JPH0350130A - Production of quartz-based doped glass - Google Patents

Production of quartz-based doped glass

Info

Publication number
JPH0350130A
JPH0350130A JP18704589A JP18704589A JPH0350130A JP H0350130 A JPH0350130 A JP H0350130A JP 18704589 A JP18704589 A JP 18704589A JP 18704589 A JP18704589 A JP 18704589A JP H0350130 A JPH0350130 A JP H0350130A
Authority
JP
Japan
Prior art keywords
base material
dopant
glass
quartz
doped glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18704589A
Other languages
Japanese (ja)
Other versions
JP2677871B2 (en
Inventor
Akira Oibe
及部 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18704589A priority Critical patent/JP2677871B2/en
Publication of JPH0350130A publication Critical patent/JPH0350130A/en
Application granted granted Critical
Publication of JP2677871B2 publication Critical patent/JP2677871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To render a concn. distribution of a dopant fit for the material of a functional optical fiber by impregnating dopant ions into a base material made of quartz-based porous glass and sintering the base material after heating in a specified atmosphere. CONSTITUTION:A base material made of quartz-based porous glass is immersed in a soln. contg. dopant ions to impregnate the dopant ions into the base material. This base material is dried and heated in a reducing atmosphere contg. one or more kinds of gaseous halogen compds. selected among chlorine and bromine compds. or in an oxygen-free atmosphere contg. the gaseous halogen compds. to stabilize the dopant. The base material is then sintered.

Description

【発明の詳細な説明】 T産業上の利用分野」 本発明は情報、エレクトロニクス、エネルギ、医療など
の技術分野で用いられる石英系ドープトガラスの製造技
術に関し、特に、機能性光ファイバの素材に適した石英
系ドープトガラスを製造することのできる技術に係るも
のである。
[Detailed Description of the Invention] T Industrial Application Fields The present invention relates to a manufacturing technology for silica-based doped glass used in technical fields such as information, electronics, energy, and medicine, and in particular, it relates to a manufacturing technology for silica-based doped glass that is suitable as a material for functional optical fibers. The present invention relates to a technology capable of manufacturing quartz-based doped glass.

r従来の技術1 光機能性ガラスの研究開発にともない、希土類元素をコ
アに含む機能性光ファイバが提供されており、これの応
用に関する研究報告が、すでになされている。
rPrior Art 1 With the research and development of optical functional glasses, functional optical fibers containing rare earth elements in their cores have been provided, and research reports regarding the applications of these have already been published.

ちなみに、希土類イオンの電子準位間の誘導放出による
光増幅を利用したものとして、レーザファイバ、ファイ
バ型光増幅器が下記の文献により報告されている。
Incidentally, laser fibers and fiber-type optical amplifiers have been reported in the following literature as devices that utilize optical amplification by stimulated emission between electronic levels of rare earth ions.

[希土類ファイバレーザに関する文献]C,J、Koe
ster and E、5nitzer :Appl、
Opt、、 3.1182 (1964)。
[Literature on rare earth fiber lasers] C, J, Koe
star and E, 5nitzer: Appl,
Opt., 3.1182 (1964).

S9日、Pooie  et  at、:Electr
on、 Lett、、 21. P、73B (198
5)。
S9th, Pooie et at, :Electr
on, Lett,, 21. P, 73B (198
5).

[光増幅器に関する文献] R,J、Mears  et al、:Electro
n、 Lett、、 23. P、10213 (19
87)。
[Literatures related to optical amplifiers] R.J., Mears et al.: Electro
n, Lett,, 23. P, 10213 (19
87).

E、Desurvire  et al、:Opt、 
Lett、、  12.888 (1987)。
E. Desurvire et al.: Opt.
Lett, 12.888 (1987).

希土類イオンの吸収変化を利用したものとしては、温度
分布センサ、放射線センサが下記の文献により報告され
ている。
Temperature distribution sensors and radiation sensors have been reported in the following literature as devices that utilize changes in the absorption of rare earth ions.

[分布型温度センサに関する文献] M、C,Farries  et at、:Elect
ron、 Lett、、 22. P、418 (19
8B)。
[Literature related to distributed temperature sensors] M. C. Farries et at: Elect
Ron, Lett, 22. P, 418 (19
8B).

[放射線センサに関する文献] K、Imamura  et al、:Proc−ee
dings of 5PIE、 787. P、62 
(19B?)。
[Literatures related to radiation sensors] K., Imamura et al.: Proc-ee
dings of 5PIE, 787. P, 62
(19B?).

