JPS5894594A - Apparatus for collecting manganese nodule - Google Patents
Apparatus for collecting manganese noduleInfo
- Publication number
- JPS5894594A JPS5894594A JP19080581A JP19080581A JPS5894594A JP S5894594 A JPS5894594 A JP S5894594A JP 19080581 A JP19080581 A JP 19080581A JP 19080581 A JP19080581 A JP 19080581A JP S5894594 A JPS5894594 A JP S5894594A
- Authority
- JP
- Japan
- Prior art keywords
- suction head
- ore
- seabed
- nodules
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、海底面上を移動しなから集鉱ダクト内に発
生させた水流により該ダクトの先端に設けたサクション
ヘッドより海底面に賦存するマンガン団塊等の団塊を吸
引して集鉱するマンガン団塊等の集鉱装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for collecting nodules such as manganese nodules existing on the seabed from a suction head provided at the tip of the ore collecting duct by a water flow generated in an ore collection duct while moving on the seabed. This invention relates to an ore collection device for manganese nodules, etc., which collects ores by suctioning them.
以下マンガン団塊の場合について説明するが本発明はマ
ンガン団塊に類似のものの集鉱装置にも適用することが
できる。The case of manganese nodules will be described below, but the present invention can also be applied to ore collectors similar to manganese nodules.
ニッケル、コバルト、銅、マンガン等の無尽蔵な鉱物資
源として注目されているマンガン団塊は深海底の海底堆
積物上にあたかも玉石を敷いた如く平面的に賦存してい
る。そこで、これを採鉱するには海底面に分布する団塊
を集鉱した上、海上に揚鉱することが必要となる。Manganese nodules, which are attracting attention as an inexhaustible mineral resource of nickel, cobalt, copper, manganese, etc., are found flatly on the seafloor sediments of the deep sea floor, as if laid out on boulders. Therefore, in order to mine this ore, it is necessary to collect the nodules distributed on the ocean floor and then lift the ore to the sea.
マンガン団塊集鉱装置としては、冒頭に掲げた、いわゆ
る流体ドレツジ方式が機構が簡単で故障が少なく優れて
いる。As a manganese nodule collector, the so-called fluid dredge method mentioned at the beginning is superior because it has a simple mechanism and fewer breakdowns.
さて、マンガン団塊の賦存する海底は必らずしも平坦な
所ばかりとは限、らす、起伏があり、上り勾配や下り勾
配があり、その移り替る所は弧状の場合やある角度の稜
線をなす場合もある。Now, the seabed where manganese nodules exist is not necessarily flat, but there are undulations, upslopes and downslopes, and there are places where the seafloor changes in an arc shape or at a certain angle. Sometimes it forms a ridgeline.
マンガン団塊集鉱装置の設計に際しては最大8/100
程度の海底勾配を念頭に置く必要があると云われている
。Maximum 8/100 when designing manganese nodule concentrator
It is said that it is necessary to keep in mind the degree of seabed slope.
又、海底堆積物は一般に柔らかいが、その程一度は一様
でなく、地耐力は200〜700に9/m2の範囲に及
んでいる。そのため集鉱装置は接地面積の大きなスキー
上に塔載して海底面に支えるのが一般的であるが、海底
の柔らかさの相違によってスキーの沈下量が変化し、そ
の差は約30crnにも達する。又スキーが前述の海底
勾配の稜線に乗った場合は、スキーの一部が海底面より
めり込んだり海底面から離れたりする。In addition, although seafloor sediments are generally soft, they are not uniform, and their bearing capacity ranges from 200 to 700 9/m2. For this reason, ore collectors are generally mounted on skis with a large contact area and supported on the seabed, but the amount of ski sinking varies depending on the softness of the seabed, and the difference can be as much as 30 crn. reach Furthermore, if the ski rides on the ridgeline of the above-mentioned seabed slope, a portion of the ski may sink into the seabed or become detached from the seabed.
これらの結果、サクションヘッドが海底面から離れすぎ
ると海水ばかりを吸引し、逆にサクションヘッドが海底
面よりめり込むと、ドレツジャーの如く海底堆積物を大
量に吸込むことになる。As a result, if the suction head is too far from the seabed, it will only suck in seawater, and if the suction head sinks below the seafloor, it will suck in a large amount of seafloor sediment like a dredger.
