JPS6340918B2 - - Google Patents

Info

Publication number
JPS6340918B2
JPS6340918B2 JP56190807A JP19080781A JPS6340918B2 JP S6340918 B2 JPS6340918 B2 JP S6340918B2 JP 56190807 A JP56190807 A JP 56190807A JP 19080781 A JP19080781 A JP 19080781A JP S6340918 B2 JPS6340918 B2 JP S6340918B2
Authority
JP
Japan
Prior art keywords
suction head
seabed
ore
nodules
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56190807A
Other languages
Japanese (ja)
Other versions
JPS5894596A (en
Inventor
Seiichi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP19080781A priority Critical patent/JPS5894596A/en
Publication of JPS5894596A publication Critical patent/JPS5894596A/en
Publication of JPS6340918B2 publication Critical patent/JPS6340918B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】 この発明は、海底面上を移動しながら集鉱ダク
ト内に発生させた水流により該ダクトの先端に設
けたサクシヨンヘツドより海底面に賦存するマン
ガン団塊等の団塊を吸引して集鉱するマンガン団
塊等の集鉱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention uses a water flow generated in an ore collection duct while moving on the seabed to suck up nodules such as manganese nodules existing on the seabed through a suction head provided at the tip of the duct. This invention relates to an ore collection device for collecting manganese nodules, etc.

以下マンガン団塊の場合について説明するが本
発明はマンガン団塊に類似のものの集鉱装置にも
適用することができる。
The case of manganese nodules will be described below, but the present invention can also be applied to ore collectors similar to manganese nodules.

ニツケル、コバルト、銅、マンガン等の無尽蔵
な鉱物資源として注目されているマンガン団塊は
深海底の海底堆積物上にあたかも玉石を敷いた如
く平面的に賦存している。そこで、これを採鉱す
るには海底面に分布する団塊を集鉱した上、海上
に揚鉱することが必要となる。
Manganese nodules, which are attracting attention as an inexhaustible mineral resource of nickel, cobalt, copper, manganese, etc., are found flatly on the seafloor sediments of the deep sea floor, as if laid out on boulders. Therefore, in order to mine this ore, it is necessary to collect the nodules distributed on the ocean floor and then lift the ore to the sea.

マンガン団塊集鉱装置としては、冒頭に掲げ
た、いわゆる流体ドレツジ方式が機構が簡単で故
障が少なく優れている。
As a manganese nodule collector, the so-called fluid dredge method mentioned at the beginning is superior because it has a simple mechanism and fewer breakdowns.

さて、マンガン団塊の賦存する海底は必らずし
も平担な所ばかりとは限らず、起伏があり、上り
勾配や下り勾配があり、その移り替る所は弧状の
場合やある角度の稜線をなす場合もある。マンガ
ン団塊集鉱装置の設計に際しては最大8/100程
度の海底勾配を念頭に置く必要があると云われて
いる。
Now, the seabed where manganese nodules exist is not necessarily flat, but has ups and downs, upslopes and downslopes, and the places where they change are arc-shaped or ridges at certain angles. In some cases, this is done. It is said that when designing a manganese nodule concentrator, it is necessary to keep in mind a seabed slope of about 8/100 at most.

又、海底堆積物は一般に柔らかいが、その程度
は一様でなく、地耐力は200〜700Kg/m2の範囲に
及んでいる。そのため集鉱装置は接地面積の大き
なスキー上に塔載して海底面に支えるのが一般的
であるが、海底の柔らかさの相違によつてスキー
の沈下量が変化し、その差は約30cmにも達する。
又スキーが前述の海底勾配の稜線に乗つた場合
は、スキーの一部が海底面よりめり込んだり海底
面から離れたりする。これらの結果、サクシヨン
ヘツドが海底面から離れすぎると海水ばかりを吸
引し、逆にサクシヨンヘツドが海底面よりめり込
むと、ドレツジヤーの如く海底堆積物を大量に吸
込むことになる。
In addition, seafloor sediments are generally soft, but the degree of softness is not uniform, and the bearing capacity ranges from 200 to 700 kg/m 2 . For this reason, ore collectors are generally mounted on skis with a large contact area and supported on the seabed, but the amount of sinking of the ski changes depending on the softness of the seabed, and the difference is approximately 30 cm. reach even.
Furthermore, if the ski rides on the ridgeline of the above-mentioned seabed slope, a portion of the ski may sink into or separate from the seabed. As a result, if the suction head is too far from the seabed, it will only suck in seawater, and if the suction head sinks below the seafloor, it will suck in a large amount of seafloor sediment like a dredge.

