JPS6327516B2 - - Google Patents

Info

Publication number
JPS6327516B2
JPS6327516B2 JP17296081A JP17296081A JPS6327516B2 JP S6327516 B2 JPS6327516 B2 JP S6327516B2 JP 17296081 A JP17296081 A JP 17296081A JP 17296081 A JP17296081 A JP 17296081A JP S6327516 B2 JPS6327516 B2 JP S6327516B2
Authority
JP
Japan
Prior art keywords
ore
nodules
seabed
ore collecting
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17296081A
Other languages
Japanese (ja)
Other versions
JPS5876696A (en
Inventor
Fumitake Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP17296081A priority Critical patent/JPS5876696A/en
Publication of JPS5876696A publication Critical patent/JPS5876696A/en
Publication of JPS6327516B2 publication Critical patent/JPS6327516B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、深海底に賦存するマンガン団塊集鉱
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for collecting manganese nodules existing on the deep seabed.

ニツケル、コバルト、銅、マンガン等の無尽蔵
な鉱物資源として注目されているマンガン団塊は
大洋の数千メートルの深海底の微細な海底堆積物
(すなわち泥)の表面に玉砂利を敷き詰めたよう
に平面的に賦存している。したがつて、海上から
グラブバケツト等で一度に大量を獲得する訳には
行かず、種々の採鉱手段が考えられているが、海
底から海上迄揚鉱管を設け、その内部に水流を発
生させて、管の下端に設けた集鉱装置で集めたマ
ンガン団塊を水流と共に海上に吸上げるいわゆる
流体ドレツジ方式が可能性が大きいと云われてい
る。
Manganese nodules, which are attracting attention as inexhaustible mineral resources such as nickel, cobalt, copper, and manganese, are flat, like gravel spread on the surface of fine seafloor sediments (i.e., mud) on the ocean floor, several thousand meters deep. is present in Therefore, it is not possible to obtain a large amount of ore at once from the sea using grab buckets, etc., and various mining methods have been considered. It is said that a so-called fluid dredge method, in which the manganese nodules collected by an ore collecting device installed at the lower end of the pipe are sucked out to sea along with the water flow, has great potential.

しかし、集鉱装置では一般に揚鉱に適する粒度
の団塊と共に大量の海底堆積物及び揚鉱に適さな
い小粒径の団塊が集鉱されるので、これらの海底
堆積物や小粒径団塊が揚鉱管に入らないように極
力分離し、廃棄する必要がある。その分離手段と
しては従来適当なメツシユの網等を利用すること
が考えられているが、網等の選別手段は目詰りが
生じ易く、しばしば目詰りを除去する必要があ
る。しかし、マンガン団塊集鉱装置は、一且数千
メートルの海底に降せば数か月間引揚げずに操業
を続けるのが普通であり、メインテナンスの頻度
の高い網等を集鉱装置の部材として使用すること
は適当とは云えない。目詰りを操業中に除去する
装置例えばブラシ等を装備することも考えられる
が、その遠隔操作装置が複雑になる欠点がある。
However, ore collectors generally collect a large amount of seafloor sediment and small-grained nodules that are not suitable for ore lifting, along with nodules with grain sizes suitable for ore lifting. It is necessary to separate and dispose of it as much as possible to prevent it from entering the mine pipes. Conventionally, it has been considered to use a suitable mesh net or the like as the separation means, but screening means such as the mesh tend to become clogged, and it is often necessary to remove the clogging. However, it is common for manganese nodules collectors to continue operating for several months without being salvaged once they fall to the seabed at a depth of several thousand meters. It cannot be said that it is appropriate to use it. It is conceivable to equip a device such as a brush to remove clogging during operation, but this has the disadvantage that the remote control device is complicated.

本発明は、従来考えられているマンガン団塊集
鉱装置の上述の問題点を解決した、簡単な構成で
マンガン団塊の集鉱と同時に海底堆積物や小粒径
の団塊を分離し排出することの出来る集鉱装置を
提供するとを目的とする。
The present invention solves the above-mentioned problems of conventional manganese nodule collectors, has a simple configuration, and is capable of collecting manganese nodules and simultaneously separating and discharging seabed sediments and small-sized nodules. The purpose is to provide an ore collecting device that can be used.

