JPS5898895A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS5898895A
JPS5898895A JP56197260A JP19726081A JPS5898895A JP S5898895 A JPS5898895 A JP S5898895A JP 56197260 A JP56197260 A JP 56197260A JP 19726081 A JP19726081 A JP 19726081A JP S5898895 A JPS5898895 A JP S5898895A
Authority
JP
Japan
Prior art keywords
integrated circuit
memory cell
semiconductor integrated
memory cells
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56197260A
Other languages
Japanese (ja)
Other versions
JPH0310196B2 (en
Inventor
Yuji Takeshita
竹下 祐二
Norio Endo
遠藤 憲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56197260A priority Critical patent/JPS5898895A/en
Publication of JPS5898895A publication Critical patent/JPS5898895A/en
Publication of JPH0310196B2 publication Critical patent/JPH0310196B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops

Abstract

PURPOSE:To reduce the power consumption and reduce the increment of the number of elements, by arranging memory cells, where polysilicon resistances are used as loads, in a matrix and supplying power commonly to plural cells through a current limiter where the resistance is lowered by the rise of temperature. CONSTITUTION:Memory cells M11-Mmn where polysilicon resistance elements are used as load resistances R1 and R2 of MOSFETs T1 and T2 are arranged in a matrix to constitute a memory cell array 21. Current limiters 22 where resistance values are raised by the rise of temperature are constituted with, for example, MOSFETs to supply power commonly to plural memory cells. Thus, the power consumption is reduced, and the increment of the number of elements is reduced considerably to make them into an integrated circuit with advantage because the current limiter is used commonly for plural memory cells.

Description

【発明の詳細な説明】 発明の技術分野 本発明はポリシリコン抵抗才子を負荷素子として用いる
メモリーセルを有した半導体年利回路に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor annual rate circuit having a memory cell using a polysilicon resistor as a load element.

発明の技術的背景とその問題点 MO3型スタティックRAM (Random Acc
essMemory )は、高折抗ポリシリコン1子を
メモリーセルの負荷素子として使用することにより、回
路の高年沃化、低電力化を実覗しつつある。
Technical background of the invention and its problems MO3 type static RAM (Random Acc
essMemory) is beginning to realize the realization of long-term iodization and low power consumption of circuits by using high-resolution anti-polysilicon monolayers as load elements of memory cells.

しかしぼりシリコン自体は半導体であって、担抗値は温
度に如し負の傾きを有する。しかもポリシリコン抵抗の
値は、温度に対して指数関数で変化する。従って高温で
はポリシリコンの値は、室湖才たは低温に比べて極端に
低下し、1に源vc0から流れ込む電源値の増大を招き
、窩隼積化したlJl’iの消費電力の増加を生ずる。
However, silicon itself is a semiconductor, and its resistance value has a negative slope with temperature. Moreover, the value of polysilicon resistance changes exponentially with temperature. Therefore, at high temperatures, the value of polysilicon is extremely lower than that at low temperatures, leading to an increase in the value of the power flowing from the source vc0, and an increase in the power consumption of the integrated circuit. arise.

上記、醒1搗でのポリシリコン抵抗素子に流れる電流は
、特に半導体メモリーの場合、動作時もさることながら
スタンド・パイ時の消費電力をが゛らすための膜間とな
る。
The current that flows through the polysilicon resistor element during the first wake-up period is a current flowing through the polysilicon resistor element, especially in the case of a semiconductor memory, to reduce power consumption not only during operation but also during standby.

r1図1MO8型スタティックRAMの従来例であり、
TIyT2は駆動用MO8)ランジスク、R1、R2は
ポリシリコンよりなる負荷抵抗素子、D、Dはデータ紳
、’r3 、T4は出力転送用MO3)ランソスク、”
QC* ”8Bは電源である。
r1 Figure 1 is a conventional example of MO8 type static RAM,
TIyT2 is a drive MO8) run disk, R1 and R2 are load resistance elements made of polysilicon, D and D are data connectors, 'r3 and T4 are MO3) run disks for output transfer.
QC* “8B is the power supply.

