JPS58120993A - Collector for manganese nodule, etc. - Google Patents
Collector for manganese nodule, etc.Info
- Publication number
- JPS58120993A JPS58120993A JP134782A JP134782A JPS58120993A JP S58120993 A JPS58120993 A JP S58120993A JP 134782 A JP134782 A JP 134782A JP 134782 A JP134782 A JP 134782A JP S58120993 A JPS58120993 A JP S58120993A
- Authority
- JP
- Japan
- Prior art keywords
- ore
- nodules
- duct
- separation cylinder
- hopper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、海底面上を移動しなから集鉱ダクト内に発
生させた水流により該ダクトの先端開口より海底面に賦
存するマンガン団塊等の団塊を海底堆積物とともに吸引
して分離装置に流入させ、該分離装置にて揚鉱すべき団
塊と排棄すべき海底堆積物及び微小団塊とを分離し、後
者を海水とともに外部海水中に排出するマンガン団塊等
の団塊の集鉱装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention has a method of removing nodules such as manganese nodules existing on the seabed from the opening at the tip of the duct by water flow generated in the ore collecting duct while moving on the seabed. Manganese nodules, etc. are sucked together and flowed into a separator, and the separator separates nodules to be lifted from seabed sediments and micronodules to be disposed of, and discharges the latter into external seawater together with seawater. Concerning a nodule collecting device.
以下、マンガン団塊の場合について説明するが、本発明
はマンガン団塊に類似のものの集鉱装置にも適用するこ
とができる。The case of manganese nodules will be described below, but the present invention can also be applied to ore collectors similar to manganese nodules.
ニッケル、コバルト、銅、マンガン等の無尽蔵な鉱物資
源として注目されているマンガン団塊は、深海底の海底
堆積物上にあたかも玉石を敷いた如く平面的に賦存して
いる。そこで、これを採鉱する罠は海底面に分布する団
塊を集鉱した上、海上に揚鉱することが必要である。Manganese nodules, which are attracting attention as an inexhaustible mineral resource of nickel, cobalt, copper, manganese, etc., are found flatly on the seafloor sediments of the deep sea floor, as if laid out on boulders. Therefore, a trap for mining this ore must collect the nodules distributed on the seabed and then lift the ore to the sea.
マンガン団塊集鉱装置としては、冒頭に掲げた、いわゆ
る流体ドレツシシ 方式が機構が簡単で故障が少なく優
れている。しかしこの方式では、集鉱ダクトの開口から
流入する海水とともにマンガン団塊だけでなく、泥状の
海底堆積物を同時に吸引するので、これを揚鉱管により
海上の母船に揚げ、海上でマンガン団塊と分離して海水
中に廃棄した場合は、揚鉱効率が低下するのみならず、
海水を汚染することになシ好ましくない。そこで、集鉱
装置には通常、揚鉱すべきマンガン団塊と、海底堆積物
及び揚鉱に適しない微小なマンガン団塊とを分離する装
置が設けられ、後者を海底で海水中に廃棄するようにし
ている。As a manganese nodule collector, the so-called fluid dredge method mentioned at the beginning is superior because it has a simple mechanism and fewer breakdowns. However, with this method, not only the manganese nodules but also the muddy seabed sediment are sucked up together with the seawater flowing in through the opening of the ore collection duct, so this is lifted to the mother ship at sea using the ore lifting pipe, and the manganese nodules are collected at sea. If separated and disposed of in seawater, not only will the lifting efficiency decrease;
It is undesirable to contaminate seawater. Therefore, ore collection equipment is usually equipped with a device that separates manganese nodules to be lifted from seabed sediments and minute manganese nodules unsuitable for ore lifting, and the latter is disposed of in seawater on the seabed. ing.
この分離装置として従来提案されているものには、網目
や格子等のフィルターを使用して物理的に選別すゐ方法
があるが、この方法は目詰りが生じ易く、数千メートル
の海底で操業する集鉱装置の場合、無人で目詰りを除去
する装置が複雑となって好ましくない。Conventionally proposed separation equipment uses a mesh or lattice filter to physically separate the waste, but this method is prone to clogging and requires operation at depths of several thousand meters under the sea. In the case of an ore collecting device that does this, the device for unmanned removal of clogging becomes complicated, which is undesirable.