以下、本発明をその実施例を示す図面にもとず
いて詳細に説明する。
Hereinafter, the present invention will be explained in detail based on drawings showing embodiments thereof.

第1図及び第2図は、本発明の実施例の集鉱装
置を操業のために海底面1に設置した状態を示す
断面図及び平面図である。
FIGS. 1 and 2 are a sectional view and a plan view showing a state in which an ore collector according to an embodiment of the present invention is installed on a seabed surface 1 for operation.

マンガン団塊の賦存する海底は泥質である場合
が多いので、集鉱装置は左右1対のスキー2で海
底面1に支持され、海上の船舶により揚鉱管3又
は図示せぬ曳索により海底面1を矢印の方向に移
動するようになつている。スキー2上には、上下
が開いた鉛直方向に軸を有する円筒状の集鉱筒4
が設けられている。該集鉱筒4は高さ方向の中間
迄は同一直径の直円筒をなし、それより上方は上
方に向つて直径が漸増する倒立截頭円錐筒をな
す。集鉱筒4の下縁は海底面1と僅かの隙間を有
し、その内部空間の底部には集鉱筒の接線方向に
適数本の海水噴射ノズル5がその噴出口を斜下方
に向けて設けられている。ノズル5の噴射口と適
当な距離を置いた位置から螺旋の一部をなす適当
な長さの短冊状渦流案内板6が各ノズル5に対応
して設けられている。上記の海水噴射ノズル5は
1つの水流ポンプ7の吐出口に接続され、該水流
ポンプ7の吸入口は外海に開いている。
Since the seabed where manganese nodules exist is often muddy, the ore collecting device is supported on the seabed surface 1 by a pair of skis 2 on the left and right, and is transported by a ship at sea using an ore lifting pipe 3 or a tow rope (not shown). It is designed to move on the seabed surface 1 in the direction of the arrow. On the ski 2, there is a cylindrical ore collecting tube 4 with an open top and bottom and an axis in the vertical direction.
is provided. The ore collecting cylinder 4 forms a right cylinder with the same diameter up to the middle in the height direction, and above it forms an inverted truncated conical cylinder whose diameter gradually increases upward. The lower edge of the ore collecting tube 4 has a slight gap with the seabed surface 1, and at the bottom of the internal space, an appropriate number of seawater injection nozzles 5 are installed in the tangential direction of the ore collecting tube with their spout ports directed diagonally downward. It is provided. A strip-shaped vortex guide plate 6 of an appropriate length forming part of a spiral is provided corresponding to each nozzle 5 from a position at an appropriate distance from the injection port of the nozzle 5. The seawater injection nozzle 5 is connected to the discharge port of one water pump 7, and the suction port of the water pump 7 is open to the open sea.

集鉱筒4の円錐面部にはあるレベルの位置に適
数個の適当な大きさの団塊捕捉用開口8が設けら
れており、各開口8は導管9により集鉱筒4外に
設けられた1つのホツパー10に接続されてい
る。ホツパー10の底部と揚鉱管3の下端との間
にはスクリユーフイーダ11が設けられている。
揚鉱管3の途中には、図示せぬ揚鉱ポンプが設け
られており、揚鉱管3の下端のラツパ状に開いた
開口3aから海水を吸引して管内に水流が作られ
る。
An appropriate number of appropriately sized nodule trapping openings 8 are provided at a certain level on the conical surface of the ore collecting tube 4, and each opening 8 is provided outside the ore collecting tube 4 through a conduit 9. It is connected to one hopper 10. A screw feeder 11 is provided between the bottom of the hopper 10 and the lower end of the ore lifting pipe 3.
An ore lifting pump (not shown) is provided in the middle of the ore lifting pipe 3, and seawater is sucked through the opening 3a at the lower end of the ore lifting pipe 3 in the shape of a flap to create a water flow inside the pipe.