上記抵抗R,=:R2の関係にあり、トランジスタT+
1則がオン(導辿)で抵抗R1に流れるM・渾工lは、
トランジスタテ2側がオンで抵抗R2に流れる電流と略
等しい。第1図においてこのメモリーセルでの消費電流
は、工1=vcc/R1であり、抵抗R1は温度変化に
対し、狗性でかつ指数間?で変化するから、 と表わせる。ただしEaけ活性什エネルギで実験的にl
’j’ 0.3〜0.5 〔eV]、αは定数、Kはボ
ルツマン定数、Tは絶、対温度である。従って湯度上昇
に伴ない、ポリシリコン抵抗の低下に合った分だけ消費
電流は聖火する1・ −例として、例えば1.6にビットのメモIJ−を考え
てみると、常温(25℃)での抵抗R,(25℃)全R
+(25℃) = 1. [CΩ〕とすると、常決゛、
での重流丁l (25℃)11′、vcc=5Vとすれ
ばI+  (25℃)=5×]0 〔A〕で、全メモリ
ーセルでは16424%I、今80〔μA〕となる。一
方、高温例えば80℃では、い塘Ea = 0.4 [
eV] トf h f’f、R,(1℃):R1(25
℃)/ e 24寺R1(25℃)/1゜となり、全メ
モリーセルでの消費電流は800〔μA〕となる。従っ
て64にビットのメモリーでは、同一の抵抗9−子では
16にビットの場合の4倍、256にビットのメモリー
では更にその4倍゛というように、消費電流は増加一方
である。
The above resistance R,=:R2, and the transistor T+
When the first rule is on (tracing), M and the flow through the resistor R1 are as follows:
The current is approximately equal to the current flowing through the resistor R2 when the transistor T2 side is on. In FIG. 1, the current consumption in this memory cell is 1=vcc/R1, and the resistance R1 is sensitive to temperature changes and is within an exponential range. Since it changes with , it can be expressed as . However, experimentally with Ea active energy
'j' 0.3 to 0.5 [eV], α is a constant, K is Boltzmann's constant, and T is absolute relative to temperature. Therefore, as the hot water temperature rises, the current consumption decreases by the amount corresponding to the decrease in polysilicon resistance1. -For example, if we consider Bit's memo IJ-1.6, at room temperature (25℃) Resistance R at (25℃) Total R
+(25℃) = 1. If [CΩ], then the constant ゛,
If the heavy current is 11' at (25°C) and vcc = 5V, then I+ (25°C) = 5x]0 [A], which is 16424% I for all memory cells, which is now 80 [μA]. On the other hand, at high temperatures such as 80°C, Ea = 0.4 [
eV] f h f'f, R, (1°C): R1 (25
°C)/e 24°R1 (25°C)/1°, and the current consumption in all memory cells is 800 [μA]. Therefore, in a 64-bit memory, the current consumption is four times that of a 16-bit memory with the same resistor 9-wire, and even four times that amount in a 256-bit memory, so that the current consumption continues to increase.

上記消W電流を減らすまたは同一レベルにするためには
、負荷抵抗素子の抵抗値を高くし7ていく必要がある。
In order to reduce the above-mentioned dissipation current or keep it at the same level, it is necessary to increase the resistance value of the load resistance element.

ポリシリコン抵抗値を高くするためには、ポリシリコン
抵抗の形状を細長くするか或いはポリシリコン抵抗自体
を高いシート抵抗値に製造するかであるが、上記形状を
細長くして抵抗価を高くすると高集積化に障害となり、
またポリシリコン抵抗のシート抵抗を高くすることは、
製造技術が知′シクなる問題がある。
In order to increase the polysilicon resistance value, the shape of the polysilicon resistor can be made elongated, or the polysilicon resistor itself can be manufactured to have a high sheet resistance value. It becomes an obstacle to integration,
In addition, increasing the sheet resistance of polysilicon resistor
There is a problem with manufacturing technology.

上記問題を改善するには、メモリーセルの電源供給端側
に電流リミッタを介挿すればよい。
In order to improve the above problem, a current limiter may be inserted at the power supply end of the memory cell.