マンガン団塊の海底面上の状態は、地面にボー
ルが転がつている如く全体が露出しているものか
ら半分程度海底面上に露出したもの、氷山の如く
殆んど海底面下に没したもの等まちまちである。
The state of manganese nodules on the ocean floor varies from those that are completely exposed, like a ball rolling on the ground, to those that are about half exposed above the ocean floor, and those that are almost completely submerged under the ocean floor, like an iceberg. etc. It varies.

又、マンガン団塊の大きさも種々であるが、揚
鉱管の直径や経済性等のかね合いから賦存率の少
い例えば80〜100mm以上の大径のものはサクシヨ
ンヘツドに入らないように選別して排除する必要
がある。
In addition, the size of manganese nodules varies, but due to considerations such as the diameter of the ore lifting pipe and economic efficiency, those with a low abundance, for example, large diameters of 80 to 100 mm or more, are selected to prevent them from entering the suction head. It is necessary to eliminate it.

上述の海底地形、土質、マンガン団塊の状態に
かんがみ、集鉱装置のサクシヨンヘツドは海底面
との相対高さ及び傾斜を調整し、かつ所定の揚鉱
団壊粒径範囲を超す大径の団塊を選別排除しなが
ら操業する必要がある。
Considering the above-mentioned seabed topography, soil quality, and condition of manganese nodules, the suction head of the ore collecting device adjusts the relative height and inclination with the seabed surface, and is designed to collect large-diameter nodules that exceed the predetermined ore collapse grain size range. It is necessary to operate while sorting and eliminating.

従来サクシヨンヘツドの位置、傾斜調整手段と
しては、集鉱ダクトとサクシヨンヘツドとの間に
ベローズを設け、その伸縮によつて海底の高さ、
傾斜の変化に追随させる方法が提案されている
が、約30cmに及ぶ海底高さの変化に追随させるた
めにはベローズの長さが極めて長くなり、又ベロ
ーズは肉厚が薄いため内部を通過する団塊によつ
て急速に摩耗し寿命が短かくなる。又、母船によ
る曳航力をサクシヨンヘツドに確実に伝達できな
い等の種々の問題点がある。仮りにベローズの強
度を増すために板厚を増せば海底高さ、傾斜に追
随しにくゝなる。
Conventionally, as means for adjusting the position and inclination of the suction head, a bellows is installed between the ore collection duct and the suction head, and the height of the seabed is adjusted by the expansion and contraction of the bellows.
A method has been proposed in which the bellows follows changes in slope, but in order to follow changes in seabed height of approximately 30 cm, the length of the bellows would be extremely long, and the bellows have a thin wall, so the bellows would have to pass through the inside. Nodules cause rapid wear and shorten the lifespan. Furthermore, there are various problems such as the inability to reliably transmit the towing force from the mother ship to the suction head. If the thickness of the bellows were increased to increase its strength, it would be difficult to follow the height and slope of the seabed.

又、揚鉱粒径範囲を超す大径の団塊を選別排除
するいわゆる一次団塊選別手段としては、従来サ
クシヨンヘツドの前面に、海底面の上下にわたつ
て進行方向に対して斜め方向に、鉛直な選別格子
を設け、これで除外すべき団塊を外側方に押し出
す方法が提案されているが、この選別装置で円滑
に大径団塊を外側方に押し出すには、該選別格子
の集鉱装置の進行方向に対する角度をかなり鋭角
にすることが必要であり、サクシヨンヘツドの幅
が大きくなると、この選別装置が非常に大きくな
ると云う不都合が起る。
In addition, as a so-called primary nodule sorting means for sorting and eliminating large-diameter nodules that exceed the lifted ore grain size range, conventional nodules are sorted vertically in front of the suction head in a direction diagonal to the direction of movement above and below the seabed surface. A method has been proposed in which a grid is provided and the nodules to be excluded are pushed outward, but in order for this sorting device to smoothly push out large-diameter nodules outward, it is necessary to It is necessary that the angle to the filter be quite acute, and as the width of the suction head increases, the disadvantage arises that this sorting device becomes very large.