又、集鉱ダクトを大きなタンクの側壁上部に接続し、マ
ンガン団塊と海底堆積物のスラリーを集鉱ダクトよシこ
の中に放出し、タンク側壁の他方よシ海水を外海に流出
させ、タンク内における海水の流速を遅くシ、その間に
所定の粒度以上のマンガン団塊をタンク底部に落下させ
、堆積物と微小団塊を海水に懸濁させて外海に排出する
方法も提案されているが、この方法の場合は分離タンク
の寸法が大きくなシ、重量も増加し、軟弱な海底をソリ
等で支持して移動する場合ソリが海底面にメリ込み好ま
しくない。In addition, an ore collection duct is connected to the upper part of the side wall of a large tank, and the slurry of manganese nodules and seabed sediment is discharged into the ore collection duct, and the seawater is discharged from the other side of the tank to the open sea, and the inside of the tank is drained. Another proposed method is to slow down the flow rate of seawater in the tank, during which time manganese nodules with a predetermined particle size or higher fall to the bottom of the tank, suspending the sediment and micro nodules in the seawater, and discharging them into the open sea. In this case, the size and weight of the separation tank will increase, and when moving on a soft seabed supported by a sled, the sled will embed itself in the seabed surface, which is undesirable.
このほか、陸上の集塵装置等に多く使用されている遠心
力を利用した分離装置等も考えられるが、この装置では
ホッパーの角度が鋭い鋭角となり、直径の割に背が高く
なシ、海底を移動する集鉱装置に用いた場合安定性が悪
くなる欠点がある。In addition, a separation device that uses centrifugal force, which is often used in land-based dust collectors, etc., can be considered, but in this device the hopper has a sharp angle, is tall compared to its diameter, and is When used in a moving ore collecting device, it has the disadvantage of poor stability.
この発明は、サクションドレツタ交・方式の集鉱装置の
従来提案されている団塊と海底堆積物等の分離装置の上
述の欠点を除去した、網目等のフィルターを用いた装置
にみられる目詰りがなく、又可動部分がなく機械的な故
障が発生するおそれがなく、小型軽量で安定性の良い分
離装置を備えたマンガン団塊等の集鉱装置を提供するこ
とを目的とする。This invention eliminates the above-mentioned drawbacks of the previously proposed separation device for nodules and seabed sediments in the suction dredge type ore collecting device, and eliminates the clogging seen in devices using filters such as mesh. To provide a device for collecting manganese nodules, etc., which has a small, lightweight, and highly stable separation device that has no moving parts and is free from the risk of mechanical failure.
以下一本発明をその実施例を示す図面にもとずいて詳細
に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below based on drawings showing embodiments thereof.
第1図及び第2図に示す本発明の実施例の集鉱装置は、
後刻詳細に説明する分離装置1と、その上部よシ前方に
伸びた集鉱ダクト2と、海底面近傍迄垂下したその先端
部に取付けられたサクションヘッド3と、前記の分離装
置1よシ後方に伸び外海に開口する泥水排出管4と、そ
の途中に設けられた集鉱用ポンプ5と、分離装置下端の
団塊排出口6に接続され図示せぬ海上の母船よシ該集鉱
装置を曳航するとともに、団塊を母船に揚鉱する揚鉱管
7を接続する揚鉱用接続管、8とを有し、これらの装置
は一つのフレーム9に塔載されている。The ore collector according to the embodiment of the present invention shown in FIGS. 1 and 2 is as follows:
A separator 1, which will be explained in detail later, an ore collecting duct 2 extending forward from its upper part, a suction head 3 attached to the tip of the ore collecting duct 2 that hangs down to near the seabed, and a rear part of the separator 1 described above. A mud water discharge pipe 4 that extends to open to the open sea, an ore collection pump 5 installed in the middle of the pipe, and a nodule discharge port 6 at the lower end of the separation device are connected to each other, and the ore collection device is towed by a mother ship at sea (not shown). At the same time, it has an ore lifting connecting pipe 8 that connects an ore lifting pipe 7 for lifting nodules to a mother ship, and these devices are mounted on one frame 9.
フレーム9の前端には、本集鉱装置が曳航中に障害物に
衝突した場合の緩衝のためにバンパー10が設けられて
いる。上記のフレーム・9は複数のスプリング支柱11
を介して左右1対のソリ12に担持されている。なお、
第2図には繁雑をさけるため、フレーム9及びスフ−リ
ング支柱11は省略されている。A bumper 10 is provided at the front end of the frame 9 for cushioning when the ore collector collides with an obstacle while being towed. The above frame 9 has a plurality of spring supports 11
It is supported on a pair of left and right sleds 12 via a pair of left and right sleds 12. In addition,
In FIG. 2, the frame 9 and the frame support 11 are omitted to avoid clutter.