マンガン団塊の海底面上の状態は、地面にポールが転が
っている如く全体が露出しているものから半分程度海底
面上に露出したもの、氷山の如く殆んど海底叩上に没し
たもの等まちまちである。The state of the manganese nodules on the seabed ranges from completely exposed, like a pole lying on the ground, to about half exposed above the seafloor, to almost completely sunk to the seabed, like an iceberg. It varies.
又、マンガン団塊の大きさも種々であるが、揚鉱管の直
径や経費性等のかね合いから賦存率の少い例えば80〜
ioo、以上の大径のものはサクションヘッドに入らな
いように選別して排除する必要がある。In addition, the size of manganese nodules varies, but due to the diameter of the ore lifting pipe, cost, etc., the size of manganese nodules is low, for example, 80 ~
Items with a diameter larger than 100 mm need to be sorted out and removed to prevent them from entering the suction head.
上述の海底地形、土質、マンガン団塊の状態にかんがみ
、集鉱装置のサクショ〈ヘッドは海底面との相対高さ及
び傾斜を調整し、かつ所定の揚鉱団塊粒径範囲を超す大
径の団塊を選別排除しながら操業する必要がある。Considering the above-mentioned seabed topography, soil quality, and condition of manganese nodules, the suction head of the ore collecting device adjusts the relative height and inclination with the seabed surface, and the head is designed to adjust the relative height and inclination of the ore collector to the seabed surface, and to collect large-diameter nodules that exceed the predetermined ore nodules particle size range. It is necessary to operate while selecting and eliminating.
従来サクションヘッドの位置、傾斜調整手段としては、
集鉱ダクトとサクションヘッドとの間にベローズを設け
、その伸縮によって海底の高さ、傾斜の変化に追随させ
る方法が提案されているが、約30crnに及ぶ海底高
さの変化に追随させるためにはベローズの長さが極めて
長くなり、又ベローズは肉厚が薄いため内部を通過する
団塊によって急速に摩耗し寿命が短かくなる。又、母船
による曳航力をサクションヘッドに確実に伝達できない
等の種々の問題点がある。Conventional methods for adjusting the position and inclination of the suction head include:
A method has been proposed in which a bellows is installed between the ore collection duct and the suction head, and the bellows expands and contracts to follow changes in seabed height and slope. The length of the bellows becomes extremely long, and since the bellows has a thin wall, it is rapidly worn out by the nodules passing through the inside, shortening its life. Additionally, there are various problems such as the inability to reliably transmit the towing force from the mother ship to the suction head.
仮りにベローズの強度を増すために板厚を増せば海底高
さ、傾斜に追随しにくへなる。If the thickness of the bellows were increased to increase its strength, it would be difficult to follow the height and slope of the seabed.
又、揚鉱粒径範囲を超す大径の団塊を選別排除するいわ
ゆる一次団塊選別手段としては、従来サクションヘッド
の前面に、海底面の上下にわたって進行方向に対して斜
め方向に、鉛直な選別格子を設け、これで除外すべき団
塊を外側方に押し出す方法が提案されているが、この選
別装置で円滑に大径団塊を外側方に押し出すには、該選
別格子の集鉱装置の進行方向に対する角度をかなり鋭角
にすることが必要であり、サクションヘッドの幅が大き
くなると、この選別装置が非常に大きくなると云う不都
合が起る。In addition, as a so-called primary nodule sorting means for sorting out and eliminating large-diameter nodules that exceed the lifted ore grain size range, conventionally, a vertical sorting grid is installed in front of the suction head in a direction diagonal to the direction of travel, extending above and below the seabed surface. A method has been proposed in which the nodules that should be excluded are pushed outward using this sorting device, but in order for this sorting device to smoothly push out large diameter nodules outward, it is necessary to The disadvantage is that the angle must be quite acute, and the increased width of the suction head makes this sorting device very large.
この発明は、従来提案されている集鉱装置のサクション
ヘッドに関連する上述の欠点を除去した、ベローズを用
いることなく簡単な構成でサクションヘッドを確実に海
底高さ、傾斜に追随させることができるとともに、従来
よりもはるかに小さい部材で円滑に大径団塊の選別除去
が可能なマンガン団塊集鉱装置を提供することを目的と
する。This invention eliminates the above-mentioned drawbacks associated with the suction heads of conventionally proposed ore collectors, and allows the suction head to reliably follow the seabed height and slope with a simple configuration without using bellows. Another object of the present invention is to provide a manganese nodule collector capable of smoothly sorting and removing large diameter nodules using members much smaller than conventional ones.