この発明は、従来提案されている集鉱装置のサ
クシヨンヘツドに関連する上述の欠点を除去し
た、ベローズを用いることなく簡単な構成でサク
シヨンヘツドを確実に海底高さ、傾斜に追随させ
ることができるとともに、従来よりもはるかに小
さい部材で円滑に大径団塊の選別除去が可能なマ
ンガン団塊集鉱装置を提供することを目的とす
る。
The present invention eliminates the above-mentioned drawbacks associated with the suction head of conventionally proposed ore collectors, and allows the suction head to reliably follow the seabed height and inclination with a simple configuration without using bellows. It is an object of the present invention to provide a manganese nodule collector capable of smoothly sorting and removing large-diameter nodules using members much smaller than conventional ones.

以下、本発明をその実施例を示す図面にもとづ
いて詳細に説明する。
Hereinafter, the present invention will be explained in detail based on drawings showing embodiments thereof.

第1図及び第2図に示す本発明の実施例の集鉱
装置は、実質的に密閉容器として構成されたホツ
パー1と、これより前方に伸びた複数本(図の場
合は4本)の集鉱ダクト2と、その垂下した先端
部に取付けられたサクシヨンヘツド3と、前記ホ
ツパー1より後方に伸び外海に開口する泥水排出
管4と、その中間に設けられた集鉱用ポンプ5と
その駆動モータ6と、ホツパー底部の団塊排出口
1aに接続され図示せぬ海上の母船により該集鉱
装置を曳航するとともに途中に設けた図示せぬ揚
鉱ポンプにより団塊を母船に揚鉱する揚鉱管7を
接続する揚鉱用接続管8とを有し、これらの装置
は一つのフレーム9に塔載されている。なお、第
2図には繁雑をさけるため揚鉱用接続管8及びフ
レーム9は省略されている。フレーム9の前端に
は、本集鉱装置が曳航中に障害物に衝突した場合
の緩衝のためにバンパー10がバネ11を介して
取付けられている。
The ore collecting device according to the embodiment of the present invention shown in FIGS. 1 and 2 includes a hopper 1 substantially configured as a closed container, and a plurality of hoppers (four in the figure) extending forward from the hopper 1. An ore collection duct 2, a suction head 3 attached to its hanging tip, a muddy water discharge pipe 4 extending rearward from the hopper 1 and opening to the open sea, and an ore collection pump 5 provided in the middle thereof and its drive. A motor 6 and an ore lifting pipe which is connected to the nodule discharge port 1a at the bottom of the hopper and which tows the ore collecting device by a mother ship on the sea (not shown) and lifts the nodules to the mother ship using an ore lifting pump (not shown) installed on the way. These devices are mounted on one frame 9. Note that the ore lifting connecting pipe 8 and frame 9 are omitted in FIG. 2 to avoid complexity. A bumper 10 is attached to the front end of the frame 9 via a spring 11 for cushioning when the ore collector collides with an obstacle while being towed.

フレーム9の集鉱ダクト2を固定している部分
の直前の位置、すなわちサクシヨンヘツド3の直
上の位置で、4つのサクシヨンヘツドの間及び両
外側の5個所にアーム12の一端が、集鉱装置進
行方向に平行な鉛直面内でアーム12が揺動出来
る如く軸支されており、該アーム12の他端には
横方向の水平軸のまわりに回転自在に海底高さ検
出用ホイール13が軸支されている。該ホイール
13は内部に浮力材を充填する等の手段により比
重を海水より僅かに大きい程度に調整され、集鉱
装置の前進の際、海底堆積物表面よりめり込むこ
となく、又反動等で跳ね上がつたりすることなく
常に海底面に接触しつゝ転動することができるよ
うになつている。
At a position immediately in front of the part of the frame 9 that fixes the ore collecting duct 2, that is, at a position directly above the suction head 3, one end of the arm 12 is attached at five locations between the four suction heads and on both outsides in the direction of movement of the ore collector. An arm 12 is pivotally supported so as to be able to swing in a vertical plane parallel to , and a seabed height detection wheel 13 is pivotally supported at the other end of the arm 12 so as to be rotatable around a horizontal horizontal axis. ing. The specific gravity of the wheel 13 is adjusted to be slightly higher than that of seawater by filling the interior with a buoyancy material, etc., so that when the ore collecting device moves forward, it does not sink into the surface of the seabed sediments and does not bounce up due to reaction etc. It is designed to be able to roll while constantly touching the seabed without wobbling.

