JP7072780B2 - Plastic piece collection method and collection system - Google Patents

Plastic piece collection method and collection system Download PDF

Info

Publication number
JP7072780B2
JP7072780B2 JP2020081534A JP2020081534A JP7072780B2 JP 7072780 B2 JP7072780 B2 JP 7072780B2 JP 2020081534 A JP2020081534 A JP 2020081534A JP 2020081534 A JP2020081534 A JP 2020081534A JP 7072780 B2 JP7072780 B2 JP 7072780B2
Authority
JP
Japan
Prior art keywords
grained
fine
soil
muddy water
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020081534A
Other languages
Japanese (ja)
Other versions
JP2021175602A (en
Inventor
友博 森澤
和範 玉上
貴恵 淺井
徹教 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Toa Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp, National Institute of Maritime Port and Aviation Technology filed Critical Toa Corp
Priority to JP2020081534A priority Critical patent/JP7072780B2/en
Publication of JP2021175602A publication Critical patent/JP2021175602A/en
Application granted granted Critical
Publication of JP7072780B2 publication Critical patent/JP7072780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、プラスチック片の回収方法および回収システムに関し、さらに詳しくは、水よりも密度が大きいプラスチック片であっても、土壌から効率的に回収できるプラスチック片の回収方法および回収システムに関するものである。 The present invention relates to a method and system for recovering plastic pieces, and more particularly to a method and system for recovering plastic pieces that can be efficiently recovered from soil even if the plastic pieces have a higher density than water. ..

マイクロプラスチックの海洋や河川への流出が問題視されており、水底の土壌に含まれるプラスチック片の含有量の調査が行われている。プラスチック片の含有量を把握するには土壌からプラスチック片を分離して回収する必要がある。従来では、水底から採取した土壌を篩にかけて、土壌から粒径が比較的小さい細粒土砂(主にシルトと粘土)を除去し、篩に残った粒径が比較的大きい粗粒土砂(主に砂礫)の中に紛れているプラスチック片を目視で判別し、手作業でプラスチック片を回収している。しかしながら、プラスチック片と粒径が同等以上の粗粒土砂の中からプラスチック片を目視で判別することは難しく、プラスチック片の回収に多くの手間と時間を要していた。 The outflow of microplastics into the ocean and rivers has been regarded as a problem, and the content of plastic pieces contained in the soil at the bottom of the water is being investigated. In order to understand the content of plastic pieces, it is necessary to separate and collect the plastic pieces from the soil. Conventionally, the soil collected from the bottom of the water is sieved to remove fine-grained soil (mainly silt and clay) with a relatively small particle size from the soil, and coarse-grained soil (mainly) with a relatively large particle size remaining on the sieve. The plastic pieces in the gravel) are visually identified and the plastic pieces are collected manually. However, it is difficult to visually distinguish a plastic piece from coarse-grained soil having a particle size equal to or larger than that of the plastic piece, and it takes a lot of time and effort to recover the plastic piece.

プラスチック廃棄物の分別方法として、水槽を利用して水面に浮上するプラスチックを回収する方法が提案させている(特許文献1参照)。しかしながら、この分別方法では、水よりも密度が大きいプラスチック片は水槽の底部に留まった状態となる。そのため、水よりも密度が大きいプラスチック片は効率的に回収することができない。 As a method for separating plastic waste, a method of collecting plastic floating on the water surface using a water tank has been proposed (see Patent Document 1). However, in this sorting method, plastic pieces having a density higher than that of water remain at the bottom of the aquarium. Therefore, plastic pieces having a density higher than that of water cannot be efficiently recovered.

特開2003-126727号公報Japanese Patent Application Laid-Open No. 2003-126727

本発明の目的は水よりも密度が大きいプラスチック片であっても、土壌から効率的に回収できるプラスチック片の回収方法および回収システムを提供することにある。 An object of the present invention is to provide a method and a recovery system for recovering plastic pieces that can be efficiently recovered from soil even if the plastic pieces have a density higher than that of water.

上記目的を達成するため、本発明のプラスチック片の回収方法は、土壌に含まれているプラスチック片を回収するプラスチック片の回収方法において、前記土壌を解泥した泥水を、サイクロン式遠心分離装置を用いて、前記遠心分離装置のアンダーフロー出口から排出される相対的に粒径が大きい粗粒土砂をより多く含む粗粒堆積分と、前記遠心分離装置のオーバーフロー出口から排出される前記プラスチック片および相対的に粒径が小さい細粒土砂をより多く含む細粒堆積分とに分級し、前記細粒堆積分をフィルタにかけて前記細粒堆積分から前記プラスチック片を分離して回収することを特徴とする。 In order to achieve the above object, the method for recovering plastic pieces of the present invention is a method for recovering plastic pieces contained in soil, wherein the muddy water obtained by dehumidifying the soil is separated by a cyclone type centrifuge. Using, coarse-grained deposits containing more coarse-grained sediment with a relatively large particle size discharged from the underflow outlet of the centrifuge, and the plastic pieces discharged from the overflow outlet of the centrifuge. It is characterized in that it is classified into fine-grained sediments containing a larger amount of fine-grained soil having a relatively small particle size, and the fine-grained sediments are filtered to separate and recover the plastic pieces from the fine-grained sediments. ..