これを]ン)而で示せば、例えば第2図に示される如く
メモリーセルと電源■。。の伊−船端間にデプレッショ
ン摩MO8l−ランジスタTllを介挿すればよい。
For example, as shown in Figure 2, a memory cell and a power supply. . It is sufficient to insert a depression resistor MO8l-transistor Tll between the I and the end of the ship.

上記メモリーセルにおけるトランジスタTllは、定電
流素子換言すれば電流リミッタとして動作する。この場
合メモリーセルに流れる1浦5− 丁1、け、I3=■o(合成電流)で、n個のメモリー
セルがあればn X r 11 = r oである。例
えば16にビットの全てが接続されているとすると、等
側内に臆3図のように表わせる。一方、I 6 = K
V 7H”  eff −V TH=・(2)である。
The transistor Tll in the memory cell operates as a constant current element, in other words, a current limiter. In this case, the current flowing through the memory cells is 1 = ■ o (composite current), and if there are n memory cells, n x r 11 = r o. For example, if all bits are connected to 16, it can be expressed as shown in Figure 3 on the same side. On the other hand, I 6 = K
V 7H” eff −V TH=·(2).

ここでKは定わ、COxは栄位面積当シのゲート容貧、
Wけチャネル幅、しけチャネル長、′teffは実効電
子モビリティ(易動度)、VTHはスレッショルド電圧
である。上式の関併より第2図Iの回路にあっては、高
温で抵抗R3の佃が低下しても、易動度1leffけ、
温度に対して習温で低下するポリシリコン抵抗と逆の特
性をもつから、メモリーセルに流れる電流■oはμef
fの低下で補修されることになり、ftjl限されるも
のである。なお上記電流■oは、”THやトランジスタ
T11の寸法Z、、Wによっても同様に制限される。
Here, K is fixed, COx is the gate density per the area of the crown,
W is the channel width, Teff is the effective electron mobility, and VTH is the threshold voltage. From the above equation, in the circuit of Figure 2 I, even if the resistance of resistor R3 decreases at high temperature, the mobility 1leff,
Since it has the opposite characteristic to polysilicon resistance, which decreases with increasing temperature, the current flowing through the memory cell is μef
It will be repaired as f decreases, and ftjl is limited. Note that the above-mentioned current (2) is similarly limited by TH and the dimensions Z, W of the transistor T11.

このように第2図の構成によれば、ポリシリ6− コンpx荷凱抗の温度特性を、易動度/′effによっ
て補償することが可能でちり、従って高p、二秒メモリ
ーとした場合でも、低消費空力のメモリーをfil、1
作することができるものである。
In this way, according to the configuration shown in Fig. 2, it is possible to compensate the temperature characteristics of the polysilicon px load resistance by the mobility/'eff, and therefore, when a high p, 2 second memory is used. However, the memory of low consumption aerodynamics is fil, 1
It is something that can be created.

第4図1ないしが丁6図1け汗2図の(tllの改善9
ijであ;、ff’4図はτ流すミ、ツタとしてエンノ
・ンスメント型トランジスタT21を用いた場合の例で
ある このt”・合もr1度が上がると、トランジスタ
T21のeffけ下がる作用があるから、庁す−雄側と
同相のダ1果がイ↓)られる。
Figure 4 1 to 6 Figure 1 Figure 2 (Improvement of tll 9
ij, ff'4 diagram is an example of using the enhancement type transistor T21 as a vine for τ to flow. In this t'' case, when r1 degree increases, the effect of decreasing the eff of the transistor T21 is Therefore, the result of D1 which is in phase with the male side is ↓).

テ5図は正−流リミッタとして、エンノ・ンスメント型
またはデプレッション型トランクヌタT31e用い、そ
のケ9−トにクロック信号4たは何らかの制徒、C″、
七〇を供給するようにした才1合の例である。この場合
も、前記各ツだF fjjと同相の効果がイηられる。
In Figure 5, an enrichment type or depletion type trunk nut T31e is used as a forward flow limiter, and a clock signal 4 or some kind of limiter, C'',
This is an example of Saiichigo who supplied 70. In this case as well, the effects that are in phase with each of the above-mentioned components F fjj are suppressed.

第6図1は電流リミッタとして、第2図の場合と回付の
デプレッション型トランジスタT11゜T//、1を並
列に用いた場合の例である。
FIG. 6 1 shows an example in which a depletion type transistor T11°T//1 is used in parallel with the case shown in FIG. 2 as a current limiter.