次に、分離装置1の構成を第3図及び第4図により説明
する。この分離装置は一本の鉛直線Z−Zを軸とする倒
立円錐形の壁13で囲まれたホッパ一部14と、2−2
線に沿った集鉱ダクト2の端部に接続され下方に向って
末広がシに拡がる集鉱ダクト拡大部15ト、前記ホッパ
一部14の上部周辺部に接続し上記集鉱ダクト拡大部1
5を囲繞して設けられた環状分離筒16と、その上端仕
切板17に設けた開口17aを介して環状分離筒16と
接続し、泥水排出管4に接続された環状排泥管18とに
よシ構成されている。Next, the configuration of the separation apparatus 1 will be explained with reference to FIGS. 3 and 4. This separating device includes a hopper portion 14 surrounded by an inverted conical wall 13 centered on a vertical line Z-Z,
An enlarged ore collection duct 15 is connected to the end of the ore collection duct 2 along the line and spreads out downward, and an enlarged ore collection duct 1 is connected to the upper peripheral part of the hopper part 14.
5, and an annular sludge drainage pipe 18 connected to the annular separation cylinder 16 through an opening 17a provided in the upper end partition plate 17 and connected to the muddy water discharge pipe 4. It is well structured.
上記のホッパー壁13、集鉱ダクト拡大部15、環状分
離筒16及び環状排泥管18は軸Z−Zを中心とする回
転体でかつ同心的に配置されている。ホッパー壁13の
鉛直線Z−Zとなす角度はかなシ大きく、本実施例の場
合は概ね45°となっており、したがってホッパー14
の高さは一般に多く見られる遠心型集塵器等に比して直
径の割に高さが低くなっている。The hopper wall 13, the enlarged ore collection duct 15, the annular separation cylinder 16, and the annular sludge drain pipe 18 are rotary bodies centered on the axis Z-Z, and are arranged concentrically. The angle between the hopper wall 13 and the vertical line Z-Z is quite large, approximately 45° in this embodiment.
The height of the dust collector is lower than that of centrifugal dust collectors, which are commonly seen, in relation to the diameter.
泥水排出管4は、環状排泥管18の周囲の一個所に接続
されているので、環状排泥管内の圧力は上記の接続部の
近くでは低く、離れるに従って高くなる。環状分離筒1
6の上端仕切板17に設けられた開口17aは上記圧力
分布に対応して、環状分離筒16の各部の流量が均一に
なるように、上記接続部では開度が小さり1、そこから
離れるにしたがって開度が大きくなっている。開口17
aは多数の円形孔を円周上に配列してもよく、又連続し
たスリットとしてもよい。円形孔の場合は、各部の直径
を変え、又スリットの場合は位置によりスリット間隙を
変えることにより流れを絞って流量を均一にすることが
できる。Since the muddy water discharge pipe 4 is connected to one point around the annular mud drainage pipe 18, the pressure inside the annular mud drainage pipe is low near the above-mentioned connection point and increases as it moves away from the connection. Annular separation cylinder 1
The opening 17a provided in the upper end partition plate 17 of 6 has a small opening at the connection part 1 and is separated from the connection part 1 so that the flow rate in each part of the annular separation cylinder 16 becomes uniform in accordance with the pressure distribution. The opening degree increases accordingly. opening 17
A may be a large number of circular holes arranged on the circumference, or may be a continuous slit. In the case of a circular hole, the diameter of each part can be changed, and in the case of a slit, the slit gap can be changed depending on the position to narrow the flow and make the flow rate uniform.
ホッパー14の下端の団塊排出口6には揚鉱用接続管8
が接続しておシ、該設続管8の接続部のすぐ下流側に設
けられた外海に開口する枝管21にはスラリー濃度調整
弁22が設けられている。A connecting pipe 8 for lifting ore is provided at the nodule discharge port 6 at the lower end of the hopper 14.
A slurry concentration adjustment valve 22 is provided in a branch pipe 21 that opens to the open sea and is provided immediately downstream of the connecting portion of the installation pipe 8.
