2.

このガラス容器2にはアルミ薄板製の蓋3で封印して塵
埃やガスの侵入を防止し、50℃で1目線保温してゲル
化させる。その後蓋乙に1m+9の細孔を数個設け、6
0℃でガラス容器を保温して脱水させるが、重量を測定
して約5重量%程度脱水した時にガラス容器2から取り
出す。
This glass container 2 is sealed with a lid 3 made of a thin aluminum plate to prevent the intrusion of dust and gas, and is kept warm at 50° C. for gelation. After that, several 1m+9 pores were made in the lid, and 6
The glass container is kept warm at 0° C. to dehydrate it, and the container is removed from the glass container 2 when the weight is measured and about 5% by weight has been dehydrated.

なお、脱水量を5重量%にとどめたのはドーパント溶液
に浸漬した時に急激に滲透してクラックが発生すること
を防止するためである。
The reason why the amount of water removed was limited to 5% by weight was to prevent the dopant solution from rapidly seeping through and causing cracks when immersed in the dopant solution.

第2図はガラス容器2内で形成した多孔質母材を取り出
したもので、これを第6図に示す拡散槽5中のドーパン
ト溶液6中に浸漬する。このドーパント液6は50チリ
ン酸水溶液で25°Cに加熱してあり、多孔質母材4を
数時間浸漬する。ドーパント溶液6としては、リン酸、
ホウ酸、NaOH。
FIG. 2 shows the porous base material formed in the glass container 2 taken out, which is immersed in the dopant solution 6 in the diffusion tank 5 shown in FIG. This dopant solution 6 is heated to 25° C. with a 50-thiphosphoric acid aqueous solution, and the porous base material 4 is immersed in it for several hours. As the dopant solution 6, phosphoric acid,
Boric acid, NaOH.

K OH、L i OH、B a (OH) 2等の各
水溶液が用いられるが、Pb、 C1%Ba1At;等
の硝酸塩、Ba、 Ca、K、Na等の塩化物、ca 
、、(so 4) B等の水溶液、或いは極性溶媒の溶
液を用いることができる。更に、これらの混合物、例え
ばNaOH−1−KOHの水溶液を用いてもよい。これ
までの工程は室温に近い温度で実施されるが、多孔質母
材4が太い場合は拡散速度を増すために徐々に昇温する
Aqueous solutions such as K OH, Li OH, Ba (OH) 2 etc. are used, but nitrates such as Pb, C1%Ba1At; chlorides such as Ba, Ca, K, Na, etc.
, , (so 4) B or the like, or a solution of a polar solvent can be used. Furthermore, mixtures thereof, such as an aqueous solution of NaOH-1-KOH, may also be used. The steps up to this point are carried out at a temperature close to room temperature, but if the porous base material 4 is thick, the temperature is gradually raised to increase the diffusion rate.

第4図は多孔質母材4の乾燥、焼結工程の説明図で、金
属イオンをドーパントした多孔質母材4は石英ボート7
に載せられて石英管8内に収容される。この石英管8は
電熱炉で包囲され、左端の入口からガスを導入して流通
させることができるようになっている。多孔質母材4を
乾燥させるときは急激な脱水を避けるため80°C以下
で酸素を流し乍ら徐々に加熱する。その昇温速度は0.
5’C/順で100℃まで昇温、する。
FIG. 4 is an explanatory diagram of the drying and sintering process of the porous base material 4, in which the porous base material 4 doped with metal ions is a quartz boat 7.
and housed in the quartz tube 8. This quartz tube 8 is surrounded by an electric furnace, and gas can be introduced and circulated through an inlet at the left end. When drying the porous base material 4, in order to avoid rapid dehydration, the porous base material 4 is gradually heated at a temperature of 80° C. or lower while flowing oxygen. The temperature increase rate is 0.
Raise the temperature to 100°C in 5'C/step order.