なお、電流リミッタとしては上記の場合のみに限定され
るものではなく、例えば温度が上がると抵抗価が上がる
通常の抵抗素子を用いてもよい。
Note that the current limiter is not limited to the above-mentioned case; for example, a normal resistance element whose resistance value increases as the temperature rises may be used.

しかしながら土所・汁2図ないし第6図の定電流源菓子
としての完済[・リミッタは、メモリーセル・アレイの
各メモリーセル毎に設けると、7素子/セルとなって素
子数が増加し、茜巣私化の障害となる間匙“がある。
However, if the limiter is provided for each memory cell in the memory cell array, the number of elements will increase to 7 elements/cell, There is an obstacle to privatizing Akanesu.

発明の目的 本発明に一上記実情に鑑みてなされたもので、上記のよ
うに素子数が増加することなく上記消費市原の問題点を
改善できる半導体集積回路を提供することを目的として
いる。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a semiconductor integrated circuit that can improve the above-mentioned problem of poor consumption without increasing the number of elements.

発明の析lを 世(えは前記した各回路1ズIKも示される如く、ポリ
シリコン抵抗素子を角荷累子として用いるメモリーセル
をマトリクス(行1列)状に配置したメモリーセル・ア
レイを有する半導体集積回路において、定電流素子とし
ての電流リミッタを介して複数のメモリーセルに共通に
電源を供給するようにしたものである。土言己拶数のメ
モリーセルとしては、メモリーセル・アレイの行列に1
とめられたものである麿、合とか、列別に1とめられた
ものである場合とか、メモリーセル・アレイの複数の行
及び複数の列にわたり1とめられたものである場合等が
ある。
Analysis of the invention As shown in each of the circuits 1 and IK described above, a memory cell array in which memory cells using polysilicon resistive elements as square grids are arranged in a matrix (one row and one column) is used. In a semiconductor integrated circuit having a semiconductor integrated circuit, power is commonly supplied to multiple memory cells via a current limiter as a constant current element. 1 in line
There are cases where it is fixed, such as when it is fixed, when it is fixed by column, when it is fixed as one across multiple rows and multiple columns of the memory cell array, and so on.

発明の効果 上記のように、温度が上がると実行的に抵抗価が土がる
電流リミッタを介してメモリーセルにル′源を供給すれ
ば、低消費電力イヒが可能となる。また上記電流リミッ
タは6数のメモリーセルに共通に使用されるため、素子
数の増力pを大幅に軒滅することができ、集程−回路什
に有利となる。
Effects of the Invention As described above, low power consumption becomes possible by supplying a power source to the memory cell via a current limiter whose resistance value actually decreases as the temperature rises. Furthermore, since the current limiter is commonly used for six memory cells, the increase in the number of elements (p) can be greatly reduced, which is advantageous in terms of packaging and circuitry.

発明の実施例 以下図面を参照して本発明の一実施例を説明する。卯7
図ないし第9図は本発明の各実施例を示すもので、M1
+−Mmnはマトリクス状のメモリーセル・アレイ21
の各メモリーセル、2210〜22mo r 22o+
〜226nz 22はそ9− れぞれ重加リミッタである。上記メモリーセルMl、〜
Mmnはそれぞれ、fliえは第2図1の回路で示され
るもの(但し定%、渾すミッタ部は省略して考える)で
ある。ここで第7図に示される実施例は、メモリー七ル
・アレイ21の電源線を行列にまとめ、これら行毎にそ
れぞれ重加リミッタを介挿したもの、第8図に示される
実施例は、メモリーセル・アレイの電源線を列別にまと
め、これら列毎にそれぞれ1l−重加リミッタを介挿し
たもの、第9図に示される実施例1は、メモリーセル・
アレイ21の電源線を、各行及び各列にわたシ共通化し
たものである。
Embodiment of the Invention An embodiment of the invention will be described below with reference to the drawings. Rabbit 7
The figures to FIG. 9 show each embodiment of the present invention, and M1
+-Mmn is a matrix memory cell array 21
Each memory cell, 2210~22mo r 22o+
~226nz 22 are weighted limiters. The above memory cell Ml, ~
Mmn and fly are respectively shown in the circuit of FIG. 2 (considered as a constant %, with the rotating transmitter section omitted). In the embodiment shown in FIG. 7, the power supply lines of the memory array 21 are arranged in a matrix, and a weighted limiter is inserted in each row, and in the embodiment shown in FIG. Embodiment 1 shown in FIG. 9 is one in which the power supply lines of the memory cell array are grouped into columns and a 1L weight limiter is inserted in each column.
The power supply line of the array 21 is made common across each row and each column.