フレーム9の下面には複数の案内筒14が垂直
に4列に配設されており、これに対応して、下端
がスキー15の上面に軸支された柱16が上記案
内筒14に遊嵌している。柱16の周りには圧縮
バネ17が設けられ、フレーム9及びその上に塔
載された前記の装置の重量はバネ17を介してス
キー15に支持されている。スキー15は撓み易
い鋼板等で作られており、海底地形に追随してた
わむのでスキーが部分的に海底堆積物中にめり込
んだり、一部が海底面より遊離することがなく、
しかもばね17の伸縮によりフレーム9に無理な
力が掛ることも防止されている。
A plurality of guide tubes 14 are vertically arranged in four rows on the lower surface of the frame 9, and correspondingly, a column 16 whose lower end is pivotally supported on the upper surface of the ski 15 is loosely fitted into the guide tube 14. are doing. A compression spring 17 is provided around the column 16, and the weight of the frame 9 and the device mounted thereon is supported by the ski 15 via the spring 17. The skis 15 are made of a flexible steel plate or the like, and bend to follow the seabed topography, so the skis do not partially sink into the seabed sediments or become loose from the seabed surface.
Furthermore, application of excessive force to the frame 9 due to the expansion and contraction of the spring 17 is also prevented.

次に、サクシヨンヘツドの詳細を第3図及び第
4図により説明する。各サクシヨンヘツド3は第
4図に示す如く先端が横方向に漸次拡がつた、断
面が長方形の集鉱ダクト2の下端部の前後壁中心
線上に前後方向に設けられた支持軸20に所定の
角度範囲(即ち前述の海底勾配8/100に対応す
る角度範囲)揺動可能に軸支されている。この揺
動範囲は集鉱ダクトの側壁に取付けられたストツ
パ20′により限定される。
Next, details of the suction head will be explained with reference to FIGS. 3 and 4. As shown in FIG. 4, each suction head 3 is attached at a predetermined angle to a support shaft 20 provided in the front and back direction on the center line of the front and rear walls at the lower end of the ore collecting duct 2, which has a rectangular cross section and whose tip gradually widens laterally. It is pivotally supported so as to be swingable within a range (that is, an angular range corresponding to the above-mentioned seabed slope of 8/100). This swing range is limited by a stopper 20' attached to the side wall of the ore collecting duct.

サクシヨンヘツド3は、上記の支持軸20に軸
支され集鉱ダクト2の端部を僅かの遊隙を介して
囲繞する長方形枠形のサクシヨンヘツドネツク部
材21と、該部材の両側板に連続して下方に固定
され集鉱装置移動方向に伸びた1対の鉛直のサク
シヨンヘツド側板22と、上記ネツク部材21の
前後壁の下端に夫々接続する如く、その上端を揺
動可能に上記サクシヨンヘツド側板で軸支された
サクシヨンヘツド前後プレード23,24を有す
る。上記の1対のサクシヨンヘツド側板22の内
面と前後プレード23,24で囲まれたサクシヨ
ンヘツド開口は前後ブレード23,24の揺動位
置によつてフレーム9に対する高さが変化する。
前後ブレード23,24の両側縁とサクシヨンヘ
ツド側板22との間には僅かの遊隙が設けられて
いる。
The suction head 3 is connected to a suction head member 21 in the shape of a rectangular frame that is pivotally supported by the support shaft 20 and surrounds the end of the ore collecting duct 2 with a slight clearance, and to both side plates of the member. A pair of vertical suction head side plates 22 are fixed downwardly and extend in the moving direction of the ore collecting device, and the upper ends of the neck member 21 are connected to the lower ends of the front and rear walls of the neck member 21, respectively. It has supported suction head front and rear plates 23, 24. The height of the suction head opening surrounded by the inner surfaces of the pair of suction head side plates 22 and the front and rear blades 23, 24 relative to the frame 9 changes depending on the swinging positions of the front and rear blades 23, 24.
A slight clearance is provided between both side edges of the front and rear blades 23, 24 and the suction head side plate 22.