次に石英管8のガス導入口よりは800°dまでは塩素
ガスOt2を200ca/=の割合で流して脱OH反応
を行わせ、更に、ヘリウムガスに切換えて50CC//
#III+で送り乍ら1200℃で2時間保温し透明な
ガラス体を得た。なお、上記酸素ガスの代9にA r 
p N 2等がガスを用いることもできるが、ドーパン
ト溶液としてメタノール等の極性溶媒を用いた時は、メ
チル基を酸化して焼結前に除去するだめに酸素ガスを流
すことが必要である。
Next, from the gas inlet of the quartz tube 8 to 800°d, chlorine gas Ot2 is flowed at a rate of 200 ca/= to perform a deOH reaction, and then switched to helium gas at a rate of 50 cc/=.
A transparent glass body was obtained by keeping it warm at 1200° C. for 2 hours while transporting it using #III+. In addition, in the above oxygen gas substitute 9, Ar
A gas such as pN2 can be used, but when a polar solvent such as methanol is used as the dopant solution, it is necessary to flow oxygen gas to oxidize the methyl group and remove it before sintering. .

本実施例の光フアイバ母材の製造法は次のような効果が
得られる。
The method for manufacturing the optical fiber base material of this embodiment provides the following effects.

(1)  コロイダルシリカ1を収容するガラス容器2
の寸法とコロイダルシリカ1の量によって、光フアイバ
母材の寸法を任意に定めることができる。また、その屈
折率はドーパント溶液6の濃度等によって任意に調節で
きる。
(1) Glass container 2 containing colloidal silica 1
The dimensions of the optical fiber base material can be arbitrarily determined depending on the dimensions and the amount of colloidal silica 1. Further, the refractive index can be arbitrarily adjusted by adjusting the concentration of the dopant solution 6, etc.

(2)含水した多孔質母材4をドーパント溶液6に浸漬
し、かつ、温度を上昇させるので拡散が速く、大径の母
材が得られる。
(2) Since the water-containing porous base material 4 is immersed in the dopant solution 6 and the temperature is raised, diffusion is rapid and a large diameter base material can be obtained.

(6)原料の損失が殆んどなく、多数本の光フアイバ母
材を製造することができるので、量産化に適している。
(6) Since there is almost no loss of raw materials and a large number of optical fiber base materials can be manufactured, it is suitable for mass production.

上記実施例の応用例として次のようなことも可能である
。第3図において、ドーパント溶液6に多孔質母材4を
長時間浸漬して中心まで均一にドーパント金属を含浸さ
せた後で、純水中に浸漬し、純水中にドーパント金属と
拡散させる。これによって多孔質母材4にドーパント金
属の濃度分布を得ることができる。この多孔質母材4を
上記実施例の場合と同様に乾燥し焼結することによって
、グレーディッド形光ファイバ母材を得ることができる
The following is also possible as an application example of the above embodiment. In FIG. 3, the porous base material 4 is immersed in a dopant solution 6 for a long time to uniformly impregnate the center with the dopant metal, and then immersed in pure water to diffuse the dopant metal into the pure water. As a result, a concentration distribution of the dopant metal can be obtained in the porous base material 4. By drying and sintering this porous preform 4 in the same manner as in the above embodiment, a graded optical fiber preform can be obtained.

本発明の光フアイバ母材の製造法は、ゾルゲル法によっ
て均一な屈折率分布又はグラジェントな屈折率分布を示
す光フアイバ母材を寸法精度と屈折率分布の再現性良く
製作することができるので、量産化に好適であるという
効果が得られる。
The method for manufacturing an optical fiber preform of the present invention can produce an optical fiber preform exhibiting a uniform refractive index distribution or a gradient refractive index distribution with good dimensional accuracy and reproducibility of the refractive index distribution by the sol-gel method. , the effect of being suitable for mass production can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコロイダルシリカをゲル化させるガラス容器の
断面図、第2図は第1図゛のガラス容器から取り出した
多孔質母材の正面図、第3図は多孔質母材4に金属をド
ープする拡散槽の断面図、第4図は多孔質母材を乾燥、
焼結する石英管を用いた電気炉の断面図である。 1:コロイダルシリカ、2ニガラス容器、6:蓋、4:
多孔質母材、5二拡散槽、6:ドーパント溶液、7二石
英ボート、8:石英管、9:電気炉。
Figure 1 is a cross-sectional view of a glass container in which colloidal silica is gelled, Figure 2 is a front view of the porous base material taken out from the glass container in Figure 1, and Figure 3 is a porous base material 4 with metal. A cross-sectional view of the diffusion tank for doping, Figure 4 shows the drying of the porous base material.
FIG. 2 is a cross-sectional view of an electric furnace using a sintered quartz tube. 1: colloidal silica, 2 glass container, 6: lid, 4:
Porous base material, 5: 2 diffusion tanks, 6: dopant solution, 7: 2 quartz boats, 8: quartz tube, 9: electric furnace.