石英系光フアイバ母材に希土類元素をドープする方法と
して溶液含浸法があり、これは、SootImpreg
netion、 5olution、 Mo1scul
ar Stuffingとも呼ばれている。
There is a solution impregnation method as a method of doping rare earth elements into a quartz-based optical fiber base material, and this method is called SootImpreg.
netion, 5solution, Mo1scul
It is also called ar stuffing.

かかる溶液含浸法では、スート、キセロゲルなどの多孔
質体にドーパントイオンを含む溶液を含浸させた後、こ
れを乾燥、焼結してドープトガラスを得る。
In such a solution impregnation method, a porous material such as soot or xerogel is impregnated with a solution containing dopant ions, and then dried and sintered to obtain doped glass.

この種の手法は古くからあり、光フアイバプロセスへの
応用も下記の文献にて報告されている。
This type of method has been around for a long time, and its application to optical fiber processes has also been reported in the following literature.

P、C,5chuILs : J、Amer、 Ceram、 SOc、、 57.P
、308 (1974)。
P, C, 5chuILs: J, Amer, Ceram, SOc,, 57. P
, 308 (1974).

この先行技術の場合、外付は法で作製したスートにFe
、 Crなどの3d−遷移金属元素をドープしていたが
、その後、希土類元素のドープにも適用されるようにな
った。
In the case of this prior art, the external layer is made of Fe on the soot made by the method.
, doped with 3d-transition metal elements such as Cr, but later it was also applied to doping with rare earth elements.

ドーパントを含浸させるための多孔質ガラスの合成は、
通常のVAD法、ゾルゲル法によっても可能である。
Synthesis of porous glass for dopant impregnation is
It is also possible to use the usual VAD method or sol-gel method.

溶液含浸法以外には、下記の文献に示されたプラズマ法
、MCVD法、VAD気相気相ドープ量とく、気相の希
土類塩化物を用いる方法も採用されている。
In addition to the solution impregnation method, methods using rare earth chlorides in the gas phase have also been adopted, such as the plasma method, MCVD method, and VAD vapor phase doping amount described in the following literature.

[プラズマ法に関する文献] K、Arai  et al、: J、 Appl、 Phys、、 59. P、343
0 (1988)。
[Literatures related to plasma method] K, Arai et al.: J, Appl, Phys, 59. P, 343
0 (1988).

[MCVD法に関する文献] S、B、Pooie et  al、:Electro
n、 Lett、、 21. P、737 (1985
)。
[Literature related to MCVD method] S. B. Pooie et al.: Electro
n, Lett,, 21. P, 737 (1985
).

[VAD気相気相ドープ量する文献] 清水はか:昭和61年通信学会全国大会予稿集講演番号
1138. P、4−309 しかし、近年では、MCVD法についても、つぎの文献
がみられる。
[Literature on VAD vapor phase doping amount] Haka Shimizu: Proceedings of the 1986 Communication Society National Conference Lecture No. 1138. P, 4-309 However, in recent years, the following documents have also been found regarding the MCVD method.

J、E、T、丁ovnsend   at  al、:
Electron、 Latt、、 23. P、32
9 (1987)。
J, E, T, and send at al.:
Electron, Latt, 23. P, 32
9 (1987).

B、J、A1n5lie  et al、:Water
、 Lett、、 8. P、139 (1988)。
B, J., A1n5lie et al.: Water.
, Lett, 8. P, 139 (1988).

これらの両輪文では、火炎温度を下げてスート状の多孔
質コアガラス層を堆積させた後、これに希土類イオン溶
液を含浸させる技術が報告されており、気相ドープ法を
用いない理由として、0.09mo1%以上の高濃度ド
ープがむずかしいこと、ドープ両を一定に保持する上で
非常に精密な制御が要求されること、二種類以上の希土
類元素のドープ能力に限界があること等をあげている。
In these studies, a technique has been reported in which a soot-like porous core glass layer is deposited by lowering the flame temperature and then impregnated with a rare earth ion solution, and the reason for not using the vapor phase doping method is that These include the difficulty of doping at a high concentration of 0.09 mo1% or more, the need for very precise control to maintain a constant doping level, and the limited ability to dope two or more rare earth elements. ing.