サクシヨンヘツド側板22は、第3図に示す如
く高位置及び低位置の海底面BL,BL′の上下に
またがつて前後ブレード23,24の範囲の前後
ある範囲にのびており、その下縁は前端の海底面
上の点から水平線と約30゜程度の傾斜で後方に向
つて下つておりネツク部材21の直下あたりより
水平に後方に向つている。
As shown in FIG. 3, the suction head side plate 22 extends above and below the seabed surfaces BL, BL' at the high and low positions, and extends to a certain range before and after the range of the front and rear blades 23, 24, and its lower edge is located at the front end. It descends rearward from a point on the seabed surface at an inclination of about 30 degrees to the horizon, and points horizontally rearward from just below the neck member 21.

両側板22の間にはその下縁と平行に複数本の
フラツトバー25が、揚鉱団塊最大径を間隔とし
て配列されており、一次団塊選別用格子を形成し
ている。
Between the side plates 22, a plurality of flat bars 25 are arranged in parallel with the lower edges thereof at intervals of the maximum diameter of the lifted ore nodules, forming a grid for primary nodule sorting.

この装置は以上の如く構成されているので、こ
れを海底に降し、母船で曳航しながら集鉱用ポン
プ5を運転すると、ホツパー1内の圧力は外海の
圧力よりも低下し、サクシヨンヘツド3の両側板
22と前後ブレード23,24の先端縁で囲まれ
て形成される開口から海水がその近傍のマンガン
団塊及び海底堆積物を伴つて集鉱ダクト2内に流
入し、ホツパー1内に入つて流速が落ちると団塊
は自重でホツパー1の底部に向つて落下して蓄積
され、海底堆積物は海水に懸濁して泥水排出管4
より海中に排出される。ホツパー底部に貯つた団
塊は順次下部開口1aより揚鉱用接続管8に供給
され、団塊スラリー濃度調整弁19より流入する
海水とともにスラリーとなつて揚鉱管7内を海上
の母船に揚鉱される。
Since this device is constructed as described above, when it is lowered to the seabed and the ore collection pump 5 is operated while being towed by the mother ship, the pressure inside the hopper 1 is lower than the pressure in the open sea, and the pressure inside the suction head 3 is lowered than the pressure in the open sea. Seawater flows into the ore collection duct 2 along with nearby manganese nodules and seabed sediments from the opening formed by the side plates 22 and the front edges of the front and rear blades 23 and 24, and enters the hopper 1. When the flow rate decreases, the nodules fall to the bottom of the hopper 1 due to their own weight and accumulate, and the seafloor sediments are suspended in the seawater and drained into the muddy water discharge pipe 4.
is discharged into the sea. The nodules accumulated at the bottom of the hopper are sequentially supplied to the ore lifting connecting pipe 8 through the lower opening 1a, and are turned into slurry together with seawater flowing in through the nodule slurry concentration adjustment valve 19, and the ore is lifted through the ore lifting pipe 7 to the mother ship at sea. Ru.

サクシヨンヘツド3の直前における海底の高さ
(フレーム9に対する相対高さ)及び左右方向の
海底断面形状は、5個の海底高さ検知ホイール1
3の上下動により変化するアーム12とフレーム
9の挾角θより実用上充分な精度で簡単に検知す
ることができる。なお、この場合、海底高さ検知
ホイール13が団塊の上を乗越えると、ホイール
は一瞬上昇するので、ごく短時間の角度θの変動
は計測から除外するようにするのがよい。
The height of the seabed immediately before the suction head 3 (relative height to the frame 9) and the cross-sectional shape of the seabed in the left and right direction are determined by the five seabed height detection wheels 1.
The angle θ between the arm 12 and the frame 9, which changes with the vertical movement of the frame 3, can be easily detected with sufficient accuracy for practical use. In this case, when the seabed height detection wheel 13 passes over the nodule, the wheel rises momentarily, so it is preferable to exclude very short-term changes in the angle θ from the measurement.