この装置は以上の如く構成されているので、水
流ポンプ7により各海水噴射ノズル5から集鉱筒
の接線方向に斜下方に海水が噴射されると、海底
面1に賦存するマンガン団塊は海底堆積物と共に
海水中に舞い上る。各ノズル5より接線方向に噴
射された海水は集鉱筒内面に沿つて旋回し、かつ
渦流案内板6に案内されて旋回しながら上昇し渦
流が発生する。集鉱筒4の下端縁と海底面1との
間には僅かの隙間しかなく、かつ集鉱筒の上は開
いているので、海水噴射ノズル5から集鉱筒の内
部空間の底部に噴出された海水は大部分集鉱筒内
空間を上昇し、上部開口より外海に溢出する。単
位時間に集鉱筒4の各水平断面を上昇する水の量
は一定であるから、集鉱筒の中間より下の直円筒
部では旋回しながら上昇する海水の垂直方向の流
速は一定であるが、円錐面部では上方に行くにし
たがつて断面積が増加するに伴い、海水の上向き
の流速は漸減する。
Since this device is constructed as described above, when seawater is injected obliquely downward in the tangential direction of the ore collecting tube from each seawater injection nozzle 5 by the water pump 7, the manganese nodules present on the seabed surface 1 are removed from the seabed. It floats up into the seawater along with sediment. The seawater injected in the tangential direction from each nozzle 5 swirls along the inner surface of the ore collecting cylinder, and is guided by the vortex guide plate 6 and rises while swirling, generating a vortex. Since there is only a small gap between the lower edge of the ore collecting tube 4 and the seabed surface 1, and the top of the ore collecting tube is open, seawater is sprayed from the seawater injection nozzle 5 to the bottom of the internal space of the ore collecting tube. Most of the seawater rises inside the ore collecting cylinder and overflows into the open sea through the upper opening. Since the amount of water rising in each horizontal section of the ore collecting tube 4 per unit time is constant, the vertical flow velocity of the seawater rising while swirling in the right cylindrical section below the middle of the ore collecting tube is constant. However, as the cross-sectional area of the conical surface increases upward, the upward flow velocity of seawater gradually decreases.

さて、流体中の固体の相対沈降速度は、該固体
の重量による下向きの重力と、該固体の体積と流
体の比重による上向きの浮力と、該固体が流体中
を沈降する時の流体抵抗とが釣合うような相対速
度で流体中を沈降する。したがつて、流体をこの
沈降速度以上の速度で上昇せしめれば、固体は大
地に対して上昇し、流体の上昇速度が上記沈降速
度より小さい場合は固体は大地に対して落下す
る。相似形の固体の流体抵抗は長さの2乗に比例
し、重力、浮力は長さの3乗に比例するので、寸
法が大きい程重力が抵抗に比して大きくなり、沈
降速度が速くなる。したがつて、ある流体の上昇
流速に対してはある大きさより大きい固体は落下
し、それより小さい固体は上昇することになる。
Now, the relative settling velocity of a solid in a fluid is determined by the downward gravitational force due to the weight of the solid, the upward buoyant force due to the volume of the solid and the specific gravity of the fluid, and the fluid resistance when the solid settles in the fluid. It sinks through the fluid at balanced relative velocities. Therefore, if the fluid is raised at a speed higher than this settling speed, the solid will rise relative to the ground, and if the rising speed of the fluid is lower than the above-mentioned settling speed, the solid will fall relative to the ground. The fluid resistance of solids of similar shape is proportional to the square of the length, and the gravity and buoyancy are proportional to the cube of the length, so the larger the size, the greater the gravity compared to the resistance, and the faster the sinking speed. . Therefore, for a certain upward flow rate of fluid, solids larger than a certain size will fall, and solids smaller than that will rise.