その他、例外的に、気相の希土類有機キレートを用いて
5wt$以上のEr、 Ybをドープする技術が特開昭
83−280835号公報に開示されているが、これの
原料が高価であることから、−数的には溶液含浸法が主
流となっている。
In addition, as an exception, Japanese Patent Application Laid-open No. 83-280835 discloses a technique of doping Er and Yb of 5 wt$ or more using a gas phase rare earth organic chelate, but the raw material for this is expensive. Therefore, numerically, the solution impregnation method has become mainstream.

r発明が解決しようとする課題」 本発明に関連するドープ方法の実験において、VAD法
による石英系多孔質ガラスを用い、溶液含浸法と気相ド
ープ法とを比較したところ、溶液含浸法の場合は、既述
の文献で報告されている通り、つぎのような長所を確認
することができた。
"Problems to be Solved by the Invention" In an experiment on a doping method related to the present invention, a solution impregnation method and a vapor phase doping method were compared using silica-based porous glass by the VAD method, and it was found that in the case of the solution impregnation method As reported in the literature mentioned above, we were able to confirm the following advantages.

1)比較的高濃度の希土類ドープが可能である。1) Relatively high concentration of rare earth doping is possible.

2)手法が簡単でドープ量の再現性がよい。2) The method is simple and the reproducibility of the doping amount is good.

3)光ファイバ長さ方向にわたるドーパント濃度のバラ
ツキが少ない。
3) There is little variation in dopant concentration over the length of the optical fiber.

4)二種類以上の元素を共ドープする場合でも、容易に
濃度比を制御することができる。
4) Even when two or more types of elements are co-doped, the concentration ratio can be easily controlled.

5)既製の光フアイバ母材製造装置をそのまま使用する
ことができる。
5) A ready-made optical fiber base material manufacturing device can be used as is.

6)不純物の混入も無視できるレベルに留まる。6) Contamination with impurities remains at a negligible level.

しかし、溶液含浸法には、つぎのような問題点もみられ
る。
However, the solution impregnation method has the following problems.

すなわち、溶液含浸法によるとき、母材(石英系多孔質
ガラス)の径方向におけるドーパント濃度率分布が凹形
になってしまい、高濃度ドープした母材の場合は、その
外周部に結晶化が生じ、ときには、クラックが発生する
こともある。
In other words, when using the solution impregnation method, the dopant concentration distribution in the radial direction of the base material (silica-based porous glass) becomes concave, and in the case of a highly doped base material, crystallization occurs on the outer periphery. Occasionally, cracks may occur.

換言すると、透明ガラスとして得られる母材中心におけ
るドーパントe度は、ドーパント元素のガラス中への溶
解度で決定される上限値に達しない。
In other words, the dopant e degree at the center of the base material obtained as transparent glass does not reach the upper limit determined by the solubility of the dopant element in the glass.

導波光の強度分布が、コア中心で大きく、外周部へ向か
うほど小さくなる単一モード光ファイバの場合は、希土
類元素などのドーパントと光との相互作用が母材中心に
おいて最も大きいこと、したがって、コア内のドーパン
ト濃度が均一ないし凸型であることが望ましく、上記の
ごとき凹形屈折率分布では、実効的に作用する濃度が低
い。
In the case of single-mode optical fibers, where the intensity distribution of guided light is large at the center of the core and becomes smaller toward the outer periphery, the interaction between light and dopants such as rare earth elements is greatest at the center of the base material. It is desirable that the dopant concentration in the core is uniform or convex, and in the above-mentioned concave refractive index distribution, the effective concentration is low.

もちろん、母材の結晶化部分を化学エツチング(エッチ
ャント:フッ酸と硝酸との混合液)、機械研削などで除
去すればよいが、前者の場合は長時間を要するので生産
性が低下し、後者の場合は母材内部にまでクラックを進
行させ、良品の歩留りを低下させる。
Of course, the crystallized portion of the base material can be removed by chemical etching (etchant: a mixture of hydrofluoric acid and nitric acid) or mechanical grinding, but the former requires a long time and reduces productivity, while the latter In this case, cracks will progress to the inside of the base material, reducing the yield of non-defective products.

本発明はこのような技術的課題に鑑み、ドープ手段たる
溶液含浸法の長所をそのまま残し、短所のみを解消する
ことのことのできる石英系ドープトガラスの製造方法を
提供しようとするものである。
In view of these technical problems, the present invention aims to provide a method for manufacturing silica-based doped glass that can eliminate only the disadvantages while leaving the advantages of the solution impregnation method as a doping method intact.