本発明のプラスチック片の回収システムは、土壌に含まれているプラスチック片を回収するプラスチック片の回収システムにおいて、サイクロン式遠心分離装置と、前記土壌が解泥された泥水を前記遠心分離装置に流入させる流入手段と、フィルタとを有し、前記泥水が前記遠心分離装置のアンダーフロー出口から排出される相対的に粒径が大きい粗粒土砂をより多く含む粗粒堆積分と、オーバーフロー出口から排出される前記プラスチック片および相対的に粒径が小さい細粒土砂をより多く含む細粒堆積分とに分級されて、前記細粒堆積分が前記フィルタにかけられることで、前記プラスチック片が前記フィルタに捕捉される構成にしたことを特徴とする。 The plastic piece recovery system of the present invention is a plastic piece recovery system for recovering plastic pieces contained in soil, in which a cyclone type centrifuge and muddy water obtained by dehumidifying the soil flow into the centrifuge. The muddy water is discharged from the underflow outlet of the centrifuge, and the coarse-grained sediment containing a larger amount of coarse-grained soil having a relatively large particle size and the overflow outlet are discharged. The plastic pieces are classified into fine-grained deposits containing a larger amount of fine-grained earth and sand having a relatively small particle size, and the fine-grained deposits are applied to the filter, whereby the plastic pieces are applied to the filter. The feature is that it is configured to be captured.

本発明によれば、土壌を解泥した泥水を、サイクロン式遠心分離装置を用いて、相対的に粒径が大きい粗粒土砂(主に砂礫)をより多く含む粗粒堆積分と、プラスチック片および相対的に粒径が小さい細粒土砂(主にシルトと粘土)をより多く含む細粒堆積分とに分級する。プラスチック片は土壌に含まれる粒径が同等以上の粗粒土砂に比して密度が小さいので、プラスチック片は細粒土砂とともに遠心分離装置のオーバーフロー出口から排出される。一方で、プラスチック片と粒径が同等以上の粗粒土砂は密度が比較的大きいので、遠心分離装置のアンダーフロー出口から排出される。このように、サイクロン式遠心分離装置を用いることで、水よりも密度が大きいプラスチック片であっても、プラスチック片と粗粒土砂とを効率的に分離できる。オーバーフロー出口から排出される細粒堆積分は、プラスチック片と粒径が同等以上の粗粒土砂の含有率が低いので、細粒堆積分をフィルタにかけることで細粒堆積分からプラスチック片を容易に分離できる。これにより、水よりも密度が大きいプラスチック片であっても、土壌から効率的に回収できる。 According to the present invention, the muddy water obtained by dehumidifying the soil is subjected to a coarse-grained sediment containing a larger amount of coarse-grained sediment (mainly gravel) having a relatively large particle size by using a cyclone-type centrifugal separator, and a plastic piece. And it is classified into fine-grained sediments containing more fine-grained soil (mainly silt and clay) with relatively small grain size. Since the plastic pieces have a lower density than the coarse-grained earth and sand having a particle size of the same or higher in the soil, the plastic pieces are discharged together with the fine-grained earth and sand from the overflow outlet of the centrifuge. On the other hand, coarse-grained earth and sand having a particle size equal to or larger than that of the plastic piece has a relatively high density, and is therefore discharged from the underflow outlet of the centrifuge. As described above, by using the cyclone type centrifuge, the plastic piece and the coarse-grained earth and sand can be efficiently separated even if the plastic piece has a density higher than that of water. The fine-grained sediment discharged from the overflow outlet has a low content of coarse-grained sediment having a particle size equal to or higher than that of the plastic piece, so by filtering the fine-grained sediment, the plastic piece can be easily separated from the fine-grained sediment. Can be separated. As a result, even plastic pieces having a higher density than water can be efficiently recovered from the soil.

本発明のプラスチック片の回収システムの実施形態を例示する説明図である。It is explanatory drawing which illustrates the embodiment of the plastic piece recovery system of this invention. 図1のサイクロン式遠心分離装置の内部の状況を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the internal situation of the cyclone type centrifuge of FIG. 1 in the vertical cross-sectional view.

以下、本発明のプラスチック片の回収方法および回収システムを図に示した実施形態に基づいて説明する。 Hereinafter, the method and system for recovering the plastic pieces of the present invention will be described based on the embodiment shown in the figure.

図1および図2に例示する本発明のプラスチック片の回収システム1は、水底や陸上の土壌に含まれているプラスチック片Pを回収する際に使用される。プラスチック片Pは、所謂マイクロプラスチックと呼ばれる粒径が5mm以下のプラスチック材料の微小片や微粒子である。土壌には、ポリスチレン(約1.03g/cm)やナイロン(約1.14g/cm)、アセテート(約1.28g/cm)などの水よりも密度が大きいプラスチック片Pが含まれている場合がある。 The plastic piece recovery system 1 of the present invention exemplified in FIGS. 1 and 2 is used for recovering the plastic piece P contained in the bottom of the water or the soil on land. The plastic piece P is a so-called microplastic, which is a fine piece or fine particle of a plastic material having a particle size of 5 mm or less. Soil contains plastic pieces P that are denser than water, such as polystyrene (about 1.03 g / cm 3 ), nylon (about 1.14 g / cm 3 ), and acetate (about 1.28 g / cm 3 ). May be.

回収システム1は、サイクロン式遠心分離装置2(以下、遠心分離装置2という)と、土壌が解泥された泥水Sを遠心分離装置2に流入させる流入手段3と、フィルタ9とを有する。さらに、この実施形態では、遠心分離装置2のアンダーフロー出口2bの下方に配置された粗粒堆積分用貯留容器7と、遠心分離装置2のオーバーフロー出口2cとフィルタ9とを接続する接続管8と、フィルタ9の下方に配置された細粒堆積分用貯留容器10とを有している。 The recovery system 1 includes a cyclone type centrifuge device 2 (hereinafter referred to as a centrifuge device 2), an inflow means 3 for flowing mud water S from which soil has been dehumidified into the centrifuge device 2, and a filter 9. Further, in this embodiment, the connecting pipe 8 connecting the storage container 7 for coarse grain deposits arranged below the underflow outlet 2b of the centrifuge device 2 and the overflow outlet 2c of the centrifuge device 2 and the filter 9 is connected. And a storage container 10 for fine-grained deposits arranged below the filter 9.

