JPS5894190A - Mos dynamic memory - Google Patents

Mos dynamic memory

Info

Publication number
JPS5894190A
JPS5894190A JP56191131A JP19113181A JPS5894190A JP S5894190 A JPS5894190 A JP S5894190A JP 56191131 A JP56191131 A JP 56191131A JP 19113181 A JP19113181 A JP 19113181A JP S5894190 A JPS5894190 A JP S5894190A
Authority
JP
Japan
Prior art keywords
voltage
vcc
memory
change
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56191131A
Other languages
Japanese (ja)
Inventor
Kazuyasu Fujishima
一康 藤島
Kazuhiro Shimotori
下酉 和博
Hideyuki Ozaki
尾崎 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56191131A priority Critical patent/JPS5894190A/en
Publication of JPS5894190A publication Critical patent/JPS5894190A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve operating margin, by applying a voltage which is changeable to almost a half the power supply voltage change to a cell plate of a memory cell, and cancelling a readout voltage change due to the power supply voltage change at write and read cycles. CONSTITUTION:A Vcc/2 generated in a constant voltage source integrated on a memory chip is applied as a voltage making a half change of a power supply voltage Vcc change to a cell plate 8. At time T1, write operation is done and a bit line is set to 0.4V corresponding to data ''0'', ''1''. At time T2, the write is finished and the memory voltage reaches 0.3V. At time T3, the Vcc voltage changes from 2V to 3V and the memory voltage reaches 1.4V. At time T4, the word line is high level and the word line is 6V the same as the Vc at readout, and the readout voltage goes to 120mV, which is independent of the Vcc change. Thus, malfunction can be avoided at readout for stable operation.

Description

【発明の詳細な説明】 この発明は、ライトサイクμとリードサイクルの間に電
源電圧の変動が生じた場合にも安定に情報を読み出すこ
とが可能なl)フンジスタ形MOSダイナミックメモリ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to l) a fungistor type MOS dynamic memory that is capable of stably reading information even when fluctuations in power supply voltage occur between the write cycle μ and the read cycle. .

一般に、1)ランジスタ形MOSダイナミックメモリで
はMOSキャパシタに蓄積され九電荷の有無を2a情報
の11”、′0”に対応させている。そして、トランス
ブアゲートを1オン”してMOSキャバVりに蓄積され
た電荷をビット線に転送する。この時、電荷の有無によ
ってピッ)線に生じる微少な電圧変化をセンスアンプ回
路で検出するものである。
Generally, 1) In a transistor type MOS dynamic memory, the presence or absence of 9 charges stored in a MOS capacitor is made to correspond to 11'' and '0'' of 2a information. Then, the transformer gate is turned on and the charge accumulated in the MOS capacitor V is transferred to the bit line. At this time, the sense amplifier circuit detects the slight voltage change that occurs in the bit line depending on the presence or absence of charge. It is something.

第α図は従来のMOSダイナミックメモリのメモリアレ
イを示す構成図である。(1)は左側および右側にそれ
ぞれマトリックス状に配置したメモリセμ、(匂はメモ
リセルα)の各行ごとに設けたセンスアンプ回路、(3
)はこのメモリセμα)の各行ごとに設けると共にその
センスアンプ回路をはさんで左側および右側にそれぞれ
設はメ屹すセ〜の容量の約172の容量を持つダミーセ
A/、+41はメモリセrv (1)およびダミーセr
v (B)の行ごとに設けられ、センスアンプ回路をは
さんで左側および右側にそれぞれ配置したビット線、(
b)は左側および右側のメモリセrv Q)の列ごとに
配置したフード線、(8)は左側および右側のダミーセ
フI/(粉にそれぞれ配置したダミーフード線、())
は左側および右側のダミーセ〜(6)にそれぞれ接続し
、1p信号が送られるーp線、(8)は左側および右側
のメモリ七μα)およびダミーセ/L10I)に接続す
る、電源電圧VecあるいはVssを印加するセルプレ
ートである。
FIG. α is a block diagram showing a memory array of a conventional MOS dynamic memory. (1) shows memory cells μ arranged in a matrix on the left and right sides, sense amplifier circuits provided for each row of (memory cells α), and (3)
) is provided for each row of this memory cell μα), and the dummy cell A/, +41 is a memory cell rv ( 1) and dummy cell
Bit lines are provided for each row of v (B) and placed on the left and right sides of the sense amplifier circuit, respectively.
b) is the hood line placed for each column of the left and right memory cell rv Q), (8) is the dummy hood line placed on the left and right side dummy cell I/(powder), ())
are connected to the left and right dummy cells ~(6) respectively, and the 1p signal is sent to the -p line, (8) is the power supply voltage Vec or Vss connected to the left and right memories 7μα) and dummy cell /L10I). This is the cell plate to which the voltage is applied.