1課題を解決するための手段」 本発明は所期の目的を達成するため、石英系多孔質ガラ
ス製の母材をドーパントイオン溶液に浸漬してその母材
中にドーパントイオンを含浸させるドープ工程と、該ド
ープ工程後の母材を乾燥する乾燥工程と、該乾燥工程後
の母材を焼結する焼結工程とを備えた石英系ドープトガ
ラスの製造方法において、上記乾燥工程を終えた後から
上記焼結工程を終えるまでの間、塩素系、臭素系のうち
の一種以上のハロゲン化合物ガスを含む還元性雰囲気内
、または、塩素系、臭素系のうちの一種以上のハロゲン
化合物ガスを含む無酸素雰囲気内で上記母材を加熱処理
する加熱処理工程が介在されていることを特徴とする。
In order to achieve the intended purpose, the present invention provides a doping process in which a base material made of silica-based porous glass is immersed in a dopant ion solution to impregnate dopant ions into the base material. A method for producing quartz-based doped glass comprising: a drying step of drying the base material after the doping step; and a sintering step of sintering the base material after the drying step. Until the above sintering process is completed, the atmosphere must be kept in a reducing atmosphere containing one or more chlorine-based or bromine-based halogen compound gases, or in a non-reducing atmosphere containing one or more chlorine-based or bromine-based halogen compound gases. The present invention is characterized in that a heat treatment step is included in which the base material is heat treated in an oxygen atmosphere.

1作用j 本発明方法の場合、ドープ工程、乾燥工程、加熱処理工
程、焼結工程を介して石英系ドープトガラスが製造され
る。
1 Effect j In the method of the present invention, quartz-based doped glass is manufactured through a doping process, a drying process, a heat treatment process, and a sintering process.

ドープ工程のとき、ドーパントイオンを含む溶液に多孔
質ガラス製の母材を浸漬する。
During the doping process, a porous glass base material is immersed in a solution containing dopant ions.

多孔質ガラス母材としては、たとえば、VAD法を介し
て作製された棒状のもの用い、ドーパントイオンを含む
溶液としては、たとえば、Er、 Ndのごとき希土類
ドーパントイオンを含むものを用いる。
As the porous glass base material, for example, a rod-shaped material prepared by the VAD method is used, and as the solution containing dopant ions, for example, one containing rare earth dopant ions such as Er and Nd is used.

かかる溶液に浸漬された母材中には、その気孔よりドー
パントイオンが浸透する。
Dopant ions permeate into the base material immersed in such a solution through its pores.

乾燥工程のとき、ドーパントイオンを含む溶液が含浸し
た母材から、溶剤(溶媒)たる液体を蒸発させて、溶質
たるドーパントイオンを母材に定着させる。
During the drying process, a liquid serving as a solvent is evaporated from a base material impregnated with a solution containing dopant ions, and the dopant ions serving as a solute are fixed to the base material.

乾燥を終えた母材は、これを酸素雰囲気中で加熱処理し
、ドーパントを酸化(=安定化)させてもよい。
The dried base material may be heat-treated in an oxygen atmosphere to oxidize (stabilize) the dopant.

この際の加熱処理により、VAD法の母材では径方向の
ドーパントe度分布が凹形になる。
Due to the heat treatment at this time, the dopant e degree distribution in the radial direction becomes concave in the base material of the VAD method.

これは、VAD法による多孔質ガラス母材の一般的傾向
として、その多孔質構造が径方向に不均質で中心部より
も外周部の気孔率が大きく、ドーパントの含浸量が中心
部よりも外周部が多いからである。
This is due to the general tendency of porous glass base materials produced by the VAD method. This is because there are many departments.

他の一因として、乾燥工程のとき、相対的に乾燥の遅い
中心部から乾燥の速い外周部へと溶液が拡散することが
考えられる。
Another factor may be that during the drying process, the solution diffuses from the center, where drying is relatively slow, to the outer periphery, where drying is quick.

乾燥工程後は、母材の加熱処理工程、焼結工程をとる。After the drying process, a heat treatment process and a sintering process are performed on the base material.

その−例として、SOCl2 を含み、酸素を含まない
雰囲気内で乾燥母材を加熱処理した後、当該母材を完全
焼結し、その他側として、SOCl2 、 Haを含む
雰囲気内で乾燥母材を加熱処理すると同時に焼結する。
As an example, after heating a dry base material in an atmosphere containing SOCl2 and not containing oxygen, the base material is completely sintered, and on the other side, the dry base material is heated in an atmosphere containing SOCl2 and Ha. Heat treated and sintered at the same time.

上記の処理を受けた母材の場合、径方向におけるドーパ
ント濃度分布すなわち屈折率分布が、はぼ均一になるか
凸形になる。
In the case of the base material subjected to the above treatment, the dopant concentration distribution, that is, the refractive index distribution in the radial direction becomes approximately uniform or convex.