ホッパー壁13の側面の所定の位置にはホッパーに貯留
される団塊の上面周辺部の位置がこれを越えることによ
って作動する′貯留量制限スイッチ19が設けられてい
る。又、第1図に示す如く、集鉱ダクト2の先端のサク
ションヘッド3より上方の位置にはダクト2の壁面に設
けられた開口を開閉するダンパー20が設けられており
、前記のホッパー壁13に設けられた貯留量制限スイッ
チ19が作動することによって開くようになっている。A storage amount limit switch 19 is provided at a predetermined position on the side surface of the hopper wall 13, and is activated when the peripheral portion of the upper surface of the nodules stored in the hopper exceeds this. Further, as shown in FIG. 1, a damper 20 for opening and closing an opening provided on the wall surface of the duct 2 is provided at a position above the suction head 3 at the tip of the ore collecting duct 2, and the damper 20 opens and closes an opening provided on the wall surface of the duct 2. It opens when a storage amount limit switch 19 provided in the storage amount limit switch 19 is operated.
この集鉱装置は以上の如く構成されているので、該集鉱
装置をマンガン団塊の賦存する海底に降ろし、母船によ
り揚鉱管7を介して曳航しなから集鉱ポンプ5を運転す
ると、分離装置1内の海水は泥水排出管4から排出され
、分離装置内の圧力は外海の圧力より低下するため、サ
クションヘッド3の開口より集鉱ダクト2内に海水が連
続的に流入する。これに伴なわれて、サクションヘッド
の近傍の海底に賦存するマンガン団塊及び海底堆積物は
サクションヘッド内に吸引され、スラリーとなって集鉱
ダクト2を経て分離装置1内に流入する。Since this ore collector is constructed as described above, when the ore collector is lowered to the seabed where manganese nodules are present and towed by the mother ship via the ore lifting pipe 7, the ore collector pump 5 is operated. The seawater in the separator 1 is discharged from the muddy water discharge pipe 4, and the pressure in the separator is lower than the pressure in the open sea, so seawater continuously flows into the ore collection duct 2 through the opening of the suction head 3. Accompanying this, manganese nodules and seabed sediments existing on the seabed near the suction head are sucked into the suction head, become slurry, and flow into the separator 1 through the ore collection duct 2.
第3図に示す如く、集鉱ダクト2の分離装置l側の下方
に向った端部には下方に向って末広がりに拡がる集鉱ダ
クト拡大部15が接続して設けられ部の下縁部を越えて
環状分離筒16の下部に達し、ついで環状分離筒16内
を上昇し、その上部の上端仕切板17に設けられた開口
17aから環状排泥管18、泥水排水管4を経て外海に
排出される。この場合、ある粒径よシ大きいマンガン団
塊は自身の質量にもとすく慣性力及び重力が水の抵抗よ
シ大きいため、集鉱ダクト2から出た海水が周辺部に広
がりさらに上昇するにもかSわらず、集鉱ダクト2め出
口から下方に落下し、ホッパーの傾斜面13に沿って中
心にずり落ち、両次堆積し、その表面は第3図に示す如
く、ある安息角をもって周囲に向って下るように傾斜し
た円錐形状に盛シ上った形になる。ホッパーの角度は4
5°位にしておけば、マンガン団塊は容易に中心に向っ
て滑り落ちることができる。As shown in FIG. 3, an ore collection duct enlarged part 15 that widens downward and extends downward is connected to the lower end of the ore collection duct 2 on the side of the separation device l. It crosses over and reaches the lower part of the annular separation cylinder 16, then ascends inside the annular separation cylinder 16, and is discharged to the open sea through the opening 17a provided in the upper end partition plate 17 of the upper part through the annular mud drainage pipe 18 and the muddy water drainage pipe 4. be done. In this case, manganese nodules larger than a certain grain size have a larger inertia and gravity than water resistance due to their own mass, so seawater coming out of the ore collecting duct 2 spreads to the surrounding area and rises further. Regardless, the ore falls downward from the second exit of the collecting duct, slides down to the center along the sloping surface 13 of the hopper, and is deposited on both sides, with the surface surrounding it at a certain angle of repose, as shown in Figure 3. It has a conical shape that slopes downward toward the top. The angle of the hopper is 4
If the angle is set at about 5°, the manganese nodules can easily slide toward the center.
海底堆積物及び微粒団塊は海水中に懸濁したま\環状分
離筒16、環状排泥管18、泥水排出管4を経て外海に
排出される。The seafloor sediments and fine nodules are suspended in seawater and are discharged to the open sea via an annular separation tube 16, an annular mud discharge pipe 18, and a mud water discharge pipe 4.