以下、本発明をその実施例を示す図面にもとすいて詳細
に説明する。Hereinafter, the present invention will be explained in detail with reference to drawings showing embodiments thereof.
第1図及び第2図に示す本発明の実施例の集鉱装置は、
実質的に密閉容器として構成されたホッパー1と、これ
より前方に伸びた複数本(図の場合は4本)の集鉱ダク
ト2と、その垂下した先端部に取付けられたサクション
ヘッド3と、前記ホッパー1より後方に伸び外海に開口
する泥水排出管4と、その中間に設けられた集鉱用ポン
プ5とその駆動モータ6と、ホッパー底部の団塊排出口
1aに接続され図示せぬ海上の母船により該集鉱装置を
曳航するとともに途中に設けた図示せぬ揚鉱ポンプによ
り団塊を母船に揚鉱する揚鉱管7を接続する揚鉱用接続
管8とを有し、これらの装置は一つのフレーム9に塔載
されている。なお、第2図には繁雑をさけるため揚鉱用
接続管8及びフレーム9は省略されている。フレーム9
の前端には、本集鉱装置が曳航中に障害物に衝突した場
合の緩衝のためにバンパー10がバネ11を介して取付
けられている。The ore collector according to the embodiment of the present invention shown in FIGS. 1 and 2 is as follows:
A hopper 1 substantially configured as a sealed container, a plurality of ore collecting ducts 2 (four in the figure) extending forward from the hopper 1, a suction head 3 attached to the hanging tip thereof, A mud water discharge pipe 4 extending rearward from the hopper 1 and opening into the open sea, an ore collection pump 5 and its drive motor 6 provided in the middle, and a mud water discharge pipe 4 which is connected to the nodule discharge port 1a at the bottom of the hopper and which is connected to the sea (not shown). The ore collecting device is towed by the mother ship, and an ore lifting connecting pipe 8 is connected to the ore lifting pipe 7 for lifting the ore nodules to the mother ship using an ore pump (not shown) installed on the way. They are mounted on one frame 9. Note that the ore lifting connecting pipe 8 and frame 9 are omitted in FIG. 2 to avoid complexity. frame 9
A bumper 10 is attached to the front end of the ore collecting device via a spring 11 in order to provide cushioning in the event that the ore collecting device collides with an obstacle while being towed.
フレーム9の集鉱ダクト2を固定している部分の直前の
位置、すなわちサクションヘッドろの直上の位置で、4
つのサクションヘッドの間及び両外側の5個所にアーム
12の一端が、集鉱装置進行方向に平行な鉛直面内でア
ーム12が揺動出来る如く軸支されており、該アーム1
2の他端には横方向の水平軸のまわりに回転自在に海底
高さ検出用ホイール13が軸支されてい−る。該ホイー
ル13は内部に浮力材を充填する等の手段により比重を
海水より僅かに大きい程度に調整され、集鉱装置の前進
の際、海底堆積物表面よりめり込むことなく、又反動等
で跳ね上がったりすることなく常に海底面に接触しつ〜
転動することができるようになっている。4 at the position immediately in front of the part of the frame 9 that fixes the ore collection duct 2, that is, at the position directly above the suction head filter.
One end of the arm 12 is pivotally supported between the two suction heads and at five locations on both outer sides so that the arm 12 can swing in a vertical plane parallel to the direction of movement of the ore collector.
A seabed height detection wheel 13 is rotatably supported at the other end of the wheel 2 so as to be rotatable about a horizontal horizontal axis. The specific gravity of the wheel 13 is adjusted to be slightly higher than that of seawater by filling the interior with a buoyancy material, etc., so that when the ore collecting device moves forward, it does not sink into the seabed sediment surface and does not bounce up due to reaction etc. Always in contact with the seabed surface without
It is now able to roll.
フレーム9の下面には複数の案内筒14が垂直に4列に
配設されており、これに対応して、下端がスキー15の
上面に軸支された柱16が上記案内筒14に遊嵌してい
る。柱160周りには圧縮バネ17が設けられ、フレー
ム9及びその上に塔載された前記の装置の重量はバネ1
7を介してスキー15に支持されている。スキー15は
撓み易い鋼板等で作られており、海底地形に追随してた
わむのでスキーが部分的に海底堆積物中にめり込んだり
、一部が海底面より遊離することがなく、シかもばね1
7の伸縮によりフレーム9に無理な力が掛ることも防止
されている。A plurality of guide tubes 14 are vertically arranged in four rows on the lower surface of the frame 9, and correspondingly, a column 16 whose lower end is pivotally supported on the upper surface of the ski 15 is loosely fitted into the guide tube 14. are doing. A compression spring 17 is provided around the column 160, and the weight of the frame 9 and the device mounted thereon is equal to the spring 1.