例えば、第5図に示す如く、サクシヨンヘツド
の幅方向の海底断面形状がサクシヨンヘツドの全
掃査幅の間に「へ」の字形の勾配があつた場合
は、5個の海底高さ検知ホイール13は夫々異る
高さになるので夫々の検知信号から海底傾斜の量
及び稜線の位置は容易に検知できる。この検知信
号より、あらかじめ定められたプログラムに従つ
て図示せぬ油圧駆動装置により、各サクシヨンヘ
ツド3毎にそのネツク部材21を支持軸20のま
わりに回動させることにより、第5図に示す如
く、各サクシヨンヘツド毎にその部分の海底傾斜
に適合させることができる。
For example, as shown in FIG. 5, if the cross-sectional shape of the seabed in the width direction of the suction head has a ``h''-shaped slope across the entire scanning width of the suction head, the five seabed height detection wheels 13 Since the heights are different from each other, the amount of seafloor inclination and the position of the ridge can be easily detected from the respective detection signals. Based on this detection signal, a hydraulic drive device (not shown) rotates the neck member 21 of each suction head 3 around the support shaft 20 according to a predetermined program, as shown in FIG. Each suction head can be adapted to the local seabed slope.

又、第3図に示す如く、サクシヨンヘツド前後
ブレード23,24を海底高さ検知ホイールによ
る検知信号により同じく図示せぬ油圧駆動装置で
夫々の上端の軸支点を中心に第3図中に破線と実
線とで示す2つの位置の間の適宜の位置に変位さ
せることにより、サクシヨンヘツド開口位置を海
底高さに適応させることが出来る。
In addition, as shown in FIG. 3, the suction head front and rear blades 23, 24 are driven by a hydraulic drive device (not shown) based on a detection signal from a seabed height detection wheel, and the dashed lines and solid lines in FIG. By displacing the suction head to an appropriate position between the two positions indicated by , the suction head opening position can be adapted to the seabed height.

第3図に示す如く、サクシヨンヘツド前ブレー
ド23は前端縁が上方に強く反に返つた断面形状
をしており、後ブレード24はゆるやかな弧状と
なつているので、外部の海水がブレードに沿つて
サクシヨンヘツドに流入し易く、又後ブレード2
4の先端を海底面より若干下つた位置にもたらす
ことにより、海底堆積物の表面に転がつている団
塊はもとより、半ば堆積物中に埋れた団塊、殆ん
ど堆積物中に没した団塊も、じやがいもをすきで
収穫する如く、掘り起してサクシヨンヘツド内に
回収することができる。なお、海底土質、マンガ
ン団塊の賦存状態によつては、後ブレード24を
第3図中に一点鎖線で示す24′の位置に変位さ
せて、吸引口の面積を増加させることも可能であ
る。
As shown in FIG. 3, the suction head front blade 23 has a cross-sectional shape in which the front edge is strongly curved upward, and the rear blade 24 has a gentle arc shape, so that external seawater does not flow along the blade. It is easy to flow into the suction head, and the rear blade 2
By placing the tip of No. 4 at a position slightly below the seabed surface, it is possible to capture not only nodules lying on the surface of seabed sediments, but also nodules that are partially buried in the sediment, and nodules that are almost completely submerged in the sediment. Like harvesting potatoes with a plow, they can be dug up and collected in the suction head. Depending on the quality of the seabed soil and the presence of manganese nodules, it is also possible to increase the area of the suction port by displacing the rear blade 24 to the position 24' shown by the dashed line in Fig. 3. .

サクシヨンヘツドより海水及び団塊を吸引する
際、サクシヨンヘツド内外の圧力差により、集鉱
ダクト2の外面とサクシヨンヘツドネツク部材2
1の外面との間の遊隙及びサクシヨンヘツド前後
ブレード23,24の側縁とサクシヨンヘツド側
板内面との間の遊隙を通じて外部の水がサクシヨ
ンヘツド又は集鉱ダクト内に流入するが遊隙は僅
かであり、又粘性抵抗もあるので流入量は無視す
ることができるのみなならず、水がこの遊隙を流
れることにより、遊隙に入つた海底堆積物等の異
物を洗い流して作動を円滑にすることができる。
When suctioning seawater and nodules from the suction head, due to the pressure difference between the inside and outside of the suction head, the outer surface of the ore collecting duct 2 and the suction head member 2
Although water from the outside flows into the suction head or the ore collecting duct through the clearance between the outer surface of the suction head and the outer surface of the suction head and the clearance between the side edges of the suction head front and rear blades 23 and 24 and the inner surface of the suction head side plate, the clearance is small. Also, since there is viscous resistance, not only can the amount of inflow be ignored, but water flowing through this gap washes away foreign matter such as seabed sediments that have entered the gap, making the operation smoother. I can do it.