ホッパー14に貯留された団塊は底部の団塊排出口6よ
り揚鉱用接続管8に排出され、枝管22に設けられたス
ラリー濃度調整弁22の開度を調整することにより所定
のスラリー濃度に調整されて揚鉱管7内を海上の母船に
揚鉱される。The nodules stored in the hopper 14 are discharged from the nodule discharge port 6 at the bottom to the ore lifting connection pipe 8, and are adjusted to a predetermined slurry concentration by adjusting the opening degree of the slurry concentration adjustment valve 22 provided in the branch pipe 22. The ore is adjusted and lifted inside the ore lifting pipe 7 to a mother ship on the sea.
マンガン団塊の集鉱量が揚鉱量より多い場合は、ホッパ
ー14内の団塊の貯留量が漸次増加してその上面周辺部
が貯留量制限スイッチ19を越える。すると該スイッチ
が作動して集鉱ダクト2の途中に設けたダンパー20を
開き、こ\から海水が流入することによジ、サクション
ヘッド3からの水の流入量が減少し、マンガン団塊の流
入は非常に減少する。その結果、ホッパー14内の団塊
貯留量が減り、その上面がスイッチ19より下ると、ス
イッチ19が切れて、ダンパー20は閉じ再びサクショ
ンヘッド3から団塊を集鉱するようになる。When the amount of manganese nodules collected is greater than the amount of ore lifted, the amount of nodules stored in the hopper 14 gradually increases until the upper peripheral area exceeds the storage amount limit switch 19. Then, the switch is activated to open the damper 20 installed in the middle of the ore collection duct 2, and seawater flows in from this, reducing the amount of water flowing in from the suction head 3 and preventing the inflow of manganese nodules. decreases significantly. As a result, the amount of nodules stored in the hopper 14 decreases, and when the upper surface of the nodule falls below the switch 19, the switch 19 is turned off, the damper 20 closes, and nodules are collected from the suction head 3 again.
このようにして、ホッパー14内に貯留された団塊の表
面の高さは所定の限度を越すことはなく、集鉱ダクト拡
大部15の下縁と貯留団塊上面との間Qノ間隙が狭くな
ってそこを流れる海水の流速が蓮くなシ、本来沈降すべ
き粒径の団塊が沈降せずに排出されるような誤操作を防
止することができる。In this way, the height of the surface of the nodule stored in the hopper 14 does not exceed a predetermined limit, and the gap Q between the lower edge of the expanded part 15 of the ore collecting duct and the upper surface of the stored nodule is narrowed. If the flow rate of the seawater flowing through the pump is not high enough, it is possible to prevent erroneous operations in which nodules of a particle size that should originally settle are discharged without settling.
環状分離筒16内の海水上昇速度は、その上部開口の開
度を場所により変えることにより一定となるので、所定
の粒径以下の微小団塊と海底堆積物のみが海水に懸濁し
て外海に排出される。なお、開口17aの大きさは排出
される微小団塊の粒径に比して十分大きくしであるので
目詰りが発生するおそれはない。The rate of rise of seawater inside the annular separation tube 16 is kept constant by changing the opening degree of its upper opening depending on the location, so that only micro nodules and seafloor sediments with a predetermined particle size or less are suspended in the seawater and discharged into the open sea. be done. Note that since the size of the opening 17a is sufficiently large compared to the particle size of the micro nodules to be discharged, there is no risk of clogging.
ところで、マンガン団塊の粒度分布は第5図に示す如く
、海域(図中V、H,Cにて示す)により惹千の差はあ
るが、粒度5ffill以下のものの重量百分率はどん
なに多口に見ても2%以下である。By the way, as shown in Figure 5, the particle size distribution of manganese nodules varies greatly depending on the sea area (indicated by V, H, and C in the figure), but the weight percentage of particles with a particle size of 5ffill or less is However, it is less than 2%.
したがって、分離装置の分離点を5闘粒径に設定したと
してもマンガン団塊のロスはせいぜい2チ以下で実用上
全く問題はない。Therefore, even if the separation point of the separator is set to 5 particles in diameter, the loss of manganese nodules is at most 2 inches or less, which poses no practical problem.
5mm以下の団塊を海水により上昇させることの出来る
上昇流の速度、換言すれば5闘の団塊の海水中の沈降速
度は第6図よシ求めることができる。The speed of the upward flow that can lift nodules of 5 mm or less in seawater, in other words, the settling speed of nodules of 5 mm in seawater can be determined from Figure 6.