It is supported by skis 15 via 7. The skis 15 are made of a flexible steel plate, etc., and bend to follow the seafloor topography, so the skis do not partially sink into the seabed sediments or come loose from the seafloor surface.
Expansion and contraction of frame 7 also prevents excessive force from being applied to frame 9.
次に、サクションヘッドの詳細を第3図及び第4図によ
り説明する。各サクションヘッド3は第4図に示す如゛
く先端が横方向に漸次波がった。断面が長方形の集鉱ダ
クト2の下端部の前後壁中心線上に前後方向に設けられ
た支持軸20に所定の角度範囲(即ち前述の海底勾配8
/100に対応する角度範囲)揺動可能に軸支されてい
る。この揺動範囲は集鉱ダクトの側壁に取付はラレタス
トッパ20′により限定される。Next, details of the suction head will be explained with reference to FIGS. 3 and 4. The tip of each suction head 3 was gradually waved in the lateral direction as shown in FIG. A support shaft 20 provided in the front and back direction on the center line of the front and rear walls at the lower end of the ore collecting duct 2 having a rectangular cross section has a predetermined angle range (i.e., the seabed slope 8
/100) is pivotably supported. This swing range is limited by a Lareta stopper 20' attached to the side wall of the ore collecting duct.
サクションヘッド6は、上記の支持軸20に軸支され集
鉱ダクト2の端部を僅かの遊隙な介して囲繞する長方形
枠形のサクションヘッドネック部材21と、該部材の両
側板に連続して下材21の前後壁の下端に夫々接続する
如く、その上端な揺動可能に上記サクションヘッド側板
で軸支されたサクションヘッド前後ブレード23゜24
を有する。上記の1対のサクションヘッド側板22の内
面と前後ブレード23.24で囲まれたサクションヘッ
ド開口は前後ブレード25゜24の揺動位置によってフ
レーム9に対する高さが変化する。前後ブレード21.
24の両側縁とサクションヘッド側板22との間には僅
かの遊隙が設けられている。The suction head 6 is connected to a rectangular frame-shaped suction head neck member 21 that is pivotally supported by the support shaft 20 and surrounds the end of the ore collecting duct 2 with a slight clearance, and to both side plates of the member. Suction head front and rear blades 23 and 24 are pivotally supported by the suction head side plates so that their upper ends can swing so as to be connected to the lower ends of the front and rear walls of the lower member 21, respectively.
has. The height of the suction head opening, which is surrounded by the inner surfaces of the pair of suction head side plates 22 and the front and rear blades 23, 24, relative to the frame 9 changes depending on the swinging position of the front and rear blades 25 and 24. Front and rear blades 21.
A slight clearance is provided between both side edges of the suction head 24 and the suction head side plate 22.
サクションヘッド側板22は、第5図に示す如く高位置
及び低位置の海底面BL、BL’の上下にまたがって前
後ブレード23,24の範囲の前後ある範囲にのびてお
り、その下縁は前端の海底面上の点から水平線と約30
°程度の傾斜で後方に向って丁っておりネック部材21
の直下あたりより水平に後方に向っている。As shown in FIG. 5, the suction head side plate 22 extends above and below the seabed surfaces BL and BL' at the high and low positions, and extends to a certain range before and after the range of the front and rear blades 23, 24, and its lower edge is at the front end. Approximately 30 meters from a point on the seafloor to the horizon
The neck member 21 is tilted toward the rear with an inclination of about °.
It points horizontally to the rear from just below.
両側板22の間にはその下縁と平行に複数本のフラット
パー25が、揚鉱団塊最大径を間隔として配列されてお
り、−次団塊選別用格子を形成している。Between the side plates 22, a plurality of flat pars 25 are arranged in parallel with the lower edges thereof at intervals of the maximum diameter of the lifted ore nodules, forming a grid for sorting the -order nodules.
この装置は以上の如く構成されているので。This device is configured as described above.