その理由として、ドーパントがErの場合、次式の反応
により酸化、定着したErの一部が再び塩化物となって
揮散するとき、母材の外周部(表面に近い部分)はど、
かかる反応が優先的に起きると考えられる。
The reason for this is that when the dopant is Er, when a part of the oxidized and fixed Er becomes chloride again and volatilizes by the reaction of the following formula, the outer periphery (near the surface) of the base material...
It is thought that such a reaction occurs preferentially.

Er2O3+ 3SOCI2 + 2ErCh + 3
SO2もちろん、この場合、ErCl3 を揮散させる
ことのできる蒸気圧をもつ処理温度(約900℃以上)
が必要である。
Er2O3+ 3SOCI2 + 2ErCh + 3
Of course, in this case, the treatment temperature (approximately 900°C or higher) that has a vapor pressure that can volatilize ErCl3
is necessary.

上述した加熱処理工程は、Er以外の希土類元素をドー
パントとする場合も当然有効であり、さらに、希土類元
素以外の遷移金属元素ドーパント、屈折率制御用ドーパ
ントであって気相法による添加が困難なもの、たとえば
、AI、アルカリ金属、アルカリ土類金属元素などをド
ーパントとする場合も有効である。
The above-mentioned heat treatment process is of course effective when using a rare earth element other than Er as a dopant, and furthermore, it is also effective when using a dopant of a rare earth element other than Er, and furthermore, it is also effective when using a dopant of a transition metal element other than a rare earth element, or a dopant for controlling the refractive index that is difficult to add by a vapor phase method. It is also effective to use dopants such as AI, alkali metals, alkaline earth metal elements, etc.

所要のドーパントを含浸させる多孔質ガラス製の母材も
、VAD法のほか、外付は法、ゾルゲル法によるものを
採用することができる。
The porous glass base material impregnated with the required dopant can also be formed by the VAD method, the external deposition method, or the sol-gel method.

上述した加熱処理雰囲気の処理ガス、すなわち5OCI
2の最適分圧値は、ドーパントの種類、含有量、母材の
嵩密度、処理温度、処理時間などにより異なるので、こ
れらをパラ−メータにして、その最適分圧値を設定すれ
ばよい。
The processing gas in the heat treatment atmosphere described above, that is, 5OCI
The optimum partial pressure value of No. 2 varies depending on the type and content of the dopant, the bulk density of the base material, the processing temperature, the processing time, etc., so the optimum partial pressure value may be set using these as parameters.

他の処理ガスとして、CI2.502CI2、SOB 
r2 などを採用した場合でも、上記に準じた効果が得
られるが、これら処理ガスの場合は、5OCI2 より
も還元力が弱いので、母材外周部のドーパントを十分揮
散させるためには、そのガス分圧を高くしなければなら
ない。
Other processing gases include CI2.502CI2, SOB
An effect similar to that described above can be obtained even if a gas such as r2 is used, but since the reducing power of these processing gases is weaker than that of 5OCI2, in order to sufficiently volatilize the dopant on the outer periphery of the base material, Partial pressure must be increased.

しかし、母材の加熱処理と焼結とを同時に行なうとき、
Heに対するこれらのガス分圧が高くなるほど、焼結後
のガラスに気泡が残留しやすい問題があり、しかも、光
ファイバの製造に用いられる高純度の012は、SOC
l2に比べ、かなり高価である。
However, when heating the base material and sintering at the same time,
The higher the partial pressure of these gases relative to He, the more bubbles are likely to remain in the glass after sintering.
It is considerably more expensive than l2.

したがって、既述の加熱処理工程は、5OC12を含む
無酸素雰囲気内で実施するのが有利である。
Therefore, the heat treatment step described above is advantageously carried out in an oxygen-free atmosphere containing 5OC12.

このようにして製造された石英系1−ブトガラスから機
能性光ファイバを製造するときは、たとえば、当該ドー
プトガラスをコアガラスとして、その外周に外付は法を
介してクラッドガラス層を形成し、しかる後、これを周
知の加熱延伸手段により線引きする。
When manufacturing a functional optical fiber from the silica-based 1-butoglass manufactured in this way, for example, the doped glass is used as a core glass, and a cladding glass layer is formed on the outer periphery of the core glass by an external method. Thereafter, this is drawn by a well-known heating and stretching means.

r実 施 例」 本発明方法のより具体的な実施例を説明する。Example of implementation More specific examples of the method of the present invention will be described.

