JPS5899032A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS5899032A
JPS5899032A JP56197268A JP19726881A JPS5899032A JP S5899032 A JPS5899032 A JP S5899032A JP 56197268 A JP56197268 A JP 56197268A JP 19726881 A JP19726881 A JP 19726881A JP S5899032 A JPS5899032 A JP S5899032A
Authority
JP
Japan
Prior art keywords
transistor
level
type
vdd
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197268A
Other languages
Japanese (ja)
Inventor
Koji Matsuki
松木 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56197268A priority Critical patent/JPS5899032A/en
Publication of JPS5899032A publication Critical patent/JPS5899032A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To reduce power consumption and to quicken the operating speed, by providing a cpacitor to a gate of a load transistor (TR) of an enhancement type inverter circuit and charging the gate when a driver TR is turned on. CONSTITUTION:The element size of depletion D type MOS TRs Q7, Q6, Q8 is selected suitably, the potential of a node N1 is set to a power supply VDD level when an input signal IN is an H level and the potential of node N2 is set to a ground level, an enhancement E type load TRQ4 is truned off, a drive TRQ5 is turned on and an output OUT goes to a L level. Positive charges of VDD are stored at the node N1 of a capacitor C. When the signal IN changes to the L level, the TRs Q7, Q8 are turned off and the node N3 goes to the H level and stored in a TRQ9. Since the gate of the TRQ4 is controlled with 2 VDD, the output level goes to the VDD rapidly, and since the TRs Q4, Q5 are of E type, the through-current flows in transient state only.

Description

【発明の詳細な説明】 発明の技術分野 この発明は、MO811集積回路に係り、特に単一チャ
ネルでz/D(エンハンスメント/ディプレッション)
型の半導体集積回路に関する〇発明の技術的背景とその
問題点 一般jコ、nチャネル!IIE/D  MO8回路にか
いて、大きな負荷容量を駆動する場合には、信号の伝播
遅延時間を少なくするため第1図に示すようなディプレ
ッション型トランジスタを負荷トしたバッファ回路が用
いられている。すなわち、電11VI)りと接地点GN
Dとの間に、D(ディプレッション)IIの負荷トラン
ジスタQ8およびE(エンハンスメント)型のドライバ
トランジスタQ、を直列接続する。そして、トランジス
タQsのゲートにインバータ回路NoTrを介して入力
信号INを供給し導通側aするとともに、トランジスタ
Q鵞のゲートにインバータ回路N OT @  t N
 OT tを介して入力信号INを供給して導通制御し
、このトランジスタQs、Qxの接続点の電位で負荷容
量CLを駆動するように構成されている。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention This invention relates to MO811 integrated circuits, and more particularly to single channel z/D (enhancement/depression) integrated circuits.
Technical background of the invention and its problems regarding type semiconductor integrated circuits General j, n-channel! When driving a large load capacity in the IIE/D MO8 circuit, a buffer circuit loaded with a depletion type transistor as shown in FIG. 1 is used to reduce the signal propagation delay time. In other words, the ground point GN
A D (depression) II load transistor Q8 and an E (enhancement) type driver transistor Q are connected in series between the D and D. Then, the input signal IN is supplied to the gate of the transistor Qs via the inverter circuit NoTr to make it conductive, and the inverter circuit NOT@tN is supplied to the gate of the transistor Qs.
The input signal IN is supplied via the OT t to control conduction, and the load capacitor CL is driven by the potential at the connection point of the transistors Qs and Qx.

しかし、このような構成では、バッファ回路のドライバ
トランジスタQ、がオン状態の時、電源VDDから接地
点GNDに、負荷トランジスタQlおよびドライバトラ
ンジスタQ!を介して貫通電流が流れるため、消費電流
が多い欠点がある。
However, in such a configuration, when the driver transistor Q of the buffer circuit is in the on state, the load transistor Ql and the driver transistor Q! are connected from the power supply VDD to the ground point GND. Since a through current flows through the capacitor, it has the disadvantage of high current consumption.