上記のように電流リミッタを初かのメモリーセルに共通
に使用し、電源を供給するようにすると、素子数を憎子
ことなくメモリーを構成することができる。flIとし
て16にビットのメモリーを考えた場合、集積回路チッ
プのメモリーセル・アレイの構成が”128行×128
行”とすれば、行別に電流リミッタを共通化することに
より、128個のトランジスタの素子数増10− 加で済み、また列別に1ト流IJ ミッタを共逆什する
ことにより、同行に128個の素子数ギ加で済寸せるこ
とができ、寸た第9図の虹〈各行列にわたりまとめれば
、原理的にけ]、 @ 17)素数憎加で済むものであ
る。
By using the current limiter in common to the first memory cell and supplying power as described above, it is possible to configure the memory without changing the number of elements. If we consider a 16-bit memory as flI, the configuration of the memory cell array of an integrated circuit chip is 128 rows x 128
By using a common current limiter for each row, the number of transistors can be increased by 10-128 transistors, and by reversing the 1-current IJ transmitter for each column, it is possible to increase the number of transistors by 128 This can be done by adding the number of elements, and the rainbow shown in Figure 9 (in principle, if summed up over each matrix), @ 17) can be done by adding the number of prime numbers.

【図面の簡単な説明】[Brief explanation of drawings]

舘1図は従来のMO8型スタティックRM(のメモリー
セルを示す回路図、第2図は但企費m゛力化を図iつだ
メモリーセルを示す回路図、F 3 [Qlは同回路の
等価回路図、評I4図ないしか6図は低消費電力化を図
った他のダ1を示す回路図、か7図ないし第9図は本発
明の各実施例の回路セL成図である。 T1〜T4・・・MOS )ランノスタ、R1r R2
・・・負荷抵抗、”’ 、”’ 、T3+ 、’r、l
、 T′/+t + 22.o〜22mo、 2261
〜220n、22−・・隼流リミッタ、M11〜Mmn
・・・メモリーセル、21・・・メモリーセル・アレイ
。 出願人代鯉人 弁理士 鈴 江 武 彦11− 第6図 ■SS 第9図 cc
Figure 1 is a circuit diagram showing a memory cell of a conventional MO8-type static RM (Fig. 2 is a circuit diagram showing a memory cell designed to reduce project costs. Equivalent circuit diagrams, evaluation I Figures 4 to 6 are circuit diagrams showing other circuits designed to reduce power consumption, and Figures 7 to 9 are circuit cell diagrams of each embodiment of the present invention. .T1~T4...MOS) Lannostar, R1r R2
...Load resistance, "',"', T3+,'r,l
, T'/+t + 22. o~22mo, 2261
~220n, 22-... Hayabusa flow limiter, M11~Mmn
...Memory cell, 21...Memory cell array. Applicant Koihito Patent Attorney Suzue Takehiko 11- Figure 6 ■ SS Figure 9 cc

Claims (5)