両側のサクシヨンヘツド側板22の下縁の間に
は複数のフラツトバー25を所定の選別粒径の間
隔で平行に配設した格子が一次団塊選別手段とし
て設けられているので、揚鉱団塊粒径の範囲の団
塊はこの格子を通過してサクシヨンヘツド内に吸
手されるが、これより大きい粒径の団塊はこの格
子に遮られてサクシヨンヘツド内に入ることが出
来ず、集鉱装置の前進に伴つて、傾斜した格子の
下面で海底堆積物中を下方に押し下げられる。団
塊を押し下げる深さはせいぜい数十cmですむか
ら、この選別格子は従来の如く数mの幅を横方向
に押し出す一次選別手段よりもはるかに小規模な
ものとすることができる。
Between the lower edges of the suction head side plates 22 on both sides, a grid in which a plurality of flat bars 25 are arranged in parallel at intervals of a predetermined sorting grain size is provided as a primary nodule sorting means. Nodules pass through this lattice and are sucked into the suction head, but nodules with a larger particle size are blocked by this lattice and cannot enter the suction head, and as the ore collector moves forward, The lower surface of the slanted lattice allows it to be pushed downward through seafloor sediments. Since the depth of pushing down the nodules is only a few tens of centimeters at most, this sorting grid can be made much smaller than the conventional primary sorting means that pushes out a width of several meters in the lateral direction.

なお、上記の実施例では、サクシヨンヘツドの
傾斜及びその開口の高さの調整を、海底高さ検知
ホイールによる検知信号により油圧装置を介して
自動的に行うものとしたが、海底高さ検知手段は
これ以外に例えば音波の利用等公知の各種の方法
を用いることができる。又、サクシヨンヘツド開
口の高さ調整は、海底土質等の状態があらかじめ
判明している場合は、これに適する位置にあらか
じめセツトしておいてもよく、又海上の母船より
遠隔操作により行なうこともできる。
In the above embodiment, the inclination of the suction head and the height of its opening are automatically adjusted via the hydraulic system based on the detection signal from the seabed height detection wheel. In addition to this, various known methods such as the use of sound waves can be used. In addition, the height adjustment of the suction head opening may be set in advance at a position suitable for the condition of the seabed soil, etc., if it is known in advance, or it may be done by remote control from the mother ship at sea. .

以上の如く、本発明によれば、簡単な構成で、
海底地形、土質に対応してサクシヨンヘツドの高
さ及び傾斜を調整し団塊の一次選別を行なうこと
が出来るのでマンガン団塊等の揚鉱能率の向上に
顕著な効果を得ることができる。
As described above, according to the present invention, with a simple configuration,
Since the height and slope of the suction head can be adjusted in accordance with the seabed topography and soil quality to perform the primary sorting of nodules, a remarkable effect can be obtained in improving the lifting efficiency of manganese nodules, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の集鉱装置の側面図、
第2図はその一部部材を省略して示した平面図、
第3図はそのサクシヨンヘツドを詳細に示す縦断
面図、第4図はその正面図、第5図は各サクシヨ
ンヘツドが海底面傾斜に対応して傾斜した状態の
一例を示す正面図である。 2…集鉱ダクト、3…サクシヨンヘツド、9…
フレーム、12…アーム、13…海底高さ検知ホ
イール、20…サクシヨンヘツド支持軸、21…
サクシヨンヘツドネツク部材、22…サクシヨン
ヘツド側板、23…サクシヨンヘツド前ブレー
ド、24…サクシヨンヘツド後ブレード、25…
フラツトバー(選別格子を形成する棒)。
FIG. 1 is a side view of an ore collector according to an embodiment of the present invention;
Figure 2 is a plan view with some parts omitted;
FIG. 3 is a longitudinal sectional view showing the suction head in detail, FIG. 4 is a front view thereof, and FIG. 5 is a front view showing an example of a state in which each suction head is inclined in accordance with the inclination of the seabed surface. 2...Ore collection duct, 3...Suction head, 9...
Frame, 12... Arm, 13... Seabed height detection wheel, 20... Suction head support shaft, 21...
Suction head neck member, 22... Suction head side plate, 23... Suction head front blade, 24... Suction head rear blade, 25...
Flat bars (bars that form a sorting grid).