これを海底に降し、母船で曳航しながら集鉱用ポンプ5
を運転すると、ホッパー1内の圧力は外海の圧力よりも
低下し、サクションヘッド30両側板22と前後ブレー
ド23.24の先端縁で囲まれて形成される開口から海
水がその近傍のマンガン団塊及び海底堆積物を伴って集
鉱ダクト2内に流入し、ホッパー1内に入って流速が落
ちると団塊は自重でポツパー1の底部に向って落下して
蓄積され、海底堆積物は海水に懸濁して泥水排出管4よ
り海中に排出される。ホッパー底部に貯った団塊は順次
下部開口1aより揚鉱用接続管8に供給され、団塊スラ
リー濃度調整弁19より流入する海水とともにスラリー
となって揚鉱管7内を海上の母船に揚鉱される。This is lowered to the seabed, and the ore collection pump 5 is towed by the mother ship.
When the hopper 1 is operated, the pressure inside the hopper 1 is lower than the pressure in the open sea, and seawater flows through the opening formed by the side plates 22 of the suction head 30 and the tip edges of the front and rear blades 23, 24, and drains the manganese nodules and other nearby manganese nodules. It flows into the ore collection duct 2 with seabed sediments, enters the hopper 1, and when the flow rate decreases, the nodules fall to the bottom of the hopper 1 under their own weight and accumulate, and the seafloor sediments are suspended in seawater. The muddy water is discharged into the sea from the muddy water discharge pipe 4. The nodules accumulated at the bottom of the hopper are sequentially supplied to the ore lifting connecting pipe 8 through the lower opening 1a, and become a slurry together with seawater flowing in through the nodule slurry concentration adjustment valve 19, and the ore is transported inside the ore lifting pipe 7 to the mother ship on the sea for unloading. be done.
サクションヘッド6の直前における海底の高さくフレー
ム9に対する相対高さ)及び左右方向の海底断面形状は
、5個の海底高さ検知ホイール13の上下動により変化
するアーム12とフレーム9の挟角θより実用上充分な
精度で簡単に検知することができる。なお、この場合、
海底高さ検知ホイール13が団塊の上を乗越えると、ホ
イールは一瞬上昇するので、ごく短時間の角度θの変動
は計測から除外するようにするのがよい。The height of the seabed immediately before the suction head 6 (relative height to the frame 9) and the horizontal cross-sectional shape of the seabed are determined by the included angle θ between the arm 12 and the frame 9, which changes with the vertical movement of the five seabed height detection wheels 13. Detection can be easily performed with sufficient accuracy for practical use. In this case,
When the seabed height detection wheel 13 passes over the nodule, the wheel rises momentarily, so it is preferable to exclude very short-term changes in the angle θ from the measurement.
例えば、第5図に示す如く、サクションヘッドの幅方向
の海底断面形状がサクションヘッドの全掃査幅の間に「
へ」の字形の勾配があった場合は、5個の海底高さ検知
ホイール15は夫々異る高さになるので夫々の検知信号
から海底傾斜の量及び稜線の位置は容易に検知できる。For example, as shown in Figure 5, the cross-sectional shape of the seabed in the width direction of the suction head is
If there is a slope in the shape of a ``'', the five seabed height detection wheels 15 have different heights, so the amount of seafloor slope and the position of the ridge can be easily detected from the respective detection signals.
この−検知信号より、あらかじめ定められたプログラム
に従って図示せぬ油圧駆動装置により、各サクションヘ
ッド3毎にそのネック部材21を支持軸20のまわりに
回動させることにより第5図に示す如(、各サクション
ヘッド毎にその部分の海底傾斜に適合させることができ
る。Based on this detection signal, a hydraulic drive device (not shown) rotates the neck member 21 of each suction head 3 around the support shaft 20 according to a predetermined program, as shown in FIG. Each suction head can be adapted to the slope of the seabed in its area.
又、第6図に示す如く、サクションヘッド前後ブレード
23.24を海底高さ検知ホイールによる検知信号によ
り同じく図示せぬ油圧駆動装置で夫々の上端の軸支点を
中心に第6図中に破線と実線とで示す2つの位置の間の
適宜の位置に変位させることにより、サクションヘッド
開口位置を海底高さに適応させることが出来る。In addition, as shown in FIG. 6, the front and rear blades 23 and 24 of the suction head are moved around the upper end of each shaft by a hydraulic drive device (not shown) as indicated by the broken lines in FIG. By displacing the suction head to an appropriate position between the two positions indicated by the solid line, the suction head opening position can be adapted to the seabed height.