、次に、上記第1図に示すMOSダイナミックメモリの
動作について簡単に説明する。まず1例えば左側のワー
ド線(5)のうちの1本のワード線が選択されると、メ
モリ容量のほぼ1/2の容量をもつダミーセルに接続さ
れた右側のダミーフード線(6)が選択される。このた
め、対応する左側のビット線(4)と対応する右側のビ
ット線(4)に信号電荷を転送し、このときに生じる微
少な電位差をセンスアンプ回路(2)で検出・増幅する
ものであるd従来のメモリ構成では、第2図に示すライ
トサイクルのVcc電圧とリードサイクルのVcc電圧
に変動があった場合に、ビット線に生じる読み出し電圧
が変動し、はなはだしい場合は誤動作をするという欠点
があった。
Next, the operation of the MOS dynamic memory shown in FIG. 1 will be briefly explained. First, for example, when one of the word lines (5) on the left side is selected, the dummy food line (6) on the right side connected to a dummy cell with a capacity of approximately 1/2 of the memory capacity is selected. be done. Therefore, the signal charge is transferred to the corresponding left bit line (4) and the corresponding right bit line (4), and the minute potential difference generated at this time is detected and amplified by the sense amplifier circuit (2). In a conventional memory configuration, if there is a change in the Vcc voltage in the write cycle and the Vcc voltage in the read cycle as shown in Figure 2, the read voltage generated on the bit line will fluctuate, and if it is extreme, it will malfunction. was there.

セルプレート電圧にVccを印加した場合のこの読み出
し電圧の変動の様子を第3図に表面ボテンVヤμ図を用
いてメモリセμ、ダミーセμの断面図と共に示す、(9
)はメモリ容量のセルプレート電極、11αはトランス
ファゲート、(U+はプリチャージゲート、(12はゲ
ート酸化膜、 (1!Iはメモリセル相互を分離する厚
いフィールド酸化膜である。
The fluctuation of this read voltage when Vcc is applied to the cell plate voltage is shown in FIG.
) is a memory capacitor cell plate electrode, 11α is a transfer gate, (U+ is a precharge gate, (12 is a gate oxide film, and (1!I is a thick field oxide film that separates memory cells from each other).

説明の簡単化のためにライトサイクルのVccを4V、
 リードサイクμのVcc f 6 V 、メモリセル
容量をCs=α04pF%ダミーセル容量をCDにs/
2=α02pF、ヒツト線容量をCB=α5pF、)’
ランスファゲートのしきい値電圧をVT=IVとする。
To simplify the explanation, write cycle Vcc is 4V,
Vcc f 6 V of read cycle μ, memory cell capacitance Cs=α04pF% dummy cell capacitance CD s/
2=α02pF, human line capacitance CB=α5pF, )'
Let the threshold voltage of the transfer gate be VT=IV.

第3図において1時刻T1ではライト動作が行なわれ、
データの@0”、@1”に応じてビット線がOv。
In FIG. 3, a write operation is performed at time T1,
The bit line becomes Ov according to the data @0” and @1”.