上述した貫通電流による消費電流の増大を防ぐため、第
2図に示すようなKlE型のバッファ回路が提案されて
いる。この回路においては、第1図に示したD型の負荷
トランジスタQ1に換・えてE型のトランジスタQsを
設けたもので、第1図の回路と同一構成部は同じ符号を
付してその説明は省略する。このような構成によれば、
負荷トランジスタがE型であるため、ドライバトランジ
スタQsのオフ状態時に負荷トランジスタQ1がオフ状
態となり、上記貫通電流は流れない。しかし、この回路
は負荷トランジスタがE型のため、バッファ回路の出力
電圧レベルが電l1lvDD電圧まで上昇せず、また、
動作速度も遅い欠点がある。
In order to prevent the increase in current consumption due to the above-described through current, a KlE type buffer circuit as shown in FIG. 2 has been proposed. In this circuit, an E-type transistor Qs is provided in place of the D-type load transistor Q1 shown in FIG. 1. Components that are the same as those in the circuit in FIG. is omitted. According to such a configuration,
Since the load transistor is of the E type, the load transistor Q1 is in the off state when the driver transistor Qs is in the off state, and the above-mentioned through current does not flow. However, in this circuit, since the load transistor is E type, the output voltage level of the buffer circuit does not rise to the voltage l1lvDD voltage, and
The disadvantage is that the operating speed is slow.

ところで、一般に動作速度を上げる場合には、それぞれ
の素子の駆動能力を増加させるが、駆動能力を増加させ
ると消費電力が増える。遅生、半導体集積回路の集積密
度が飛躍的に増大しつつあり、電力・遅延積を小さくで
きる半導体集積回路が望すれている。
By the way, generally when increasing the operating speed, the driving capacity of each element is increased, but increasing the driving capacity increases power consumption. The integration density of semiconductor integrated circuits is rapidly increasing, and there is a demand for semiconductor integrated circuits that can reduce power and delay products.

発明の目的 この発明は上記のような事情を鑑みてなされたもので、
その目的とするところは、消費電力が少なく且つ動作速
度の速いバッファ回路を有する半導体集積回路を提供す
ることである。
Purpose of the invention This invention was made in view of the above circumstances.
The purpose is to provide a semiconductor integrated circuit having a buffer circuit with low power consumption and high operating speed.

尭−の概要 すなわち、この発明においては、E/E型のインバータ
回路屹おける負荷トランジスタのゲートにコンデンサを
設け、このコンデンサをドライバトランジスタのオン状
態時化充電し、ドライバトランジスタのオフ状態時に上
記コンデンサの充電電圧と電源VDII電圧との和の電
圧で負荷トランジスタを導通制御するように構成したバ
ッファ回路を半導体集積回路に内蔵したものである。
In other words, in this invention, a capacitor is provided at the gate of a load transistor in an E/E type inverter circuit, this capacitor is charged when the driver transistor is in an on state, and the capacitor is charged when the driver transistor is in an off state. A buffer circuit configured to control conduction of a load transistor using a voltage that is the sum of a charging voltage and a power supply VDII voltage is built into a semiconductor integrated circuit.

発明の実施例 以下、この発明の一実施例について図面を参照して説明
する。第3図はそのバッファ回路の構成を示すもので、
電源VDDと接地点GNDとの間に、E型の負荷トラン
ジスタQ4およびドライバトランジスタQ、を直列接続
する。そして、信号IN入力端と負荷トランジスタQ4
のゲートとの間に、インバータ回路NOT、コンデンサ
Cおよび第1のD型トランジスタQ・を直列接続する。
Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Figure 3 shows the configuration of the buffer circuit.
An E-type load transistor Q4 and a driver transistor Q are connected in series between a power supply VDD and a ground point GND. Then, the signal IN input terminal and the load transistor Q4
An inverter circuit NOT, a capacitor C, and a first D-type transistor Q are connected in series between the gate of the inverter circuit NOT, the capacitor C, and the first D-type transistor Q.