第3図に示す如く、サクションヘッド前ブレード25は
前端縁が上方に強(反り返った断面形状をしており、後
ブレード24はゆるやかな弧状となっているので、外部
の海水がブレードに沿ってサクションヘッドに流入し易
(、又後ブレード24の先端を海底面より若干下った位
置にもたらすことにより、海底堆積物の表面に転がって
いる団塊はもとより、半ば堆積物中に埋れた団塊、殆ん
ど堆積物中に没した団塊も、じゃがいもをすきで収穫す
る如く、掘り起してサクションヘッド内に回収すること
ができる。As shown in Fig. 3, the front edge of the suction head front blade 25 has a cross-sectional shape that is strongly curved upwards, and the rear blade 24 has a gentle arc shape, so that external seawater flows along the blade. By bringing the tip of the rear blade 24 to a position slightly lower than the seabed surface, it is possible to easily collect not only nodules lying on the surface of the seabed sediments but also most of the nodules partially buried in the sediments. Even the nodules that have sunk into the sediment can be dug up and collected into the suction head, just as potatoes are harvested with a plow.
なお、海底土質、マンガン団塊の賦存状態によっては、
後ブレード24を第6図中に一点鎖線で示す24′の位
置に変位させて、吸引口の面積を増加させることも可能
である。Depending on the quality of the seabed soil and the availability of manganese nodules,
It is also possible to increase the area of the suction port by displacing the rear blade 24 to the position 24' shown by the dashed line in FIG.
サクションヘッドより海水及び団塊を吸引する際、サク
ションヘッド内外の圧力差により、集鉱ダクト2の外面
とサクションヘッドネック部材21の外面との間の遊隙
及びサクションヘッド前後ブレード21,240側縁と
サクションヘッド側板内面との間の遊隙な通じて外部の
水がサクションヘッド又は集鉱ダクト内に流入するが遊
隙は僅かであり、又粘性抵抗もあるので流入量は無視す
ることができるのみならず、水がこの遊隙な流れること
により、遊隙に入った海底堆積物等の異物を洗い流して
作動を円滑にすることができる。When suctioning seawater and nodules from the suction head, due to the pressure difference between the inside and outside of the suction head, there is a gap between the outer surface of the ore collecting duct 2 and the outer surface of the suction head neck member 21, and the side edges of the suction head front and rear blades 21, 240. External water flows into the suction head or ore collection duct through the play between the inner surface of the side plate of the suction head, but the play is small and there is also viscous resistance, so the inflow amount can be ignored. By allowing the water to flow through the gap, foreign matter such as seabed sediments that have entered the gap can be washed away, making the operation smoother.
両側のサクションヘッド側板22の下縁の間には複数の
フラットパー25を所定の選別粒径の間隔で平行に配設
した格子が−次団塊選別手段として設けられているので
、揚鉱団塊粒径の範囲の団塊はこの格子を通過してサク
ションヘッド内に吸引されるが、これより大きい粒径の
団塊はこの格子に遮られてサクションヘッド内に入るこ
とが出来ず、集鉱装置の前進に伴って、傾斜した格子の
下面で海底堆積物、中を下方に押し下げられる。団塊を
押し下げる深さはせいぜい数十mですむから、この選別
格子は従来の如く数mの幅を横方向に押し出す一次選別
手段よりもはるかに小規模なものとすることができる。Between the lower edges of the suction head side plates 22 on both sides, a grid in which a plurality of flat pars 25 are arranged in parallel at intervals of a predetermined sorting grain size is provided as a second nodule sorting means. Nodules with a diameter within this range pass through this grid and are sucked into the suction head, but nodules with a larger particle size are blocked by this grid and cannot enter the suction head, preventing the ore collector from advancing. As a result, the bottom surface of the sloping lattice pushes the seafloor sediment downward. Since the depth of pushing down the nodules is only a few tens of meters at most, this sorting grid can be made much smaller than the conventional primary sorting means that pushes out a width of several meters in the lateral direction.