石英系多孔質ガラス製の母材として、VAD法を介して
作製された平均嵩密度0.57g/cm3の純石英組成
の棒状スートを用いた。
As a base material made of quartz-based porous glass, a rod-shaped soot having a pure quartz composition and having an average bulk density of 0.57 g/cm 3 was produced by a VAD method.

ドープ工程のとき、Er、 Ybの塩化物を溶解したメ
チルアルコール溶液内に、上記母材を6時間浸し、その
母材中にEr、 Ybのドーパントイオンを含浸させた
During the doping step, the base material was immersed for 6 hours in a methyl alcohol solution in which chlorides of Er and Yb were dissolved to impregnate dopant ions of Er and Yb into the base material.

溶液中のEr、 Ybイオンの濃度は、Er:0.38
wt$、Yb:3.7wt$ テある。
The concentration of Er and Yb ions in the solution is Er: 0.38
wt$, Yb: 3.7wt$ There is.

乾燥工程のとき、含浸後の母材から溶媒を蒸発させてそ
の母材を乾燥し、その乾燥工程に引き続き、約950℃
の酸素気流中で当該母材を加熱処理して、母材中のEr
、 Ybを酸化し、これらEr、 Ybを母材に定着さ
せた。
During the drying process, the solvent is evaporated from the impregnated base material to dry the base material, and following the drying process, the temperature at approximately 950°C
The base material is heat-treated in an oxygen stream of
, Yb was oxidized, and these Er and Yb were fixed on the base material.

その後、母材の加熱処理工程と焼結工程とを同時に実施
すべく、中心温度1450℃の電気炉内において、母材
を2−m/winの速度で下降させながら、出接母材を
加熱処理すると同時に焼結した。
After that, in order to perform the heat treatment process and the sintering process of the base metal at the same time, the welded base metal is heated in an electric furnace with a center temperature of 1450°C while lowering the base metal at a speed of 2-m/win. It was processed and sintered at the same time.

このときの電気炉内の雰囲気は、Heと5OCIz(バ
ブリングガス: He)とで形成し、炉内の全ガス圧を
約1気圧(780Torr)、これに対するSOCl2
のガス分圧を4.4Torrに設定した。
The atmosphere in the electric furnace at this time was formed by He and 5OCIz (bubbling gas: He), and the total gas pressure in the furnace was approximately 1 atm (780 Torr), with SOCl2
The gas partial pressure was set at 4.4 Torr.

これら各工程から得られた棒状の焼結ガラス、すなわち
、石英系ドープトガラスを発光分析したところ、そのガ
ラス中のEr濃度は0.078wt$、 Yb濃度は0
.94wtXであった。多孔質ガラス母材中に含浸され
たドーパントe度に対する焼結ガラスのEr濃度、Yb
濃度の割合すなわち残留率は、それぞれEr=21!、
 Yb=24%テあった。
When the rod-shaped sintered glass obtained from each of these steps, that is, the quartz-based doped glass, was subjected to emission analysis, the Er concentration in the glass was 0.078 wt$, and the Yb concentration was 0.
.. It was 94wtX. Er concentration of sintered glass, Yb with respect to dopant e degree impregnated in porous glass matrix
The concentration ratio, that is, the residual rate, is Er=21! ,
Yb=24%.

さらに、上記焼結ガラスにつき、二次イオン質量分析機
、X線マイクロアナライザにかけて、その径方向にわた
るドーパントe度の分布を測定したところ、Er、 Y
bは、第1図に示すごとく、はぼ均−1やや凸形の分布
形状を呈し、結晶化は殆どみられなかった。
Furthermore, when the above sintered glass was subjected to a secondary ion mass spectrometer and an X-ray microanalyzer to measure the distribution of dopant e degree in the radial direction, it was found that Er, Y
As shown in FIG. 1, the sample b exhibited a slightly convex distribution shape, with almost no crystallization observed.

上記石英系ドープトガラス(林状焼結ガラス)の外周に
、外付は法を介してフッ素ドープトシリカからなるクラ
ッドガラス層を形成し、その後、当該棒状ガラスを加熱
延伸して、コア径7.51Lmφ、外径125gmφの
光ファイバを難なく作製することができた。
A clad glass layer made of fluorine-doped silica is formed on the outer periphery of the above-mentioned quartz-based doped glass (forest-like sintered glass) by an external method, and then the rod-shaped glass is heated and stretched to have a core diameter of 7.51 Lmφ. An optical fiber with an outer diameter of 125 gmφ could be produced without difficulty.

この光ファイバの最低損失値は、波長1.2 graに
おいて20dB/kmであり、したがって、結晶化によ
る損失増は殆どないといえる。
The lowest loss value of this optical fiber is 20 dB/km at a wavelength of 1.2 gra, so it can be said that there is almost no increase in loss due to crystallization.