上記コンデンサCとトランジスタQ、との接続点N1と
電源VDDとの間には、コンデンサCの充電用の第2の
D型トランジスタQ、を接続し、そのゲートは信号IN
入力端に接続する。上記負荷トランジスタQ4のゲート
と接地点間にE型トランジスタQsを接続し、そのゲー
トは信号IN入力端に接続する。また、トランジスタQ
4−Qlの接続点Nsと電1lVDDとの間にDI!)
ランジスタQ・を接続し、そのゲートを接続点N、に接
続する。そして、この接続点N、と接地点GNDとの間
に接続した負荷容量CLを駆動するようにして成る。
A second D-type transistor Q for charging the capacitor C is connected between the connection point N1 between the capacitor C and the transistor Q and the power supply VDD, and its gate is connected to the signal IN.
Connect to the input end. An E-type transistor Qs is connected between the gate of the load transistor Q4 and the ground, and its gate is connected to the signal IN input terminal. Also, transistor Q
DI! between the connection point Ns of 4-Ql and the voltage 1lVDD! )
A transistor Q is connected and its gate is connected to a connection point N. Then, a load capacitor CL connected between this connection point N and a ground point GND is driven.

上記のような構成1こおいて動作を説明する。The operation of the configuration 1 as described above will be explained.

図において、各トランジスタはnチャネル型lC/D 
MO8トランジスタで構成されているものとし、電1[
VDDは接地電位GNDに対してハイ卸レベルにあるも
のとする。
In the figure, each transistor is an n-channel type IC/D
It is assumed that it is composed of MO8 transistors, and the electric current is 1 [
It is assumed that VDD is at a high level with respect to ground potential GND.

まず、入力信号INがHレベルの定常状態では、インバ
ータ回路NOTの出力端はロー(L)レベルになってい
る。この時、電源VDDからトランジスタQv 、Qs
  、Qaを介して接地点GNDに流れる電流経路に着
目すると、トランジスタQτ *QstQ龜の各素子寸
法を最適に選択することにより接続点(ノード)Nlの
電位をほぼvD11レベル、ノードN1の電位を接地点
GNDレベルに設定できる。したがって、この時トラン
ジスタQ、はオフ状態、Qsはオン状態となり、出力O
UTはLレベルとなる。ノードN。
First, in a steady state where the input signal IN is at H level, the output terminal of the inverter circuit NOT is at low (L) level. At this time, transistors Qv and Qs are connected to the power supply VDD.
, Qa and the current path flowing to the ground point GND, by optimally selecting the dimensions of each element of the transistor Qτ Can be set to ground point GND level. Therefore, at this time, transistor Q is in the off state, Qs is in the on state, and the output O
UT becomes L level. Node N.

にはトランジスタQ、が接続されて電源VDD電圧が供
給されているが、このトランジスタQ。
A transistor Q is connected to and supplied with the power supply VDD voltage.

の導通抵抗をトランジスタQ、に比較して充分大きく設
定すれば、出力信号OUTのLレベルlこはほとんど影
響を与えない。この時、コンデンサCの両端の電位差は
ほぼ電源VDD電圧になっており、ノードN、側の電極
には正の電荷、細端には負の電荷が蓄積される。
If the conduction resistance of the transistor Q is set sufficiently large compared to the transistor Q, the L level of the output signal OUT has almost no effect. At this time, the potential difference between both ends of the capacitor C is approximately the power supply VDD voltage, and positive charges are accumulated at the electrode on the side of the node N, and negative charges are accumulated at the narrow end.