なお、上記の実施例では、サクションヘッドの傾斜及び
その開口の高さの調整を、海底高さ検知ホイールによる
検知信号により油圧装置を介して自動的に行うものとし
たが、海底高さ検知手段はこれ以外に例えば音波の利用
等公知の各種の方法を用いることができる。又、サクシ
ョンヘッド開口の高さ調整は、海底土質等の状態があら
かじめ判明している場合は、これに適する位置にあらか
じめセットしておいてもよく、又海上の母船より遠隔操
作により行なうこともできる。In the above embodiment, the inclination of the suction head and the adjustment of the height of its opening are automatically performed via the hydraulic system based on the detection signal from the seabed height detection wheel. In addition to this, various known methods such as the use of sound waves can be used. In addition, the height adjustment of the suction head opening may be set in advance at a position suitable for the condition of the seabed soil, etc., if it is known in advance, or it may be adjusted by remote control from the mother ship at sea. can.
以上の如(、本発明によれば、簡単な構成で、海底地形
、土質に対応してサクションヘッドの高さ及び傾斜を調
整し団塊の一次選別を行なうことが出来るのでマンガン
団塊等の揚鉱能率の向上に顕著な効果を得ることができ
る。As described above, according to the present invention, with a simple configuration, it is possible to perform the primary sorting of nodules by adjusting the height and inclination of the suction head in accordance with the seabed topography and soil quality. A remarkable effect can be obtained in improving efficiency.
第1図は本発明の実施例の集鉱装置の側面図、第2図は
その一部部材を省略して示した平面図、第3図はそのサ
クションヘッドを詳細に示す縦断面図、第4図はその正
面図、第5図は各サクションヘッドが海底面傾斜に対応
して傾斜した状態の一例を示す正面図である。
2・・・集鉱ダクト 3・・・サクションヘッド9
・・・フレーム 12・・・アーム13・・−海
底高さ検知ホイール
20・・・サクションヘッド支持軸
21・・・サクシヨレへラドネック部材22・・・サク
ションヘッド側板
23・・・サクションヘッド前ブレード24・・・サク
ションヘッド後ブレード25・・・フラットバー(選別
格子を形成する棒)、ウラ
第5図
第4図FIG. 1 is a side view of an ore collecting device according to an embodiment of the present invention, FIG. 2 is a plan view with some members omitted, FIG. 3 is a vertical sectional view showing the suction head in detail, and FIG. FIG. 4 is a front view thereof, and FIG. 5 is a front view showing an example of a state in which each suction head is inclined in accordance with the inclination of the seabed surface. 2...Ore collection duct 3...Suction head 9
... Frame 12 ... Arm 13 ... Seabed height detection wheel 20 ... Suction head support shaft 21 ... Suction head rad neck member 22 ... Suction head side plate 23 ... Suction head front blade 24 ...Suction head rear blade 25...Flat bar (bar forming the sorting grid), back side Fig. 5 Fig. 4
Claims (3)
せた水流により該集鉱ダクトの先端に設けたサクション
ヘッドより海底面に賦存せるマンガン団塊等の団塊を吸
込んで集鉱するマンガン団塊等の集鉱装置において、 サクションヘッドは、集鉱ダクトの先端垂下部の側板に
直接又は間接に接続された前後方向に伸びた1対の鉛直
なサクションヘッド側板と、前記の集鉱ダクト先端垂下
部の前後壁に直接又は間接に連続する如く、その上端な
揺動可能に軸支されたサクションヘッド前後ブレードト
ラ有し、上記の両側のサクションヘッド側壁と前後ブレ
ードの先端縁とで形成されるサクションヘッド開口部の
高さが上記の前後ブレードの揺動角度を変えることによ
り調整されるようにしたことを特徴とするマンガン団塊
等の集鉱装置。(1) While moving on the seabed, the water flow generated in the ore collection duct sucks in nodules such as manganese nodules existing on the seabed through the suction head installed at the tip of the ore collection duct and collects the ore. In an ore collection device for manganese nodules, etc., the suction head includes a pair of vertical suction head side plates extending in the front and back direction connected directly or indirectly to the side plates at the tip of the ore collection duct, and the ore collection duct. The suction head has a front and rear blade tiger which is rotatably supported at the upper end so as to directly or indirectly continue with the front and rear walls of the tip hanging part, and is formed by the above-mentioned both side walls of the suction head and the front and rear blade tip edges. A device for collecting manganese nodules, etc., characterized in that the height of the suction head opening is adjusted by changing the swing angle of the front and rear blades.