比較のため、前記と同様の多孔質ガラス母材を用い、前
記と同様の各工程にて石英系ドープトガラス(棒状焼結
ガラス)を作製するとき、同時に実施する加熱処理工程
、焼結工程の雰囲気を下記のように設定した。
For comparison, when producing quartz-based doped glass (rod-shaped sintered glass) using the same porous glass base material as above and in the same steps as above, the atmosphere of the heat treatment step and sintering step that are carried out simultaneously is shown. was set as below.

比較例1 雰囲気: He+SOC+2(02バブリング)S00
12分圧−8,0Torr 02分圧=36↑orr 比較例2 雰囲気: He中Cl2 CI2分圧−78Torr 比較例3 雰囲気: He中C12+02 CI2分圧−38Tarr 02分圧−38Torr これら比較例で得られた石英系ドープトガラス(棒状焼
結ガラス)につき、そのドーパント濃度の分布を前記と
同様に測定したところ、第2図に示すごと<、 Er、
 Ybが凹形の分布形状を呈しており、ガラスの中心部
、外周部におけるEr、 Ybの濃度差が、いずれも2
〜3倍にもなっていた。
Comparative Example 1 Atmosphere: He+SOC+2 (02 bubbling) S00
12 partial pressure - 8,0 Torr 02 partial pressure = 36↑orr Comparative example 2 Atmosphere: Cl2 in He CI2 partial pressure - 78 Torr Comparative example 3 Atmosphere: C12 + 02 in He CI2 partial pressure - 38 Torr 02 partial pressure - 38 Torr Obtained in these comparative examples The dopant concentration distribution of the quartz-based doped glass (rod-shaped sintered glass) was measured in the same manner as above, and as shown in Figure 2,
Yb exhibits a concave distribution shape, and the concentration difference of Er and Yb in the center and outer periphery of the glass is both 2.
It had tripled.

しかも、ガラスの表面が甚だしく結晶化し、クラックが
生じていたので、光ファイバの母材として実用すること
ができなかった。
Moreover, the surface of the glass was severely crystallized and cracked, making it impossible to use it as a base material for optical fibers.

なお、各比較例において、焼結ガラスの透明ガラス化し
た部分を既述の測定手段で分析したところ、Er、 Y
bの残留率は、比較例相互で多少の差異はみられたが2
0〜30%であり、前記実施例と大差なかった。
In addition, in each comparative example, when the transparent vitrified portion of the sintered glass was analyzed using the measuring means described above, Er, Y
Although there were some differences in the residual rate of b between the comparative examples, 2
It was 0 to 30%, which was not much different from the above example.

「発明の効果J 以上説明した通り、本発明方法によるときは、既知のド
ープ工程、乾燥工程、焼結工程を介して石英系ドープト
ガラスを製造するとき、所定の加熱処理工程を所定の段
階で実施するから、4M!能性光性光フアイバ材に適し
たドーパント濃度分布をもつ石英系ドープトガラスが、
表面の結晶化、クラッタなどの製造不良をともなうこと
なしに、歩留まりよく得られる。
"Effects of the Invention J As explained above, when using the method of the present invention, when manufacturing silica-based doped glass through the known doping process, drying process, and sintering process, a predetermined heat treatment process is performed at a predetermined stage. Therefore, silica-based doped glass with a dopant concentration distribution suitable for 4M! functional photoactive optical fiber material is
Good yields can be obtained without production defects such as surface crystallization and clutter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例において製造された石英
系ドープトガラスのドーパント濃度の分布図、第2図は
本発明方法の比較例において製造された石英系ドープト
ガラスのドーパント濃度の分布図である。
FIG. 1 is a distribution map of dopant concentration in a silica-based doped glass produced in an example of the method of the present invention, and FIG. 2 is a distribution diagram of dopant concentration in a silica-based doped glass produced in a comparative example of the method of the present invention. .