Claims (1)

【特許請求の範囲】[Claims] 1 海底面上を移動しながら集鉱ダクト内に発生
させた水流により該集鉱ダクトの先端に設けたサ
クシヨンヘツドより海底面に賦存せるマンガン団
塊等の団塊を吸込んで集鉱するマンガン団塊等の
集鉱装置において、少くとも上記のサクシヨンヘ
ツドの吸込口の前方の海底面上適度の高さの位置
から上記吸込口のほゞ直下の海底面より下の位置
迄の間水平と約30゜の傾斜で後方に向つて下り続
いて概ね水平に後方に向つて延びる複数本の棒を
集鉱すべきマンガン団塊の粒径の範囲の最大値を
間隔にして平行に配置して成る格子を少くともサ
クシヨンヘツドの幅の範囲に設けて成る一次団塊
選別手段を有することを特徴とするマンガン団塊
等の集鉱装置。
1 Manganese nodules and other nodules existing on the seabed are sucked in from the suction head provided at the tip of the ore collection duct by a water flow generated in the ore collection duct while moving on the seabed. In the ore collector, at least a slope of approximately 30° from horizontal to a position at a moderate height above the seabed in front of the suction head of the suction head to a position below the seabed almost immediately below the suction. At least at the suction head, a lattice is formed by arranging a plurality of rods in parallel with the maximum grain size range of the manganese nodules to be collected at intervals of a plurality of rods that extend backward in a generally horizontal direction. 1. An apparatus for collecting manganese nodules, etc., characterized by having a primary nodule sorting means provided in a width range of .
JP19080781A 1981-11-30 1981-11-30 Apparatus for collecting manganese nodule Granted JPS5894596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19080781A JPS5894596A (en) 1981-11-30 1981-11-30 Apparatus for collecting manganese nodule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19080781A JPS5894596A (en) 1981-11-30 1981-11-30 Apparatus for collecting manganese nodule

Publications (2)

Publication Number Publication Date
JPS5894596A JPS5894596A (en) 1983-06-04
JPS6340918B2 true JPS6340918B2 (en) 1988-08-15

Family

ID=16264068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19080781A Granted JPS5894596A (en) 1981-11-30 1981-11-30 Apparatus for collecting manganese nodule

Country Status (1)

Country Link
JP (1) JPS5894596A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497505B (en) * 2011-10-03 2015-07-29 Marine Resources Exploration Internat Bv Suction mouth for a subsea mining tool
KR101349661B1 (en) * 2013-10-16 2014-01-10 한국해양과학기술원 Buffer system for deep-sea mineral mining

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667096A (en) * 1979-10-19 1981-06-05 Preussag Ag Method of and apparatus for extracting submarine deposit with suction pipe freely suspended

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667096A (en) * 1979-10-19 1981-06-05 Preussag Ag Method of and apparatus for extracting submarine deposit with suction pipe freely suspended

Also Published As

Publication number Publication date
JPS5894596A (en) 1983-06-04

Similar Documents

Publication Publication Date Title
CN111206636B (en) River channel dredging robot and unmanned ship
JP6029671B2 (en) Undersea mining tools
CN208777362U (en) Rainwater recovery device for construction site
RU2375578C1 (en) Method for selective sampling and preliminary concentration of ferromanganese burrs and device for its realisation
CN106428442A (en) Water surface cleaning vessel facilitating storage and unloading of water surface floating objects
US5638620A (en) Dredging vessel, dredging assembly and method of dredging
US3480326A (en) Mechanical deep sea nodule harvester
JPS6340918B2 (en)
US4147390A (en) Nodule dredging apparatus and process
JPS6262238B2 (en)
JPS6327517B2 (en)
KR20220137764A (en) deep sea mining vehicle
US4410426A (en) Beach cleaning method and apparatus therefor
CN113187483B (en) Underwater mining vehicle
NO343707B1 (en) System and method for use in fish farming
US4366052A (en) Controlled flooding and skimming apparatus for beach cleaning
US4302339A (en) Beach cleaning method
JPS6315436B2 (en)
US4319414A (en) Dredgehead having forward water-deflecting means comprising two transverse elements
CN217717509U (en) Water suspended matter monitoring device based on high-resolution remote sensing image
JPS5813894A (en) Ore collecting machine for manganese nodule
JPS6327516B2 (en)
US4408404A (en) Pivotable articulated support shoe for hydraulic nozzle
JPS6315437B2 (en)
JPS6315435B2 (en)