この曲線は港湾土木関係で行なわれた土砂の粒径と沈降
速度の関係に関する実験結果を示すものであるが、マン
ガン団塊についても殆んど、同じ結果となることが確認
されている。この図より、粒径5mのマンガン団塊を上
昇させるための水流の上昇速度は24 cm /s 峰
・とすればよい。This curve shows the results of an experiment on the relationship between sediment particle size and sedimentation rate conducted in port civil engineering, and it has been confirmed that almost the same results are obtained for manganese nodules. From this figure, the rising speed of the water flow for lifting manganese nodules with a grain size of 5 m may be set to 24 cm /s peak.
上記の実施例では、環状分離筒16と環状排泥管18と
は水平仕切板17で分離されているが、第7図に示す如
く環状排泥管18′を円形断面のドーナツ形の環状管と
し、環状分離筒16の天板17との間を多数の管又は連
続した環状通路17bで連結してもよい。又第8図に示
す如く、環状分離筒16ノ内側の壁に集鉱ダクト拡大部
15の管壁を利用することなく、別に鉛直の2重直円筒
を設けて水流が鉛直方向に上昇するようにしてもよい。In the above embodiment, the annular separating tube 16 and the annular sludge draining pipe 18 are separated by the horizontal partition plate 17, but as shown in FIG. The annular separating cylinder 16 and the top plate 17 may be connected by a large number of pipes or a continuous annular passage 17b. Moreover, as shown in FIG. 8, instead of using the pipe wall of the ore collecting duct enlarged part 15 on the inner wall of the annular separation pipe 16, a vertical double straight cylinder is separately provided so that the water flow rises in the vertical direction. You can also do this.
又、第9図に示す如く、2重直円筒で形成された環状分
離筒16の上層水平板17を介して環状排泥管18を設
けることができる。Further, as shown in FIG. 9, an annular sludge draining pipe 18 can be provided through an upper horizontal plate 17 of an annular separating cylinder 16 formed of a double right cylinder.
上記の各実施例は、いずれも泥水排出管4の途中に集鉱
ポンプ5を設け、分離装置1内の圧力が外海の圧力より
低くなることにより集鉱ダクトよシ団塊スラリーを分離
装置内に流入させるいわゆるバキューム型を対象に述べ
たが、集鉱ダクト2の途中に集鉱ポンプ5を設けて、集
鉱ダクト2より分離装置に団塊スラリーを圧入するいわ
ゆるプレシャー型の場合には泥水排出管4及び環状排泥
管18は必らずしも必要ではなくなり、環状分離筒」6
の上端は直接外海に開放することが可能となる。In each of the above embodiments, an ore collection pump 5 is provided in the middle of the muddy water discharge pipe 4, and when the pressure inside the separation device 1 becomes lower than the pressure in the open sea, the nodule slurry is pumped through the ore collection duct into the separation device. Although the so-called vacuum type in which the slurry flows into the ore collector duct 2 is described above, in the case of the so-called pressure type in which the ore collector pump 5 is installed in the middle of the ore collector duct 2 and the nodule slurry is forced into the separation device from the ore collector duct 2, a slurry discharge pipe is used. 4 and the annular sludge removal pipe 18 are no longer necessarily necessary, and the annular separation pipe 6
The upper end of the can be opened directly to the open sea.
したがって環状分離筒16の上端開口17aの外側の圧
力はどこも同一になるから、分離装置1の各部材が1本
の鉛直線を軸とする回転体として同心的に配設されてい
る場合は、環状分離筒16の上端に上昇流均一化手段を
特に設けなくても自ずから環状分離筒16内の上昇流の
速度は均一になる。さらに環状分離筒16の上端の天板
17をなくすことも可能である。Therefore, the pressure outside the upper end opening 17a of the annular separation cylinder 16 is the same everywhere, so if each member of the separation device 1 is arranged concentrically as a rotating body with one vertical line as its axis, Even if no upward flow equalizing means is specifically provided at the upper end of the annular separation cylinder 16, the velocity of the upward flow within the annular separation cylinder 16 becomes uniform as a matter of course. Furthermore, it is also possible to eliminate the top plate 17 at the upper end of the annular separating cylinder 16.
又、上記の各実施例では、分離装置1は円錐、円筒等の
組合せからなる回転体より構成されているものとして説
明したが必らずしも回転体である必要はなく正多角錐と
正多角筒又は長方形錐と長方形筒の組合せ等で構成する
ことも可能である。Furthermore, in each of the above embodiments, the separation device 1 was explained as being composed of a rotating body consisting of a combination of a cone, a cylinder, etc., but it does not necessarily have to be a rotating body, and it may be a regular polygonal pyramid or a regular polygonal pyramid. It is also possible to configure it with a polygonal tube or a combination of a rectangular pyramid and a rectangular tube.