この実施形態の流入手段3は、泥水Sが貯留される貯留槽4と、貯留槽4および遠心分離装置2を接続する送泥管5と、貯留槽4に接続されたコンプレッサー6とを有して構成されている。貯留槽4の上部開口には貯留槽4を密閉可能な上蓋が設けられていて、上蓋にコンプレッサー6の送気管が接続されている。貯留槽4の底部には、泥水Sが排出される排出口が設けられている。さらに、貯留槽4の底部には、貯留槽4の内周面から排出口に向かって下方に傾斜した傾斜板4aが設けられている。貯留槽4の排出口に送泥管5の一端部が接続されていて、送泥管5の他端部が遠心分離装置2の側部に設けられた流入口2aに接続されている。 The inflow means 3 of this embodiment has a storage tank 4 in which the muddy water S is stored, a mud feed pipe 5 connecting the storage tank 4 and the centrifuge device 2, and a compressor 6 connected to the storage tank 4. It is composed of. The upper opening of the storage tank 4 is provided with an upper lid that can seal the storage tank 4, and the air supply pipe of the compressor 6 is connected to the upper lid. A discharge port from which muddy water S is discharged is provided at the bottom of the storage tank 4. Further, at the bottom of the storage tank 4, an inclined plate 4a inclined downward from the inner peripheral surface of the storage tank 4 toward the discharge port is provided. One end of the mud feed pipe 5 is connected to the discharge port of the storage tank 4, and the other end of the mud feed pipe 5 is connected to the inflow port 2a provided on the side of the centrifuge device 2.

図2に示すように、遠心分離装置2の内部は、下部の内径が上部の内径よりも小さい円錐台形状になっている。遠心分離装置2の上部に設けられた流入口2aから泥水Sが流入手段3によって高速で流入されることで、遠心分離装置2の内壁に沿って下方に流動する下降渦と、遠心分離装置2の中央において上方に流動する上昇渦が発生する構造となっている。 As shown in FIG. 2, the inside of the centrifuge 2 has a truncated cone shape in which the inner diameter of the lower portion is smaller than the inner diameter of the upper portion. A descending vortex that flows downward along the inner wall of the centrifuge device 2 by the muddy water S flowing in at high speed from the inflow port 2a provided in the upper part of the centrifuge device 2 by the inflow means 3, and the centrifuge device 2. The structure is such that an ascending vortex that flows upward is generated in the center of the wall.

流入口2aから泥水Sを流入させると、泥水Sにおいて相対的に粒径が大きく密度が大きい粗粒土砂(主に砂礫)をより多く含む粗粒堆積分Saは、遠心分離装置2の内部に発生する下降渦による遠心力の影響を大きく受ける。そのため、粗粒堆積分Saは、下降渦とともに内壁に沿って旋回しながら下降し、遠心分離装置2の下方に設けられたアンダーフロー出口2bから排出される。一方、プラスチック片Pは土壌に含まれる粒径が同等以上の粗粒土砂に比して密度が比較的小さい。そのため、プラスチック片Pと相対的に粒径が小さく密度が小さい細粒土砂(主にシルトと粘土)をより多く含む細粒堆積分Sbは、下降渦による遠心力の影響がより小さくなる。それ故、プラスチック片Pを含む細粒堆積分Sbは中央の上昇渦とともに上昇し、遠心分離装置2の上方に設けられたオーバーフロー出口2cから排出される。 When the muddy water S flows in from the inflow port 2a, the coarse-grained sediment Sa containing a larger amount of coarse-grained earth and sand (mainly gravel) having a relatively large particle size and a high density in the muddy water S is inside the centrifuge device 2. It is greatly affected by the centrifugal force caused by the generated descending vortex. Therefore, the coarse-grained sediment Sa descends while swirling along the inner wall together with the descending vortex, and is discharged from the underflow outlet 2b provided below the centrifuge device 2. On the other hand, the plastic piece P has a relatively low density as compared with coarse-grained earth and sand having a particle size of the same or more contained in the soil. Therefore, the fine-grained sediment Sb containing more fine-grained earth and sand (mainly silt and clay) having a relatively small particle size and a low density as the plastic piece P has a smaller influence of centrifugal force due to the descending vortex. Therefore, the fine-grained deposit Sb containing the plastic piece P rises with the rising vortex in the center and is discharged from the overflow outlet 2c provided above the centrifuge device 2.

遠心分離装置2によって分級する境界となる土砂の粒径の大きさ(以下、土砂の分級境界粒径という)は、オーバーフロー出口2cから排出される細粒土砂の粒径が回収対象とするプラスチック片Pの粒径よりも小さくなるように設定される。土壌に含まれるプラスチック片Pの粒径は概ね5mm程度以下であるので、遠心分離装置2による土砂の分級境界粒径は例えば、0.01mm以上2mm以下、より好ましくは、0.02mm以上1mm以下に設定される。 The size of the grain size of the earth and sand that is the boundary to be classified by the centrifuge 2 (hereinafter referred to as the classification boundary particle size of the earth and sand) is a plastic piece whose particle size of the fine-grained earth and sand discharged from the overflow outlet 2c is the target of recovery. It is set to be smaller than the particle size of P. Since the particle size of the plastic piece P contained in the soil is about 5 mm or less, the classification boundary particle size of the earth and sand by the centrifuge 2 is, for example, 0.01 mm or more and 2 mm or less, more preferably 0.02 mm or more and 1 mm or less. Is set to.