Claims (1)

【特許請求の範囲】[Claims] 石英系多孔質ガラス製の母材をドーパントイオン溶液に
浸漬してその母材中にドーパントイオンを含浸させるド
ープ工程と、該ドープ工程後の母材を乾燥する乾燥工程
と、該乾燥工程後の母材を焼結する焼結工程とを備えた
石英系ドープトガラスの製造方法において、上記乾燥工
程を終えた後から上記焼結工程を終えるまでの間、塩素
系、臭素系のうちの一種以上のハロゲン化合物ガスを含
む還元性雰囲気内、または、塩素系、臭素系のうちの一
種以上のハロゲン化合物ガスを含む無酸素雰囲気内で上
記母材を加熱処理する加熱処理工程が介在されているこ
とを特徴とする石英系ドープトガラスの製造方法。
A doping process in which a base material made of quartz-based porous glass is immersed in a dopant ion solution to impregnate dopant ions into the base material, a drying process in which the base material is dried after the doping process, and a drying process after the drying process. In a method for producing quartz-based doped glass comprising a sintering step of sintering a base material, one or more of chlorine-based and bromine-based A heat treatment step is included in which the base material is heat-treated in a reducing atmosphere containing a halogen compound gas or in an oxygen-free atmosphere containing one or more halogen compound gases selected from chlorine and bromine. Characteristic method for producing quartz-based doped glass.
JP18704589A 1989-07-19 1989-07-19 Manufacturing method of quartz-based doped glass Expired - Lifetime JP2677871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18704589A JP2677871B2 (en) 1989-07-19 1989-07-19 Manufacturing method of quartz-based doped glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18704589A JP2677871B2 (en) 1989-07-19 1989-07-19 Manufacturing method of quartz-based doped glass

Publications (2)

Publication Number Publication Date
JPH0350130A true JPH0350130A (en) 1991-03-04
JP2677871B2 JP2677871B2 (en) 1997-11-17

Family

ID=16199210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18704589A Expired - Lifetime JP2677871B2 (en) 1989-07-19 1989-07-19 Manufacturing method of quartz-based doped glass

Country Status (1)

Country Link
JP (1) JP2677871B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
EP1566367A4 (en) * 2002-11-29 2009-03-04 Japan Science & Tech Agency Luminescent glass
JP2009224405A (en) * 2008-03-13 2009-10-01 Fujikura Ltd Rare earth element-added optical fiber and method of manufacturing the same, and fiber laser
CN106430920A (en) * 2016-09-07 2017-02-22 中国建筑材料科学研究总院 Method for preparing quartz glass and quartz glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026645A1 (en) * 2000-09-27 2002-04-04 Corning Incorporated Process for drying porous glass preforms
WO2002026646A3 (en) * 2000-09-27 2002-10-31 Corning Inc Process for drying porous glass preforms
EP1566367A4 (en) * 2002-11-29 2009-03-04 Japan Science & Tech Agency Luminescent glass
US7758774B2 (en) 2002-11-29 2010-07-20 Japan Science And Technology Agency Luminescent glass
US7938551B2 (en) 2002-11-29 2011-05-10 Japan Science And Technology Agency Luminescent glass
JP2009224405A (en) * 2008-03-13 2009-10-01 Fujikura Ltd Rare earth element-added optical fiber and method of manufacturing the same, and fiber laser
CN106430920A (en) * 2016-09-07 2017-02-22 中国建筑材料科学研究总院 Method for preparing quartz glass and quartz glass

Also Published As

Publication number Publication date
JP2677871B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
AU652351B2 (en) Quartz glass doped with rare earth element and production thereof
EP0313209B1 (en) Optical fibre with fluorescent additive
EP0565439B1 (en) Manufacturing method for erbium-doped silica glass optical fibre preforms
JPH0915464A (en) Single-mode optical transmission fiber and its manufacture
JP4158910B2 (en) Manufacturing method of rare earth element doped glass and optical amplification fiber using the same
US8649650B2 (en) Method for fabricating rare earth (RE) doped optical fiber using a new codopant
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
JP2931026B2 (en) Method for producing rare earth element doped glass
US7058269B2 (en) Reconstructed glass for fiber optic applications
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
CN112390525A (en) Optical fiber preform, preparation method thereof and optical fiber
JP3475109B2 (en) Rare earth element doped glass
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
KR100341544B1 (en) Process for the preparation of metal ion-doped optical device
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JPH0492825A (en) Production of silica glass and optical waveguide using same silica glass
JPH07109144A (en) Production of rare earth element-doped silica glass fiber preformed material
JP2828284B2 (en) Method for producing rare earth element doped glass
JP4676118B2 (en) Manufacturing method of optical fiber preform
JPH03252320A (en) Production of quartz glass
JPH02289437A (en) Production of optical fiber having core doped with rare earth element
JPH03265532A (en) Production of optical fiber preform doped with rare earth element
JPH03218936A (en) Rare earth element-doped quartz glass and its production
JPH05301734A (en) Production of optical fiber preform
JPH04285030A (en) Rare-earth element-added optical fiber and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

EXPY Cancellation because of completion of term