そこで、本装置の集鉱筒4の直円筒部の垂直方
向流速を揚鉱に適する団塊の寸法範囲の最大の大
きさの団塊が上昇しうる上昇流速以上となるよう
な断面積に設定し、上部の倒立円錐部の出口にお
ける上昇流速を揚鉱に適する団塊の最小の大きさ
の団塊が沈下する速度以下になるような断面積に
設定すれば、揚鉱範囲の大きさの団塊はすべて直
円筒部を上昇し、揚鉱範囲以下の寸法の団塊及び
海底堆積物は集鉱筒4の上部開口より海水と共に
溢れ出す。揚鉱範囲以上の寸法の団塊は、集鉱筒
4の底部に来ないように、図示せぬ手段であらか
じめ排除するようにしておく。
Therefore, the vertical flow velocity of the right cylindrical part of the ore collection cylinder 4 of this device is set to a cross-sectional area that is equal to or higher than the upward flow velocity at which the largest nodule within the size range of nodules suitable for ore lifting can rise. If the upward flow velocity at the outlet of the upper inverted cone section is set to a cross-sectional area that is less than the velocity at which the minimum size of nodules suitable for lifting ore sinks, all nodules of the size of the ore lifting range can be straightened. The nodules and seabed deposits having dimensions below the lifting range of the ore are moved up the cylindrical portion and overflow from the upper opening of the ore collection cylinder 4 together with seawater. Nodules with dimensions larger than the ore lifting range are removed in advance by means not shown so that they do not reach the bottom of the ore collection tube 4.

したがつて揚鉱範囲の団塊は集鉱筒4の円錐部
に懸吊しながら海水とともに旋回することにより
遠心力により団塊捕捉開口8より脱出し、ホツパ
ー10に捕集される。上記の捕捉用開口8からの
団塊の脱出は前記の流体中の固体の上昇、沈下と
同様の理論により、遠心力と固体の流体抵抗とが
釣合つた速度で流体中を半径方向に脱出する。し
たがつて微細な海底堆積物粒子や小さい団塊は、
遠心力により団塊捕捉開口より脱出するより前に
上部より溢れ出る。集鉱筒4内の海水の上昇速度
は団塊の含有率等によつても変化し、常に一定と
はならないので、揚鉱範囲の寸法の団塊は集鉱筒
の円錐部を上つたり下つたりしながらいつかは捕
捉用開口より脱出し、ホツパー10内に集積さ
れ、その下端よりスクリユーフイーダー11によ
り揚鉱管3の下端に供給される。スクリユーフイ
ーダー11は流体圧力差を利用するものではな
く、機械的に団塊を搬送するものであるから、団
塊に隙間があまりない状態で搬送された場合には
水は殆んど移動しないので、集鉱筒4内の水は捕
捉用開口8からは殆んど流出することはなく、し
たがつて捕捉用開口8から小粒径の団塊や微細な
堆積物が脱出することは殆んどない。スクリユー
フイーダー11により揚鉱管3の下端に送られた
団塊は、図示せぬ揚鉱ポンプにより揚鉱管内に発
生した水流に伴なわれて揚鉱管3内を海上の船舶
に揚鉱される。揚鉱管3の下端にはラツパ管3a
が取付けられているので、上記の揚鉱管内に水流
を発生させる海水はスクリユーフイーダー11の
範囲外から吸入される。
Therefore, the nodules in the ore lifting range are suspended from the conical part of the ore collection tube 4 and rotated together with seawater, so that they escape from the nodule catching opening 8 due to centrifugal force and are collected in the hopper 10. The escape of the nodules from the trapping opening 8 is based on the same theory as the rise and sinking of solids in the fluid, and they escape in the radial direction through the fluid at a speed where the centrifugal force and the fluid resistance of the solids are balanced. . Therefore, fine seafloor sediment particles and small nodules are
Due to centrifugal force, the nodule overflows from the upper part before it escapes from the nodule trapping opening. The rate of rise of seawater in the ore collecting pipe 4 changes depending on the nodule content and is not always constant, so nodules with dimensions within the ore lifting range move up and down the conical part of the ore collecting pipe. The sludge will eventually escape from the trapping opening, be accumulated in the hopper 10, and be fed from its lower end to the lower end of the ore lift pipe 3 by the screw feeder 11. The screw feeder 11 does not use a fluid pressure difference, but mechanically conveys the nodules, so if the nodules are conveyed without much gap, almost no water will move. , the water in the ore collection tube 4 hardly flows out from the trapping opening 8, and therefore, small-sized nodules and fine sediments hardly ever escape from the trapping opening 8. do not have. The nodules sent to the lower end of the ore lifting pipe 3 by the screw feeder 11 are carried inside the ore lifting pipe 3 by a water flow generated in the ore lifting pipe by an ore pump (not shown) to be lifted to a ship on the sea. be done. At the lower end of the ore lifting pipe 3, there is a rack pipe 3a.
is installed, the seawater that generates the water flow in the ore lifting pipe is sucked in from outside the range of the screw feeder 11.