遠心分離装置2による土砂の分級境界粒径は、遠心分離装置2自体の大きさや流入口2aの大きさ、遠心分離装置2に流入させる泥水Sの流入速度などを変えることで変更できる。この流入手段3では、コンプレッサー6によって貯留槽4の内部にかける空気圧の大きさを変えることで、泥水Sの遠心分離装置2への流入速度を調整できる。 The classification boundary particle size of the earth and sand by the centrifuge 2 can be changed by changing the size of the centrifuge 2 itself, the size of the inflow port 2a, the inflow rate of the muddy water S flowing into the centrifuge 2, and the like. In the inflow means 3, the inflow speed of the muddy water S into the centrifuge device 2 can be adjusted by changing the magnitude of the air pressure applied to the inside of the storage tank 4 by the compressor 6.

フィルタ9としては、例えば、メッシュ状の金網を有する篩等が使用される。フィルタ9の目の大きさは、オーバーフロー出口2cから排出される細粒土砂の粒径よりも大きく、回収対象とするプラスチック片Pの粒径よりも小さく設定される。具体的には、フィルタ9の目の大きさは例えば、0.01mm四方以上1mm四方以下、より好ましくは、0.02mm四方以上0.075mm四方以下に設定される。フィルタ9を振動させる振動機構を設けることもできる。 As the filter 9, for example, a sieve having a mesh-shaped wire mesh or the like is used. The size of the mesh of the filter 9 is set to be larger than the particle size of the fine-grained earth and sand discharged from the overflow outlet 2c and smaller than the particle size of the plastic piece P to be collected. Specifically, the size of the mesh of the filter 9 is set to, for example, 0.01 mm square or more and 1 mm square or less, more preferably 0.02 mm square or more and 0.075 mm square or less. A vibration mechanism that vibrates the filter 9 can also be provided.

次に、この回収システム1を用いて土壌からプラスチック片Pを回収する方法を以下に説明する。 Next, a method of recovering the plastic piece P from the soil using this recovery system 1 will be described below.

水底などから採取した土壌を解泥して流動性を有する泥水Sを作成し、泥水Sを貯留槽4に貯留する。この際、土壌に対して加水調整を行うことで泥水Sの粘度と密度を調整する。泥水Sの粘度は、泥水Sを遠心分離装置2によって分級可能な範囲内に調整する。 The soil collected from the bottom of the water or the like is demudified to create a mud water S having fluidity, and the mud water S is stored in the storage tank 4. At this time, the viscosity and density of the muddy water S are adjusted by adjusting the water content of the soil. The viscosity of the muddy water S is adjusted within a range in which the muddy water S can be classified by the centrifuge device 2.

泥水Sの密度は回収対象とするプラスチック片Pの密度に応じて適宜設定できるが、例えば、ポリスチレンやナイロンなどの密度が1.0g/cm以上1.3g/cm以下のプラスチック片Pを回収対象とする場合には、泥水Sの密度を1.0g/cm以上1.5g/cm以下、より好ましくは、1.0g/cm以上1.3g/cm以下に調整するとよい。泥水Sの密度は回収対象とするプラスチック片Pの密度よりも例えば、1%以上大きく設定するとよい。 The density of the muddy water S can be appropriately set according to the density of the plastic piece P to be collected. For example, a plastic piece P having a density of 1.0 g / cm 3 or more and 1.3 g / cm 3 or less such as polystyrene or nylon is used. When the object is to be collected, the density of muddy water S may be adjusted to 1.0 g / cm 3 or more and 1.5 g / cm 3 or less, more preferably 1.0 g / cm 3 or more and 1.3 g / cm 3 or less. .. The density of the muddy water S may be set to be, for example, 1% or more higher than the density of the plastic piece P to be collected.

泥水Sの密度は、泥水Sの粘度をあまり変化させずに泥水Sの密度を大きくする添加材を添加することで調整することもできる。即ち、泥水Sの粘度を実質的に高くすることがないように予め設定した許容範囲内に維持できる添加材を用いるとよい。具体的には、添加材を添加した後の泥水Sの粘度(mPa・s)の許容範囲を、添加材を添加する前の泥水Sの当初粘度(mPa・s)の+5%以下、より好ましくは+3%以下にして、この許容範囲を確保できる添加材を使用する。添加材としては、硫酸バリウムや水酸化マグネシウム、水酸化カルシウム等が挙げられる。望ましくは泥水SのpHの値を高める添加材を用いることが好ましい。 The density of the muddy water S can also be adjusted by adding an additive that increases the density of the muddy water S without changing the viscosity of the muddy water S so much. That is, it is preferable to use an additive that can maintain the viscosity of the muddy water S within a preset allowable range so as not to substantially increase the viscosity. Specifically, the allowable range of the viscosity (mPa · s) of the muddy water S after adding the additive is more preferably + 5% or less of the initial viscosity (mPa · s) of the muddy water S before adding the additive. Use an additive that can ensure this permissible range by setting it to + 3% or less. Examples of the additive include barium sulfate, magnesium hydroxide, calcium hydroxide and the like. It is preferable to use an additive that raises the pH value of muddy water S.

次いで、流入手段3によって泥水Sを遠心分離装置2に流入させる。この実施形態では、貯留槽4の上部開口に上蓋をして貯留槽4を密閉した状態にし、コンプレッサー6により貯留槽4の内部の空気圧を高めることで、貯留槽4に貯留されている泥水Sを、送泥管5を通じて遠心分離装置2の流入口2aに流入させる。 Next, the muddy water S is made to flow into the centrifuge device 2 by the inflow means 3. In this embodiment, the upper opening of the storage tank 4 is covered with an upper lid to seal the storage tank 4, and the air pressure inside the storage tank 4 is increased by the compressor 6, so that the mud water S stored in the storage tank 4 is used. Is flowed into the inflow port 2a of the centrifuge 2 through the mud feeding pipe 5.