【特許請求の範囲】[Claims] (1)  ポリシリコン抵抗才子を負荷素子として用い
るメモリーセルをマトリクス状に配挿したメモリー七ノ
[・プレイを有する半導体集積回路において、温度が土
がると抵抗値が上がる少なくとも1個・の電流リミッタ
を介して?都・のメモリーセルに共通に電源を供給して
なることを特b゛とする半導体集積回路。
(1) In a semiconductor integrated circuit having a memory cell in which memory cells using polysilicon resistors as load elements are arranged in a matrix, at least one current whose resistance value increases as the temperature rises. Through a limiter? A semiconductor integrated circuit that is characterized by supplying power in common to memory cells.
(2)  前記・抄奈のメモリーセルは、前記メモリー
セル・アレイの行別にまとめられたものである特許請求
の範囲鯨1項に記載の半導体集積回路0
(2) The semiconductor integrated circuit 0 according to claim 1, wherein the memory cells of the above-mentioned Shona are grouped by row of the memory cell array.
(3)  前記複【のメモリーセルは、前記メモリーセ
ル・アレイの列別にまとめられたものである特許請求の
範囲第1項に記載の半導体集積回路。
(3) The semiconductor integrated circuit according to claim 1, wherein the plurality of memory cells are grouped by column of the memory cell array.
(4)  前言a 室= hのメモリーセルは、角■n
1メモリーセル・アレイの複数の行及び検数の列にわた
りまとめられたものである特Fl訂求の嵯囲8F1項に
記載の半導体集積回路。
(4) The memory cell in the previous statement a chamber = h is the corner n
1. A semiconductor integrated circuit as set forth in Box 8F1 of the Patent Revision, which is assembled over a plurality of rows and columns of a memory cell array.
(5)#配電流すミックは、温度が土がると笑効電子モ
ビリティが低下するMO8型トランジスタである特許請
求の範囲範1項に記1Nの半導体集積回路0
(5) #The 1N semiconductor integrated circuit according to claim 1, in which the current distribution sum is an MO8 type transistor whose effective electron mobility decreases when the temperature decreases.
JP56197260A 1981-12-08 1981-12-08 Semiconductor integrated circuit Granted JPS5898895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197260A JPS5898895A (en) 1981-12-08 1981-12-08 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197260A JPS5898895A (en) 1981-12-08 1981-12-08 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS5898895A true JPS5898895A (en) 1983-06-11
JPH0310196B2 JPH0310196B2 (en) 1991-02-13

Family

ID=16371500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197260A Granted JPS5898895A (en) 1981-12-08 1981-12-08 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5898895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922288A (en) * 1982-07-26 1984-02-04 Nec Corp Storage circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799765A (en) * 1980-12-12 1982-06-21 Fujitsu Ltd Semiconductor resistance element
JPS57162181A (en) * 1981-03-31 1982-10-05 Fujitsu Ltd Semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799765A (en) * 1980-12-12 1982-06-21 Fujitsu Ltd Semiconductor resistance element
JPS57162181A (en) * 1981-03-31 1982-10-05 Fujitsu Ltd Semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922288A (en) * 1982-07-26 1984-02-04 Nec Corp Storage circuit device

Also Published As

Publication number Publication date
JPH0310196B2 (en) 1991-02-13

Similar Documents

Publication Publication Date Title
JP3085073B2 (en) Static RAM
TWI527031B (en) Semiconductor integrated circuit device
US4623989A (en) Memory with p-channel cell access transistors
TWI485705B (en) Memory cells having a row-based read and/or write support circuitry
US5353251A (en) Memory cell circuit with single bit line latch
US20020071308A1 (en) Semiconductor memory device having memory cells each capable of storing three or more values
CN100593824C (en) SRAM memory cell array and IC structure
GB2162394A (en) Mos static ram
KR900015164A (en) EEPROM with NAND Memory Cell Structure
JP4219663B2 (en) Semiconductor memory device and semiconductor integrated circuit
US11551750B2 (en) Enhanced state dual memory cell
US6982915B2 (en) SRAM with temperature-dependent voltage control in sleep mode
US8482990B2 (en) Memory edge cell
US5677889A (en) Static type semiconductor device operable at a low voltage with small power consumption
US20180173267A1 (en) Methods and apparatuses including a process, voltage, and temperature independent current generator circuit
US6229739B1 (en) Sense amplifier having a bias circuit with a reduced size
JPS582437B2 (en) Three-state output circuit
JPS5898895A (en) Semiconductor integrated circuit
US4730276A (en) Semiconductor memories
US4004286A (en) Programmable random access memory (PRAM) integrated circuit memory device
JPS6155195B2 (en)
JPS5856288A (en) Semiconductor integrated circuit
JPS5885994A (en) Memory circuit
JPH059879B2 (en)
JP2551355B2 (en) Semiconductor static memory