集鉱筒4の形状は、上記実施例の如く直円筒の
上に倒立截頭円錐を接続した連続的に断面積が変
化するものに限定されるものではなく、例えば第
3図に示す如く、直径の異る2つの直円筒21,
22を適当な傾斜の円錐面23で接続して集鉱筒
20を構成することもできる。直径の小なる下部
の円筒21の直径を揚鉱範囲の団塊の最大寸法の
団塊を上昇させうる上昇流速の得られる寸法と
し、上部円筒22の直径を揚鉱範囲の団塊の最小
寸法のもの以下のものが上昇する上昇流速となる
寸法とし、上部の直円筒22の最下部の管壁に適
数個の団塊捕捉用開口24を設ける。この場合は
揚鉱範囲及びそれより小さい団塊及び堆積物はす
べて下部直円筒21内を上昇し、揚鉱範囲以下の
小団塊及び堆積物は上部開口より溢れ出す。しか
し、揚鉱範囲の寸法の団塊は上部直円筒22の下
方に集まるので、捕捉用開口24より遠心力によ
り排出され、前記実施例と同様の手段で揚鉱され
る。
The shape of the ore collecting cylinder 4 is not limited to the one in which the cross-sectional area changes continuously, such as an inverted truncated cone connected to a right cylinder as in the above embodiment; for example, as shown in FIG. Two right cylinders 21 with different diameters,
22 can also be connected by a conical surface 23 with an appropriate slope to form the ore collecting cylinder 20. The diameter of the lower cylinder 21, which has a smaller diameter, is set to a size that provides a rising flow velocity that can raise the maximum size of the nodules in the ore lifting range, and the diameter of the upper cylinder 22 is equal to or smaller than the minimum size of the nodules in the ore lifting range. A suitable number of openings 24 for capturing nodules are provided in the lowermost pipe wall of the upper right cylinder 22. In this case, the lifted ore range and smaller nodules and deposits all rise within the lower right cylinder 21, and the small nodules and deposits below the lifted ore range overflow from the upper opening. However, since the nodules having the size of the ore lifting range gather below the upper right cylinder 22, they are discharged from the trapping opening 24 by centrifugal force, and the ore is lifted by the same means as in the previous embodiment.

又、第4図に示す如く、最初の実施例と同様の
外形を有する集鉱筒30の内部に例えば円柱状の
芯材31を中心線を一致させて設けることによ
り、旋回流の形成を確実にすることができる。こ
の場合も集鉱筒の円錐面に団塊捕捉用開口32を
設けることにより、揚鉱範囲の団塊を捕捉するこ
とができる。
Furthermore, as shown in FIG. 4, by providing a cylindrical core material 31 with its center lines aligned inside the ore collecting cylinder 30 having the same external shape as the first embodiment, the formation of a swirling flow is ensured. It can be done. In this case as well, by providing the nodule trapping opening 32 on the conical surface of the ore collection tube, nodules in the ore lifting range can be captured.