このような場合でも、環状分離筒上端に設ける上昇流均
一化しぼシの開度を部分的に変えることにより環状分離
筒内の上昇流を容易に均一化することがでしる。これに
より、集鉱装置の幅に制約のある場合にも分離装置に十
分な処理能力をも・だせることが可能となる。Even in such a case, the upward flow inside the annular separation cylinder can be easily made uniform by partially changing the opening degree of the upward flow equalizing bump provided at the upper end of the annular separation cylinder. This makes it possible to provide the separator with sufficient throughput even when the width of the ore collector is limited.
以上の如く、本発明に、よ・れば、目詰シや機械的故障
の発生のおそれがなく、小型、軽量で安定性がよくかつ
コストの低摩な分離装置を有するマンガン団塊等の集鉱
装置を得ることができる。As described above, according to the present invention, there is no fear of clogging or mechanical failure, and the collection of manganese nodules has a small, lightweight, stable, low-cost, and low-friction separation device. You can get mining equipment.
第1図は本発明を適用した集鉱装置の実施例の一部断面
を含む側面図、第2図は一部の部材を省略して示すその
平面図、第3図は本発明による分離装置の1例を示す縦
断面図、第4図はその平面図、第5図はマンガン団塊の
粒度分布例を示す曲線図、第6図はマンガン団塊等の団
塊の粒径と沈降速度との関係を示す曲線図、第7図乃至
第9図は本発明の他の実施例を示す断面図である。
1・・・分離装置 2・・・集鉱ダクト3・
・・サクションヘッド(集鉱ダクト先端開口)4・・・
泥水排出管 5・・・集鉱ポンプ6・・・団塊排出
口 13・・・ホッパー側壁14・・・ホッパー
15・・・集拡管拡大部16・・・環状分離筒
17a・・・環状分離筒上端、開口(上昇流均一化絞り
)18・・・環状排泥管
19・・・貯留量制限スイッチ
20・・・ダンパー
r−
d
第4図 。
率
屓
4C
第5図
第6図 hJ(″)Fig. 1 is a side view including a partial cross section of an embodiment of an ore collecting device to which the present invention is applied, Fig. 2 is a plan view thereof with some members omitted, and Fig. 3 is a separation device according to the present invention. 4 is a plan view thereof, FIG. 5 is a curve diagram showing an example of particle size distribution of manganese nodules, and FIG. 6 is a relationship between particle size and sedimentation rate of nodules such as manganese nodules. FIGS. 7 to 9 are cross-sectional views showing other embodiments of the present invention. 1... Separation device 2... Ore collection duct 3.
...Suction head (ore collection duct tip opening) 4...
Mud water discharge pipe 5...Ore collection pump 6...Nodule discharge port 13...Hopper side wall 14...Hopper
15... Enlarged collection and expansion pipe part 16... Annular separation tube 17a... Upper end of the annular separation tube, opening (upward flow equalization throttle) 18... Annular sludge removal tube 19... Storage amount limit switch 20. ...Damper r-d Fig. 4. Rate 4C Figure 5 Figure 6 hJ('')
Claims (4)
水流によシ該ダクト先端開口より海底面に賦存するマン
ガン団塊等の団塊を海底堆積物とともに吸引して分離装
置に流入させ、該分離装置にて揚鉱すべき団塊と排棄す
べき海底堆積物及び微小団塊とを分離し、上記の海底堆
積物及び微小団塊は海水とともに外部海水中に排出する
マンガン団塊等の集鉱装置において、上記の分離装置が
ホッパ一部と、前記集鉱ダクトの端部に接続され上記の
ホッパ一部の上に下方に向って末広がりに開口す4る集
鉱ダクト拡大部と、上記ホッパーの上部周辺部に接続し
上記の集鉱ダクト拡大部を囲繞し、その上部に外海に至
る開口を有する環状分離筒と、該環状分離筒内を上昇す
る水流の速度を各部均一化する手段とを有することを特
徴とする集鉱装置。(1) Nodules such as manganese nodules existing on the seabed are sucked in from the opening at the tip of the duct by the water flow generated in the ore collection duct without moving on the seabed, and flow into the separation device along with seafloor sediments. The separator separates the nodules to be lifted from the seabed sediments and micronodules to be disposed of, and the seabed sediments and micronodules are collected together with seawater and manganese nodules, etc., which are discharged into external seawater. In the ore equipment, the separation device includes a portion of the hopper, an expanded portion of the ore collection duct that is connected to an end of the ore collection duct and opens downwardly toward the end above the portion of the hopper; An annular separation cylinder connected to the upper peripheral part of the hopper, surrounding the enlarged part of the ore collecting duct, and having an opening extending to the open sea at the upper part thereof, and means for equalizing the speed of the water flow rising inside the annular separation cylinder at each part. An ore collecting device comprising:
離筒上部の各部の開口の開度をその外側の海水の圧力に
応じて設定した絞り機構であることを特徴とする特許請
求の範囲第1項に記載の集鉱装置。(2) A patent claim characterized in that the above-mentioned upward flow equalization means in the annular separation cylinder is a throttle mechanism that sets the degree of opening of each part of the upper part of the annular separation cylinder in accordance with the pressure of seawater outside the annular separation cylinder. The ore collecting device according to item 1.