知子1段の検知信号により行なわれることを特徴とする
特許請求の範囲第1項に記載のマンガン団塊等の集鉱装
置。(2) Adjustment of the opening height of the suction head mentioned above. 2. The device for collecting manganese nodules and the like according to claim 1, wherein the detection is performed based on a detection signal from a single stage of seabed height detector located immediately in front of the suction head.
固定されたフレームに、集鉱装置の移動方向の鉛直面内
で揺動自在に一端を軸支されたアームと、該アームの他
端に横方向の軸のまわりに回転自在に軸支されたホイー
ルとを有し、集鉱装置の移動に伴い該ホイールを海底面
上を海底面内にめり込むことなく転動させて、上記アー
ムのフレームに対する角度より海底面のフレームに対す
る高さを検知するものであることを特徴とする特許請求
の範囲第2項に記載のマンガン団塊等の集鉱装置。(3) The above-mentioned seabed surface height detection means includes an arm whose one end is pivotally supported on a frame to which the above-mentioned ore collecting tally is fixed so as to be swingable in a vertical plane in the moving direction of the ore collecting device; and a wheel rotatably supported around a horizontal axis at the other end, and as the ore collecting device moves, the wheel is rolled on the seabed surface without sinking into the seabed surface, The device for collecting manganese nodules and the like according to claim 2, wherein the height of the seabed surface relative to the frame is detected from the angle of the arm relative to the frame.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19080581A JPS5894594A (en) | 1981-11-30 | 1981-11-30 | Apparatus for collecting manganese nodule |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19080581A JPS5894594A (en) | 1981-11-30 | 1981-11-30 | Apparatus for collecting manganese nodule |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5894594A true JPS5894594A (en) | 1983-06-04 |
JPS6262238B2 JPS6262238B2 (en) | 1987-12-25 |
Family
ID=16264033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19080581A Granted JPS5894594A (en) | 1981-11-30 | 1981-11-30 | Apparatus for collecting manganese nodule |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5894594A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2020157A (en) * | 2016-12-23 | 2018-07-02 | Carpdredging Ip B V | Dredging tool |
JP2020020217A (en) * | 2018-08-03 | 2020-02-06 | 三菱重工業株式会社 | Ore lifting system and ore feeding device |
-
1981
- 1981-11-30 JP JP19080581A patent/JPS5894594A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2020157A (en) * | 2016-12-23 | 2018-07-02 | Carpdredging Ip B V | Dredging tool |
NL2018070B1 (en) * | 2016-12-23 | 2018-07-02 | Carpdredging Ip B V | Dredger |
JP2020020217A (en) * | 2018-08-03 | 2020-02-06 | 三菱重工業株式会社 | Ore lifting system and ore feeding device |
Also Published As
Publication number | Publication date |
---|---|
JPS6262238B2 (en) | 1987-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6029671B2 (en) | Undersea mining tools | |
US3248812A (en) | Collector and hoist for aggregates | |
AU2013296124B2 (en) | A self cleaning collection apparatus and method | |
US4052800A (en) | System for gathering solids from the ocean floor and bringing them to the surface | |
EP0683274B1 (en) | Vessel, dredging means and assembly thereof | |
JPS5894594A (en) | Apparatus for collecting manganese nodule | |
US3480326A (en) | Mechanical deep sea nodule harvester | |
US4147390A (en) | Nodule dredging apparatus and process | |
JPS6340918B2 (en) | ||
JPS6327517B2 (en) | ||
JP2018040187A (en) | Dredging device | |
CN211851844U (en) | Floating type seabed ore collector | |
US4319414A (en) | Dredgehead having forward water-deflecting means comprising two transverse elements | |
JPS6315436B2 (en) | ||
JPS58153890A (en) | Particle size sorting apparatus for mineral collecting apparatus of manganese nodule | |
JPS58153892A (en) | Particle size sorting apparatus for mineral collecting apparatus of manganese nodule | |
US4171581A (en) | Water flow-deflecting shield for dredge suction nozzle | |
JPS5813894A (en) | Ore collecting machine for manganese nodule | |
US4408404A (en) | Pivotable articulated support shoe for hydraulic nozzle | |
JPS6327516B2 (en) | ||
JPS6354112B2 (en) | ||
CN116378153A (en) | River dredging construction method | |
JPS58120993A (en) | Collector for manganese nodule, etc. | |
JP2020117969A (en) | Dredging device and dredging method | |
JP3466091B2 (en) | Sand sampling machine |