次iこ入力信号INがHレベルからLレベルに変わるト
ランジェント状態の動作について説明する。この時トラ
ンジスタQy、Q・がオフ状態となる。上記トランジス
タQvはD型であるが、ソースおよびドレインの電位が
ほぼVDDレベルのため、ゲート電位がLレベルになる
と基板バイアス効果も加わり、D型でありながら完全に
オフ状態となる。そして、インバータ回路NOTの出力
がLレベルからHレベルに上昇し始める。この時、ノー
ドN1に蓄積された正電荀はトランジスタQy=Qsが
オフ状態のため放電経路がなく、インバータ回路NOT
の出力外させる。ここで、トランジスタQ・はD型であ
るので、ノードN、の電位はノードN1の電位に追従し
て上昇する。このトランジェント動作の直前ではノード
N1の電位がほぼVDDレベル、ノードN、の電位はG
NDレベルであるが、トランジェント変化に伴なってノ
ードNl、Ntの電位が電源VDD電圧より高いレベル
に向かって変化し始め、最終的にはほぼ電源VDD電圧
の2倍近く才で上昇する。したがって、トランジスタQ
4がオフ状態、Q−がオフ状態となりノードN、の電位
はLレベルからHレベルになり、このHレベルがトラン
ジスタQ1によって保持される。この時、負荷トランジ
スタQ4は[2VDtlJなる高い電位で導通制御され
るため、以下に記す効果が得られる。
Next, the operation in a transient state where the input signal IN changes from an H level to an L level will be described. At this time, transistors Qy and Q. are turned off. The transistor Qv is a D type, but since the source and drain potentials are approximately at the VDD level, when the gate potential goes to the L level, a substrate bias effect is added, and although it is a D type, it is completely turned off. Then, the output of the inverter circuit NOT begins to rise from the L level to the H level. At this time, the positive voltage accumulated in the node N1 has no discharge path because the transistor Qy=Qs is in the off state, and the inverter circuit NOT
Remove the output. Here, since the transistor Q is of the D type, the potential of the node N increases following the potential of the node N1. Immediately before this transient operation, the potential of node N1 is approximately VDD level, and the potential of node N is G.
Although the voltage is at the ND level, the potentials of the nodes Nl and Nt begin to change toward a level higher than the power supply VDD voltage as a result of the transient change, and eventually rise to approximately twice the power supply VDD voltage. Therefore, transistor Q
4 is in the off state, Q- is in the off state, and the potential of the node N changes from the L level to the H level, and this H level is held by the transistor Q1. At this time, since the load transistor Q4 is controlled to be conductive at a high potential of [2VDtlJ, the following effects can be obtained.

第1に、第2図に示したFi/Eバッファ回路で述べた
が、負荷トランジスタがE型でそのゲート電圧がVDD
では、出力電圧はr VDD −VYMIJ(ytsu
sはトランジスタQ4のスレショールド電圧)までしか
上昇せず、且つ出力電圧がトランジスタの飽和電圧付近
に達すると出力トランジスタのか114!=力が急激に
低下するため出力上昇時間trも長くなる。しかし、こ
の発明による回路では9荷トランジスタのゲート電圧が
ほぼ2VDD近くまで上昇するため出力変化が早く、出
力電圧1゛−はほぼVDDレベルが得られる。
First, as described in the Fi/E buffer circuit shown in Figure 2, the load transistor is E type and its gate voltage is VDD.
Then, the output voltage is r VDD −VYMIJ(ytsu
s rises only up to the threshold voltage of transistor Q4), and when the output voltage reaches near the saturation voltage of the transistor, the voltage of the output transistor Q114! = Since the force decreases rapidly, the output rise time tr also becomes longer. However, in the circuit according to the present invention, since the gate voltage of the 9-load transistor rises to approximately 2 VDD, the output changes quickly, and the output voltage 1'- is approximately at the VDD level.

第21こ、この発明による回路では、負荷トランジスタ
およびドライバトランジスタがE型であるので、電源V
DDから接地点GNDへの貫通[fiは、トランジェン
ト時のみである。したがって、低消費値流である。
21. In the circuit according to the present invention, since the load transistor and the driver transistor are of E type, the power supply V
Penetration from DD to ground point GND [fi is only at the time of transient. Therefore, it is a low consumption value flow.

なお、上記実施例ではnチャネル型のMOSトランジス
タについて説明したが、pチャネル型のMOSトランジ
スタでも適用可能である。
In the above embodiment, an n-channel type MOS transistor has been described, but a p-channel type MOS transistor is also applicable.

発明の詳細 な説明したようにこの発明によれば、消費電力が少なく
且つ高速動作が可能なバッファ回路を有する半導体集積
回路が得られる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention provides a semiconductor integrated circuit having a buffer circuit that consumes less power and can operate at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

凱・1図および第2図はそれぞれ従来のバッファ回路を
示す図、第3図はこの発明の一実施例に係る半導体集積
回路のバッファ回路を示す図である。 Q4〜Q、・・・トランジスタ、c、ch・・・コンデ
ンサ、NO〒・・・インバータ回路、VDD・・・電源
、GND・・・接地点、IN・・・入力信号、OUT・
・・出力信号。
1 and 2 each show a conventional buffer circuit, and FIG. 3 shows a buffer circuit for a semiconductor integrated circuit according to an embodiment of the present invention. Q4~Q,...transistor, c, ch...capacitor, NO...inverter circuit, VDD...power supply, GND...ground point, IN...input signal, OUT...
...Output signal.