環状分離筒が一つの鉛直線に関して同心的に設けられた
回転体として構成され、この構成自体によりi状分離筒
内上昇流均−化手段が形成されていることを特徴とする
特許請求の範囲第1項に記載の集鉱装置。(3) The expanded part of the ore collecting duct x, the hole/%- and the annular separation cylinder are configured as a rotating body that is provided concentrically with respect to one vertical line, and this configuration itself allows the upward flow in the i-shaped separation cylinder to be balanced. 2. The ore collector according to claim 1, further comprising: - conversion means.
けるとともに上記の集鉱タリト管壁に設けた外海に通ず
る開口を開閉するダンノ;−を設け、上記の団塊貯留量
制限スイッチのホツノクー内の団塊貯留量検知信号によ
シ上記のダンパーを開閉制御するようにしたことを特徴
とする特許請求の範囲第1項に記載の集鉱装置。(4) A nodule storage amount limiting switch is provided in the above hopper, and a switch is provided in the ore collection pipe wall to open and close the opening leading to the open sea, and 2. The ore collector according to claim 1, wherein the damper is controlled to open and close based on a nodule storage amount detection signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP134782A JPS58120993A (en) | 1982-01-09 | 1982-01-09 | Collector for manganese nodule, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP134782A JPS58120993A (en) | 1982-01-09 | 1982-01-09 | Collector for manganese nodule, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58120993A true JPS58120993A (en) | 1983-07-19 |
JPS6262239B2 JPS6262239B2 (en) | 1987-12-25 |
Family
ID=11498951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP134782A Granted JPS58120993A (en) | 1982-01-09 | 1982-01-09 | Collector for manganese nodule, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58120993A (en) |
-
1982
- 1982-01-09 JP JP134782A patent/JPS58120993A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6262239B2 (en) | 1987-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6730222B1 (en) | Hydrodynamic vortex separator | |
US6790351B2 (en) | Vertical filter | |
JPS6140446B2 (en) | ||
JP7072780B2 (en) | Plastic piece collection method and collection system | |
CN100577921C (en) | Float load type oil recovering | |
CN108755904B (en) | Municipal drainage system | |
US2301371A (en) | Centrifugal sand separator | |
CN112843878A (en) | Archimedes spiral runner type cyclone separation well | |
EP0566792A1 (en) | Separator | |
CN201296684Y (en) | Sand-setting device | |
US9260853B2 (en) | Self cleaning debris screen for runoff water separation apparatus | |
JPH05505004A (en) | Method and apparatus for removing coarse sandstone from sewage | |
CN208893683U (en) | A kind of improved hydraulic settling pit | |
US10065197B2 (en) | Hydraulic particle separation apparatus for placer mining | |
US9968948B1 (en) | Counter-flow ore separator | |
JPS58120993A (en) | Collector for manganese nodule, etc. | |
JPS6327516B2 (en) | ||
CA2019390C (en) | Separator | |
CN209853791U (en) | Cyclone sand remover with sand storage tank | |
CN110465132A (en) | Grain slag collects separator | |
JPH03143508A (en) | Settling tank having spare separation chamber | |
CN219879320U (en) | Efficient spiral sand-water separator | |
JPS6354112B2 (en) | ||
JP2969519B1 (en) | Method and apparatus for separating sediment from sediment water | |
CN215505918U (en) | Archimedes spiral runner type cyclone separation well |