流入口2aから流入した泥水Sは、遠心分離装置2によって、相対的に粒径が大きい粗粒土砂をより多く含む粗粒堆積分Saと、プラスチック片Pおよび相対的に粒径が小さい細粒土砂をより多く含む細粒堆積分Sbとに連続的に分級される。そして、粗粒堆積分Saはアンダーフロー出口2bに排出され、プラスチック片Pを含む細粒堆積分Sbはオーバーフロー出口2cに排出される。 The muddy water S flowing in from the inflow port 2a has a coarse-grained sediment Sa containing a larger amount of coarse-grained earth and sand having a relatively large particle size, a plastic piece P, and fine particles having a relatively small particle size by the centrifuge device 2. It is continuously classified into fine-grained sediment Sb containing more earth and sand. Then, the coarse-grained deposit Sa is discharged to the underflow outlet 2b, and the fine-grained deposit Sb containing the plastic piece P is discharged to the overflow outlet 2c.

アンダーフロー出口2bから排出された粗粒堆積分Saは、粗粒堆積分用貯留容器7に溜まる。一方、オーバーフロー出口2cから排出されたプラスチック片Pを含む細粒堆積分Sbは、接続管8を通って、フィルタ9の上に排出される。そして、フィルタ9によって細粒堆積分Sbが分級されることで、比較的粒径の大きいプラスチック片Pがフィルタ9に捕捉され、比較的粒径の小さい細粒土砂がフィルタ9の目を通り抜けて細粒堆積分用貯留容器10に溜まる。フィルタ9の上にはほぼプラスチック片Pのみが残留した状態となるので、プラスチック片Pは容易に回収できる。 The coarse-grained sediment Sa discharged from the underflow outlet 2b is collected in the coarse-grained sediment storage container 7. On the other hand, the fine-grained deposit Sb containing the plastic piece P discharged from the overflow outlet 2c is discharged onto the filter 9 through the connecting pipe 8. Then, the fine-grained sediment Sb is classified by the filter 9, so that the plastic piece P having a relatively large particle size is captured by the filter 9, and the fine-grained earth and sand having a relatively small particle size pass through the eyes of the filter 9. It collects in the storage container 10 for fine-grained deposits. Since only the plastic piece P remains on the filter 9, the plastic piece P can be easily recovered.

このように、本発明では、プラスチック片Pの密度が、粒径が同等以上の粗粒土砂の密度に比して小さいことに着目し、遠心分離装置2を用いて、土壌を解泥した泥水Sを、粗粒土砂をより多く含む粗粒堆積分Saと、プラスチック片Pおよび細粒土砂をより多く含む細粒堆積分Sbとに分級する。これにより、水よりも密度が大きいプラスチック片Pであっても、土壌に含まれているプラスチック片Pと粗粒土砂とを効率的に分離できる。遠心分離装置2のオーバーフロー出口2cから排出される細粒堆積分Sbは、プラスチック片Pと粒径が同等以上の粗粒土砂の含有率が低いので、細粒堆積分Sbをフィルタ9にかけることで細粒堆積分Sbからプラスチック片Pを容易に分離できる。これにより、水よりも密度が大きいプラスチック片Pであっても、土壌から効率的に回収できる。 As described above, in the present invention, paying attention to the fact that the density of the plastic piece P is smaller than the density of coarse-grained sediment having the same or higher particle size, the muddy water obtained by dehumidifying the soil using the centrifuge 2 is used. S is classified into coarse-grained sediment Sa containing more coarse-grained sediment and fine-grained sediment Sb containing more coarse-grained sediment P and fine-grained sediment. As a result, even if the plastic piece P has a higher density than water, the plastic piece P contained in the soil and the coarse-grained earth and sand can be efficiently separated. Since the fine-grained sediment Sb discharged from the overflow outlet 2c of the centrifuge 2 has a low content of coarse-grained sediment having a particle size equal to or higher than that of the plastic piece P, the fine-grained sediment Sb is filtered. The plastic piece P can be easily separated from the fine-grained deposit Sb. As a result, even a plastic piece P having a density higher than that of water can be efficiently recovered from the soil.

粗粒堆積分用貯留容器7に溜められた分級後の粗粒堆積分Saと、細粒堆積分用貯留容器10に溜められた分級後の細粒堆積分Sbには、プラスチック片Pがほとんど含まれていない状態となる。それ故、分級後の粗粒堆積分Saおよび細粒堆積分Sbは、土壌を採取した水底などに戻す、或いは、建設資材やその他の資材として活用することが可能である。 Most of the plastic pieces P are contained in the coarse-grained sediment Sa stored in the coarse-grained sediment storage container 7 and the fine-grained sediment Sb stored in the fine-grained sediment storage vessel 10 after classification. It will be in a state where it is not included. Therefore, the coarse-grained sediment Sa and the fine-grained sediment Sb after classification can be returned to the bottom of the water where the soil was collected, or can be used as construction materials or other materials.

泥水Sの密度を1.00g/cm以上1.50g/cm以下、より好ましくは1.00g/cm以上1.30g/cm以下、さらに好ましくは1.05g/cm以上1.20g/cm以下に調整すると、ポリスチレンやナイロンなどの密度が1.00g/cm以上1.30g/cm以下のプラスチック片Pが遠心分離装置2のオーバーフロー出口2cから排出され易くなり、プラスチック片Pと粒径が同等以上の粗粒土砂がアンダーフロー出口2bから排出され易くなる。それ故、プラスチック片Pの回収率を高めるには有利になる。 The density of muddy water S is 1.00 g / cm 3 or more and 1.50 g / cm 3 or less, more preferably 1.00 g / cm 3 or more and 1.30 g / cm 3 or less, and further preferably 1.05 g / cm 3 or more 1. When adjusted to 20 g / cm 3 or less, the plastic piece P having a density of polystyrene, nylon, etc. of 1.00 g / cm 3 or more and 1.30 g / cm 3 or less is easily discharged from the overflow outlet 2c of the centrifuge device 2, and the plastic. Coarse-grained earth and sand having a particle size equal to or larger than that of the piece P is likely to be discharged from the underflow outlet 2b. Therefore, it is advantageous to increase the recovery rate of the plastic piece P.