又、第5図に示す如く、集鉱筒40を直円筒と
し、芯材41の上部を正立円錐形とした場合は、
集鉱筒40と芯材41の間の空間は上方に行くに
従つて断面積が増加するので旋回流の上昇速度を
漸減させることが出来、本発明による団塊の選別
が可能となる。
Moreover, as shown in FIG. 5, when the ore collecting cylinder 40 is a right cylinder and the upper part of the core material 41 is an upright conical shape,
Since the cross-sectional area of the space between the ore collecting cylinder 40 and the core material 41 increases as it goes upward, the rising speed of the swirling flow can be gradually reduced, making it possible to sort out nodules according to the present invention.

第4図及び第5図に示す実施例の場合、芯材直
下の海底面の団塊が集鉱されないように一見思わ
れるが、本集鉱装置は曳航されて前進しながら上
記の集鉱、選別作用を行うので、ある時点で芯材
の下にあつた海底も順次芯材と集鉱筒の間の旋回
流の作用範囲にきて、集鉱筒の幅一杯に掃引され
ることになる。
In the case of the embodiments shown in Figures 4 and 5, it seems at first glance that the nodules on the seabed directly below the core material are not collected, but this ore collection device is towed forward and performs the collection and sorting as described above. As this action takes place, at some point the seabed beneath the core material will also come within the action range of the swirling flow between the core material and the ore collection tube, and will be swept across the entire width of the ore collection tube.

以上の如く、本発明によれば、比較的簡単な構
成で、海底マンガン団塊の集鉱と同時に、揚鉱範
囲の団塊を選別をし小粒径団塊及び海底堆積物を
廃棄することができ、しかもその選別に金網等を
使用しないので目詰りの発生がなく、長期間メイ
ンテナンスが不要となり、操業度、経済性の向上
に顕著な効果が得られる。
As described above, according to the present invention, with a relatively simple configuration, it is possible to simultaneously collect seabed manganese nodules, sort out the nodules within the lifting range, and discard small particle size nodules and seabed sediments. Moreover, since wire mesh or the like is not used for sorting, clogging does not occur, and long-term maintenance is not required, resulting in significant improvements in operating efficiency and economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図
はその平面図、第3図、第4図及び第5図は夫々
本発明の他の実施例を示す断面図である。 3……揚鉱管、4,20,30,40……集鉱
筒、5……海水噴射ノズル(上昇渦流発生手段)、
6……渦流案内板、8……団塊捕捉用開口、10
……移送手段。
FIG. 1 is a sectional view showing an embodiment of the invention, FIG. 2 is a plan view thereof, and FIGS. 3, 4, and 5 are sectional views showing other embodiments of the invention. 3...Ore lifting pipe, 4,20,30,40...Ore collecting pipe, 5...Seawater injection nozzle (rising vortex generation means),
6... Vortex guide plate, 8... Opening for capturing nodules, 10
...Transportation means.

Claims (1)

【特許請求の範囲】 1 上下が開口し、下側の開口が海底面に接近し
て移動可能であり、その内部空間の水平断面積が
上方に向つて増加する鉛直方向の軸を有する円筒
状集鉱筒と、該集鉱筒の内部空間内に上昇渦流を
発生させる手段と、該集鉱筒内部空間下位の海底
面のマンガン団塊をその上部の水中にもたらす手
段と、上記集鉱筒の壁面の適当な高さの位置に設
けたマンガン団塊捕捉用開口と、該開口より捕捉
されたマンガン団塊を揚鉱管入口に移送するスク
リユーフイーダとを有することを特徴とするマン
ガン団塊集鉱装置。 2 上記の上昇渦流発生手段と海底マンガン団塊
をその上部の水中にもたらす手段として上記の集
鉱筒内空間の底部に集鉱筒の接線方向に海底に対
して斜方向に設けた適数個の海水噴射ノズルを有
することを特徴とする特許請求の範囲第1項に記
載のマンガン団塊集鉱装置。
[Scope of Claims] 1. A cylindrical shape having an opening at the top and bottom, the lower opening being movable close to the seabed surface, and having a vertical axis in which the horizontal cross-sectional area of the internal space increases upward. an ore collecting tube; a means for generating an upward vortex within the internal space of the ore collecting tube; a means for bringing manganese nodules on the seabed below the inner space of the ore collecting tube into water above the ore collecting tube; A manganese nodule collector characterized by having an opening for capturing manganese nodules provided at an appropriate height on a wall surface, and a screw feeder for transferring the manganese nodules captured from the opening to the ore lifting pipe entrance. Device. 2. As a means for generating the upward eddy current and a means for bringing the seabed manganese nodules into the water above, an appropriate number of devices are installed at the bottom of the space inside the ore collecting cylinder in the tangential direction of the ore collecting cylinder and obliquely to the seabed. The manganese nodule collector according to claim 1, characterized by having a seawater injection nozzle.
JP17296081A 1981-10-30 1981-10-30 Apparatus for collecting manganese nodule Granted JPS5876696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17296081A JPS5876696A (en) 1981-10-30 1981-10-30 Apparatus for collecting manganese nodule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17296081A JPS5876696A (en) 1981-10-30 1981-10-30 Apparatus for collecting manganese nodule