Claims (1)

【特許請求の範囲】[Claims] エンハンスメント型およびディプレッション型のトラン
ジスタで構成される単一チャネルのMO8型集積回路に
おいて、電源と接地点との間に直列接続されるそれぞれ
エンハンスメント型の負荷トランジスタおよびドライバ
トランジスタと、入力信号が供給されコンデンサおよび
第1のディプレッション型トランジスタを介して上記負
荷トランジスタを駆動するインバータ回路と、上記コン
デンサと第1のディプレッション型トランジスタとの接
続点と電源との間に接続され入力信号で導通制御される
コンデンサ光電用の第2のディプレッション型トランジ
スタと、上記負荷トランジスタのゲートと接地点間に接
続され入力信号で導通制御されるエンハンスメント型ト
ランジスタとを具備することを特徴とする半導体集積回
路。
A single-channel MO8 type integrated circuit consisting of enhancement-type and depletion-type transistors, each with an enhancement-type load transistor and a driver transistor connected in series between a power supply and ground, and a capacitor with an input signal supplied thereto. and an inverter circuit that drives the load transistor via a first depletion type transistor, and a photoelectric capacitor connected between a connection point between the capacitor and the first depletion type transistor and a power supply and whose conduction is controlled by an input signal. 1. A semiconductor integrated circuit comprising: a second depletion type transistor for use in the load transistor; and an enhancement type transistor connected between the gate of the load transistor and a ground point and whose conduction is controlled by an input signal.
JP56197268A 1981-12-08 1981-12-08 Semiconductor integrated circuit Pending JPS5899032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197268A JPS5899032A (en) 1981-12-08 1981-12-08 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197268A JPS5899032A (en) 1981-12-08 1981-12-08 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS5899032A true JPS5899032A (en) 1983-06-13

Family

ID=16371640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197268A Pending JPS5899032A (en) 1981-12-08 1981-12-08 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5899032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153913A (en) * 1986-12-17 1988-06-27 Nec Corp Output circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931262A (en) * 1972-07-21 1974-03-20
JPS56153836A (en) * 1980-04-28 1981-11-28 Toshiba Corp Semiconductor circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931262A (en) * 1972-07-21 1974-03-20
JPS56153836A (en) * 1980-04-28 1981-11-28 Toshiba Corp Semiconductor circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153913A (en) * 1986-12-17 1988-06-27 Nec Corp Output circuit

Similar Documents

Publication Publication Date Title
US4663584A (en) Intermediate potential generation circuit
KR940001251B1 (en) Voltage control circuit
US5339236A (en) Charge pump circuit for intermediate voltage between power supply voltage and its double voltage
JPH0531965B2 (en)
JPH064181A (en) Power-on reset signal generator
KR0126911B1 (en) Circuit and method for voltage reference generating
JPH0157533B2 (en)
KR100241201B1 (en) Bus hold circuit
JPS5899032A (en) Semiconductor integrated circuit
JP3386661B2 (en) Output buffer
US4783620A (en) Constant voltage circuit having an operation-stop function
US5077492A (en) Bicmos circuitry having a combination cmos gate and a bipolar transistor
JP4576199B2 (en) Step-down voltage output circuit
JPS6232722A (en) Push-pull output circuit
JPH0681025B2 (en) Gate drive circuit
EP0464667A2 (en) Power-on-clear signal generating circuit
JPH0753308Y2 (en) Initial clear circuit
JP3068355B2 (en) Inverter circuit
JPH11122093A (en) Level conversion circuit
JPH09326687A (en) Semiconductor integrated circuit
JP2002010631A (en) Driving circuit
JPH05102830A (en) Buffer circuit
KR800000915B1 (en) Oscillation ciruit
JPH0225108A (en) Semiconductor integrated circuit
JP2846338B2 (en) Schmitt trigger circuit