泥水Sを作成する際に、泥水Sの粘度を予め設定した許容範囲内に維持しつつ泥水Sの密度を大きくする添加材を添加すると、泥水Sの流動性を確保しつつ、泥水Sの密度を大きくできるので、泥水Sの密度を精度よく調整することが可能となる。それ故、プラスチック片Pの回収率を高めるには有利になる。 When creating the muddy water S, if an additive that increases the density of the muddy water S while maintaining the viscosity of the muddy water S within a preset allowable range is added, the density of the muddy water S is ensured while ensuring the fluidity of the muddy water S. Can be increased, so that the density of muddy water S can be adjusted accurately. Therefore, it is advantageous to increase the recovery rate of the plastic piece P.

さらに、硫酸バリウムや水酸化マグネシウム、水酸化カルシウムなどの泥水SのpHの値を高める添加材を用いると、対象となる土壌が酸性土壌や酸性硫酸塩土壌である場合にも、土壌に含まれている硫酸還元菌の増殖や硫化水素の発生を抑制できる。それ故、酸性土壌や酸性硫酸塩土壌であってもプラスチック片Pをより安全な環境下で回収できる。 Furthermore, if additives such as barium sulfate, magnesium hydroxide, and calcium hydroxide that increase the pH value of muddy water S are used, even if the target soil is acidic soil or acidic sulfate soil, it will be contained in the soil. It is possible to suppress the growth of sulfate-reducing bacteria and the generation of hydrogen sulfide. Therefore, the plastic piece P can be recovered in a safer environment even in acidic soil or acidic sulfate soil.

また、泥水SのpHの値を高める添加材を添加すると、分級後の粗粒堆積分Saおよび細粒堆積分SbのpHの値を高めることができるので、粗粒堆積分Saや細粒堆積分Sbを水底の土壌などに戻すことで、土壌に含まれている硫酸還元菌の増殖や硫化水素の発生を抑制できる。それ故、土壌の環境改善にも寄与する。 Further, by adding an additive that increases the pH value of muddy water S, the pH values of the coarse-grained sediment Sa and the fine-grained sediment Sb after classification can be increased, so that the coarse-grained sediment Sa and the fine-grained sediment are deposited. By returning the minute Sb to the soil at the bottom of the water, the growth of sulfate-reducing bacteria and the generation of hydrogen sulfide contained in the soil can be suppressed. Therefore, it also contributes to improving the soil environment.

貯留槽4の底部に傾斜板4aを設けると、貯留槽4の底部にプラスチック片Pが残留し難くなり、プラスチック片Pが送泥管5に流入し易くなる。それ故、プラスチック片Pの回収率を高めるには有利になる。 When the inclined plate 4a is provided on the bottom of the storage tank 4, the plastic piece P is less likely to remain on the bottom of the storage tank 4, and the plastic piece P is likely to flow into the mud feeding pipe 5. Therefore, it is advantageous to increase the recovery rate of the plastic piece P.

流入手段3の構成はこの実施形態に限定されず、他にも様々な構成にすることができる。例えば、水底の土壌を採掘する水中ロボット等の採掘手段が流入手段3に接続され、採掘手段によって採掘された土壌を加水調整によって解泥し、その泥水Sを、流入手段3を通じて遠心分離装置2の流入口2aに逐次送る構成にすることもできる。また、例えば、プラスチック片Pを回収した後に残る分級後の粗粒堆積分Saや細粒堆積分Sbが一時的に溜められずに水底などに直接戻される構成にすることもできる。 The configuration of the inflow means 3 is not limited to this embodiment, and various other configurations can be used. For example, a mining means such as an underwater robot for mining the soil at the bottom of the water is connected to the inflow means 3, the soil mined by the mining means is demudged by water adjustment, and the muddy water S is centrifuged through the inflow means 3. It can also be configured to sequentially send to the inflow port 2a. Further, for example, the coarse-grained sediment Sa and the fine-grained sediment Sb remaining after the plastic piece P is collected may be directly returned to the bottom of the water without being temporarily accumulated.

また、例えば、遠心分離装置2自体の大きさや遠心分離装置2に流入させる泥水Sの流入速度を異ならせた複数台の遠心分離装置2を連結させて、泥水Sを複数段階に分けて分級することで、密度や粒径の異なるプラスチック片Pを分級して回収する構成にすることもできる。 Further, for example, a plurality of centrifuge devices 2 having different sizes of the centrifuge device 2 itself and the inflow rate of the muddy water S flowing into the centrifuge device 2 are connected to classify the muddy water S into a plurality of stages. This makes it possible to classify and collect plastic pieces P having different densities and particle sizes.

上記で例示した実施形態では、遠心分離装置2のオーバーフロー出口2cにフィルタ9が接続管8を介して接続されているが、フィルタ9はオーバーフロー出口2cと連続させなくてもよい。即ち、オーバーフロー出口2cから排出されたプラスチック片Pを含む細粒堆積分Sbを貯留容器などにストックした後、そのストックしておいた細粒堆積分Sbをフィルタ9にかけてプラスチック片Pを回収することもできる。 In the embodiment exemplified above, the filter 9 is connected to the overflow outlet 2c of the centrifuge device 2 via the connecting pipe 8, but the filter 9 does not have to be continuous with the overflow outlet 2c. That is, after stocking the fine-grained deposit Sb containing the plastic piece P discharged from the overflow outlet 2c in a storage container or the like, the stocked fine-grained deposit Sb is filtered through the filter 9 to collect the plastic piece P. You can also.