Claims (1)

【特許請求の範囲】[Claims] 1、 コロイダルシリカを容器内でゲル化する工程と、
上記容器内のゲル状シリカの液相含有率を5重量%以下
に減少させて多孔質母材を得る工程と、上記多孔質母材
を屈折率制御用の金属イオンを含む液相に浸漬する工程
と、上記金属イオンを付加した上記多孔質母材を乾燥さ
せた後焼結する工程とを用いることを特徴とする光フア
イバ母材の製造法。
1. A step of gelling colloidal silica in a container,
A step of obtaining a porous base material by reducing the liquid phase content of the gelled silica in the container to 5% by weight or less, and immersing the porous base material in a liquid phase containing metal ions for controlling the refractive index. 1. A method for producing an optical fiber preform, comprising: drying the porous preform to which the metal ions have been added, and then sintering the porous preform.
JP19523081A 1981-12-04 1981-12-04 Production of base material for optical fiber Pending JPS5899132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19523081A JPS5899132A (en) 1981-12-04 1981-12-04 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19523081A JPS5899132A (en) 1981-12-04 1981-12-04 Production of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS5899132A true JPS5899132A (en) 1983-06-13

Family

ID=16337634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19523081A Pending JPS5899132A (en) 1981-12-04 1981-12-04 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS5899132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153031A (en) * 1989-06-12 1992-10-06 Cornell Research Foundation, Inc. Use of hydrogen peroxide in preparing magnesium containing silicate sols for coating and fiber formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153031A (en) * 1989-06-12 1992-10-06 Cornell Research Foundation, Inc. Use of hydrogen peroxide in preparing magnesium containing silicate sols for coating and fiber formation

Similar Documents

Publication Publication Date Title
Yoldas Alumina gels that form porous transparent Al 2 O 3
US5068208A (en) Sol-gel method for making gradient index optical elements
US4686195A (en) Method and composition for the manufacture of gradient index glass
JPS63307140A (en) Sol-gel process for manufacturing superlow expansion glass
US5069700A (en) method of manufacturing gradient-index glass
US5439495A (en) Solution doping of sol gel bodies to make graded index glass articles
JPS5899132A (en) Production of base material for optical fiber
US5160358A (en) Process for producing silica glass plate having controlled refractive index distribution
US5244844A (en) Method of manufacturing gradient index optical elements
JPS6027615A (en) Production of optical glass
US20010015079A1 (en) Method for producing dopant doped high pure silica Glass
JPH04260608A (en) Production of optical element with refractive index distribution type
JPH059036A (en) Production of quartz glass having refractive index distribution
JPS61256928A (en) Production of glass
KR100321997B1 (en) Manufacturing method of silica glass by extrusion process
JPS63295455A (en) Manufacture of silica glass-containing glass product
JPH03208823A (en) Production of glass body having refractive index distribution
Sano et al. Silica glass monoliths from alkoxide gels: an old game with new results
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JPS63215526A (en) Production of silica glass
JPH0350130A (en) Production of quartz-based doped glass
JPH0582332B2 (en)
KR100321996B1 (en) Manufacturing method of doped silica glass by extrusion process
KR950008581B1 (en) Gradient index grasses and sol-gel method for their preparation
JPS6290B2 (en)