Publications (2)

Publication Number Publication Date
JPS5876696A JPS5876696A (en) 1983-05-09
JPS6327516B2 true JPS6327516B2 (en) 1988-06-03

Family

ID=15951545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17296081A Granted JPS5876696A (en) 1981-10-30 1981-10-30 Apparatus for collecting manganese nodule

Country Status (1)

Country Link
JP (1) JPS5876696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136508U (en) * 1988-02-23 1989-09-19
JPH0729004U (en) * 1993-10-12 1995-06-02 株式会社明和製作所 Soundproofing device for vibration compactors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263804B1 (en) 2012-03-28 2013-05-13 한국해양과학기술원 Robot for mining manganese nodules on deep-seabed
KR101348111B1 (en) * 2013-10-16 2014-01-08 한국해양과학기술원 Method for collecting manganese nodules of deep sea manganese nodules collecting robot
JP2016035174A (en) * 2014-08-04 2016-03-17 コリア インスティチュート オブ オーシャン サイエンス アンド テクノロジー Abyssal floor manganese nodule mining robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136508U (en) * 1988-02-23 1989-09-19
JPH0729004U (en) * 1993-10-12 1995-06-02 株式会社明和製作所 Soundproofing device for vibration compactors

Also Published As

Publication number Publication date
JPS5876696A (en) 1983-05-09

Similar Documents

Publication Publication Date Title
JPS6140446B2 (en)
US5298172A (en) Method and apparatus for removing grit from sewage
CN112843878A (en) Archimedes spiral runner type cyclone separation well
US4784757A (en) Solid material separator
US4541850A (en) Slurry input device
WO1991010808A1 (en) Pumping method for ores of deep sea mineral resources using heavy liquid
US20080135461A1 (en) Dense medium separator
JPS6327516B2 (en)
US10065197B2 (en) Hydraulic particle separation apparatus for placer mining
EP0160031A1 (en) Hydraulically operated different density particle sorting apparatus and process.
CN2856695Y (en) Pressure pipeline desander with multiple sands discharging buckets
WO1986005412A1 (en) A lamella separator
JP7072780B2 (en) Plastic piece collection method and collection system
US11911775B2 (en) Particle separation apparatus
CN108815889B (en) Laminated plate aeration type grit chamber
CN218221205U (en) Grit chamber for sewage treatment
CN2680357Y (en) Hydrocyclone
CN208260260U (en) Grit water separator
CN209333263U (en) Black and odorous water sand setting desludging device
CN217418259U (en) Food and beverage waste water oil-water separation equipment of improved generation outlet pipe
CN219879320U (en) Efficient spiral sand-water separator
CN215505918U (en) Archimedes spiral runner type cyclone separation well
CN211561968U (en) Spiral-flow type lotus root slurry, mud and sand separator
JPS58120993A (en) Collector for manganese nodule, etc.
JPS6354112B2 (en)