粘土に20個の球形のプラスチック片を混入した模擬土壌を作成し、その模擬土壌を解泥して粘度と密度を調整した泥水のサンプルを4種類作成した。そして、図1および図2に例示した回収システムを用いてそれぞれの泥水のサンプルからプラスチック片を回収する実験を行った。主な実験条件と実験結果は表1に示すとおりである。表1の「UF(個)」は遠心分離装置のアンダーフロー出口から排出されたプラスチック片の個数を示し、「OF(個)」は遠心分離装置のオーバーフロー出口から排出されたプラスチック片の個数を示し、「槽残(個)」は貯留槽に残留したプラスチック片の個数を示している。 A simulated soil in which 20 spherical plastic pieces were mixed with clay was prepared, and the simulated soil was demudded to prepare four types of muddy water samples whose viscosity and density were adjusted. Then, an experiment was conducted in which plastic pieces were recovered from each muddy water sample using the recovery systems illustrated in FIGS. 1 and 2. The main experimental conditions and experimental results are shown in Table 1. “UF (pieces)” in Table 1 indicates the number of plastic pieces discharged from the underflow outlet of the centrifuge, and “OF (pieces)” indicates the number of plastic pieces discharged from the overflow outlet of the centrifuge. Shown, "remaining tank (pieces)" indicates the number of plastic pieces remaining in the storage tank.

Figure 0007072780000001
Figure 0007072780000001

表1に示すように、すべての泥水のサンプルにおいて、模擬土壌に含まれる20個のプラスチック片のうち15個以上のプラスチック片がオーバーフロー側に排出され、回収システムによるプラスチック片の回収率は75%以上であった。この実験結果から、回収システムを用いることで、水よりも密度が大きいプラスチック片であっても、土壌から高い回収率で回収できることが分かる。 As shown in Table 1, in all muddy water samples, 15 or more of the 20 plastic pieces contained in the simulated soil were discharged to the overflow side, and the recovery rate of the plastic pieces by the recovery system was 75%. That was all. From this experimental result, it can be seen that by using the recovery system, even a plastic piece having a higher density than water can be recovered from the soil with a high recovery rate.

1 回収システム
2 サイクロン式遠心分離装置
2a 流入口
2b アンダーフロー出口
2c オーバーフロー出口
3 流入手段
4 貯留槽
4a 傾斜板
5 送泥管
6 コンプレッサー
7 粗粒堆積分用貯留容器
8 接続管
9 フィルタ
10 細粒堆積分用貯留容器
S (土壌を解泥した)泥水
Sa 粗粒堆積分
Sb 細粒堆積分
P プラスチック片
1 Recovery system 2 Cyclone centrifuge 2a Inlet 2b Underflow outlet 2c Overflow outlet 3 Inflow means 4 Storage tank 4a Inclined plate 5 Mud pipe 6 Compressor 7 Coarse sediment storage container 8 Connection pipe 9 Filter 10 Fine granules Sediment storage container S (soil demudified) Mud water Sa Coarse sediment Sb Fine sediment P Plastic piece

Claims (5)

土壌に含まれているプラスチック片を回収するプラスチック片の回収方法において、
前記土壌を解泥した泥水を、サイクロン式遠心分離装置を用いて、前記遠心分離装置のアンダーフロー出口から排出される相対的に粒径が大きい粗粒土砂をより多く含む粗粒堆積分と、前記遠心分離装置のオーバーフロー出口から排出される前記プラスチック片および相対的に粒径が小さい細粒土砂をより多く含む細粒堆積分とに分級し、前記細粒堆積分をフィルタにかけて前記細粒堆積分から前記プラスチック片を分離して回収することを特徴とするプラスチック片の回収方法。
In the method of collecting plastic pieces that are contained in the soil,
Using a cyclone-type centrifuge, the muddy water obtained by dehumidifying the soil is discharged from the underflow outlet of the centrifuge to form a coarse-grained sediment containing a larger amount of coarse-grained sediment having a relatively large particle size. The plastic pieces discharged from the overflow outlet of the centrifuge are classified into fine-grained sediments containing more fine-grained earth and sand having a relatively small particle size, and the fine-grained sediments are filtered to form the fine-grained sediments. A method for collecting plastic pieces, which comprises separating and collecting the plastic pieces from a minute.
前記泥水を作成する際に、前記泥水の粘度を予め設定した許容範囲内に維持しつつ前記泥水の密度を大きくする添加材を前記土壌に添加する請求項1に記載のプラスチック片の回収方法。 The method for recovering a plastic piece according to claim 1, wherein when the muddy water is prepared, an additive for increasing the density of the muddy water is added to the soil while maintaining the viscosity of the muddy water within a preset allowable range. 前記泥水のpHの値を高める前記添加材を添加する請求項2に記載のプラスチック片の回収方法。 The method for recovering a plastic piece according to claim 2, wherein the additive for increasing the pH value of the muddy water is added. 前記泥水の密度を、1.0g/cm以上1.5g/cm以下に調整する請求項1~3のいずれかに記載のプラスチック片の回収方法。 The method for recovering a plastic piece according to any one of claims 1 to 3, wherein the density of the muddy water is adjusted to 1.0 g / cm 3 or more and 1.5 g / cm 3 or less. 土壌に含まれているプラスチック片を回収するプラスチック片の回収システムにおいて、
サイクロン式遠心分離装置と、前記土壌が解泥された泥水を前記遠心分離装置に流入させる流入手段と、フィルタとを有し、
前記泥水が前記遠心分離装置のアンダーフロー出口から排出される相対的に粒径が大きい粗粒土砂をより多く含む粗粒堆積分と、オーバーフロー出口から排出される前記プラスチック片および相対的に粒径が小さい細粒土砂をより多く含む細粒堆積分とに分級されて、前記細粒堆積分が前記フィルタにかけられることで、前記プラスチック片が前記フィルタに捕捉される構成にしたことを特徴とするプラスチック片の回収システム。
In a plastic piece recovery system that collects plastic pieces contained in soil
It has a cyclone type centrifuge, an inflow means for flowing mud water from which the soil has been dehumidified into the centrifuge, and a filter.
The coarse-grained sediment containing more coarse-grained earth and sand having a relatively large particle size discharged from the underflow outlet of the centrifuge, and the plastic pieces discharged from the overflow outlet and the relatively particle size of the muddy water. It is characterized in that the plastic pieces are captured by the filter by being classified into fine-grained sediments containing a larger amount of small fine-grained sediment and the fine-grained sediments being applied to the filter. Plastic piece collection system.
JP2020081534A 2020-05-01 2020-05-01 Plastic piece collection method and collection system Active JP7072780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020081534A JP7072780B2 (en) 2020-05-01 2020-05-01 Plastic piece collection method and collection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020081534A JP7072780B2 (en) 2020-05-01 2020-05-01 Plastic piece collection method and collection system

Publications (2)

Publication Number Publication Date
JP2021175602A JP2021175602A (en) 2021-11-04
JP7072780B2 true JP7072780B2 (en) 2022-05-23

Family

ID=78300196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020081534A Active JP7072780B2 (en) 2020-05-01 2020-05-01 Plastic piece collection method and collection system

Country Status (1)

Country Link
JP (1) JP7072780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543179B2 (en) 2021-03-09 2024-09-02 東亜建設工業株式会社 Method and system for recovering plastic pieces

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114918242B (en) * 2022-05-07 2023-06-23 浙江大学 Microplastic polluted soil restoration device and method based on coaxial DBD plasma technology
JP2024113587A (en) * 2023-02-09 2024-08-22 三浦工業株式会社 Microplastics Collection System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004600A1 (en) 2006-07-03 2008-01-10 Teijin Fibers Limited Method of separating mixed plastic
JP2009202089A (en) 2008-02-27 2009-09-10 Shimizu Corp Reclamation treatment method and reclamation treatment system of earth and sand-waste mixture
JP5184874B2 (en) 2007-12-17 2013-04-17 エスペック株式会社 Thermal insulation material blowing device and thermal insulation member manufacturing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142681A (en) * 1974-05-07 1975-11-17
NL177898C (en) * 1974-12-12 1985-12-16 Stamicarbon METHOD FOR RECOVERING USEFUL MATERIALS FROM WASTE MATERIAL CONTAINING METALS AND NON-METALS
DE19606415A1 (en) * 1996-02-21 1997-08-28 Deutz Ag Effective plastic sorting
JP6762150B2 (en) * 2016-07-01 2020-09-30 東亜建設工業株式会社 Underwater resource collection method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004600A1 (en) 2006-07-03 2008-01-10 Teijin Fibers Limited Method of separating mixed plastic
JP5184874B2 (en) 2007-12-17 2013-04-17 エスペック株式会社 Thermal insulation material blowing device and thermal insulation member manufacturing device
JP2009202089A (en) 2008-02-27 2009-09-10 Shimizu Corp Reclamation treatment method and reclamation treatment system of earth and sand-waste mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543179B2 (en) 2021-03-09 2024-09-02 東亜建設工業株式会社 Method and system for recovering plastic pieces

Also Published As

Publication number Publication date
JP2021175602A (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7072780B2 (en) Plastic piece collection method and collection system
CN101279811B (en) Four-phase solid-liquid separation method for well drilling wastes
EA021077B1 (en) Hindered-settling fluid classifier
CN109967226A (en) A kind of recoverying and utilizing method of fine cleaned coal
JP5155487B1 (en) Classification method of contaminated soil
US10065197B2 (en) Hydraulic particle separation apparatus for placer mining
CN106492520B (en) A kind of girt-water separation device and method
CN107537698A (en) One kind strengthens coarse slime flotation unit
CN105084568A (en) Oil-contained wastewater treatment device and treatment process
CN106223881A (en) Solid waste crushing and screening skid mounted equipment
US7963398B2 (en) Method for hydraulically separating carbon and classifying coal combustion ash
JP2005095810A (en) Method for separating granular mixture
JP6762150B2 (en) Underwater resource collection method and system
KR100944162B1 (en) Gold dust separator
CN104060955A (en) Drilling fluid purifying plant and method adopted to purify drilling fluid
CN209076115U (en) A kind of deep dense device of cone
CN207713520U (en) Integrated muddy water sieves cyclonic separation equipment
CN206814415U (en) A kind of coal water purification installation
CN204051871U (en) A kind of TBS separator of adjustable downflow weir
JPS5876696A (en) Apparatus for collecting manganese nodule
CN219156714U (en) Recycling device for waste drilling mud of oil and gas field
JP2003265905A (en) Flocculating and settling apparatus
JP3866819B2 (en) Thickener
JP7543179B2 (en) Method and system for recovering plastic pieces
RU2743160C2 (en) Method for additional extraction of gold from gale-lixiviation dumps and tailings for washing sands of placer deposits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220422

R150 Certificate of patent or registration of utility model

Ref document number: 7072780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150