4vに設定されている1時刻T、ではライト動作が完了
しフード線電圧は低Vべμになシメモリセルにデータが
書き込まれる。この時メモ゛す電圧はIL@O時VL=
OV、 @H” (D RVa=3V(Vcc−Vt=
4v−1v)となっている6時刻T、ではVCc;、電
圧が6vに変化しておシ、セルプレート電圧も4vから
6vに変化するため、メモリ電圧が@L”の時のOVが
2vに、3Vがsvになる1時刻T4でフード線電圧が
高しベ〃になりメモリ情報を読み出す時ワード線電圧も
6vになるため、メモリ七〜からビット線に伝達される
電荷量it @L’ O時Q8L−C8X(VCC−V
T−VL )25hらQstz+α04pFX(@v−
1v−2v)=α12pc%@H’の時QsFcs×(
Vcc−Vi−Va)=α04pFX(6V−IV−B
Y )=OpCとなる・一方ダミーセルからビット線に
伝達される電荷量はQp=CnX(Vcc−Vt−Ov
 )=αQ2ppX(6v−1v−GV)=01pCと
なる。したがってビット線に生じる電圧変化は″”L”
の時AvL−QSL/C!I=Q12pC/(L!Ip
F=(L24V 、 ”H’〕時AVH=Ovで、一方
ビット線に生じる電圧変化はΔVD−QD/C5=(1
1pC/a5pF=%L2Vトなルタメ、”H” 17
)読み出し電圧がΔVD−ΔVH=200mVであるの
に対して、@L”の読み出し電圧がΔVL−ΔVp==
40mVと激減し、センスアンプ回路の感度よシ小さく
なった場合には@L”を′H”と読みまちがう誤動作を
生じる。
At 1 time T, which is set to 4V, the write operation is completed and the hood line voltage is set to a low Vbe, and data is written into the memory cell. At this time, the voltage to be memorized is VL=
OV, @H” (D RVa=3V(Vcc-Vt=
At time T, when the voltage is 4v-1v), the voltage changes to 6v, and the cell plate voltage also changes from 4v to 6v, so OV when the memory voltage is @L'' is 2v. In addition, at one time T4 when 3V becomes sv, the food line voltage becomes high and becomes base, and when reading memory information, the word line voltage also becomes 6V, so the amount of charge transferred from the memory 7 to the bit line it @L ' Q8L-C8X (VCC-V
T-VL ) 25h et al Qstz + α04pFX (@v-
1v-2v)=α12pc%@H' when QsFcs×(
Vcc-Vi-Va)=α04pFX(6V-IV-B
Y)=OpC ・On the other hand, the amount of charge transferred from the dummy cell to the bit line is Qp=CnX(Vcc-Vt-Ov
)=αQ2ppX(6v-1v-GV)=01pC. Therefore, the voltage change that occurs on the bit line is ``L''
When AvL-QSL/C! I=Q12pC/(L!Ip
When F=(L24V, "H"), AVH=Ov, and the voltage change occurring on the bit line is ΔVD-QD/C5=(1
1pC/a5pF=%L2V, “H” 17
) The read voltage is ΔVD-ΔVH=200mV, while the read voltage of @L" is ΔVL-ΔVp==
If the voltage decreases drastically to 40 mV and the sensitivity of the sense amplifier circuit becomes smaller, a malfunction will occur where @L'' is mistakenly read as 'H''.

次に、セルプレート電圧tVssにした場合の読み出し
電圧の変動の様子を第4図に表面ボテ・ンVヤル図を用
いて示す、α4はセルプレートがVssでも容量を形成
するように設けたN影領域である。
Next, Figure 4 shows how the read voltage changes when the cell plate voltage is set to tVss using a surface button diagram. This is a shadow area.

時刻T1ではライト動作が行なわれデータの@OI′。At time T1, a write operation is performed and the data is @OI'.

@1′に応じてビット線がeV、4Vに設定されている
0時刻T、ではライト動作が完了し、ワード線電圧は低
しベ〃にな少メ叱すセμにデータが書き込まれる。この
時、メモリ電圧は@L”の時VL=OV。
At time 0 T, when the bit line is set to eV and 4V in accordance with @1', the write operation is completed, the word line voltage is low, and data is written to the memory cell μ on the base. At this time, when the memory voltage is @L'', VL=OV.

@H”の時VH=lV(Vcc−Vt−4v−1v )
 トナッティルe時刻T、ではVcc電圧が6vに変化
しているが、セルプレート電圧はOvで不変のため、メ
モリ電圧線@L”、@H″共に不変テソれぞれVt=O
V 、 VH=3V Olまである1時刻T4でワード
線電圧が高レベルになりメモリ情報を読み出す時ワード
線電圧もVccと同じ変化をし、6vであるためメ屹リ
セルがらビット線に伝達される電荷量は@L”の時QI
IL(:IX(Vcc−Vt−VL3=α04pFX(
6V−IV−GV)=α2pQ @H”の時QIM =
CIX(VCC−VT−VH)=α04pF刈6v−1
v−3v)=008pCとなる。
@H” VH=lV (Vcc-Vt-4v-1v)
At time T, the Vcc voltage changes to 6V, but the cell plate voltage remains unchanged at Ov, so both the memory voltage lines @L" and @H" remain unchanged. Vt = O.
V, VH = 3V At one time T4, the word line voltage becomes high level and when reading memory information, the word line voltage also changes in the same way as Vcc, and since it is 6V, it is transmitted to the bit line while it is being reset. The amount of charge is QI when @L”
IL(:IX(Vcc-Vt-VL3=α04pFX(
6V-IV-GV) = α2pQ @H” QIM =
CIX (VCC-VT-VH) = α04pF moi 6v-1
v-3v)=008pC.

一方ダミーセルからビット線に電達される電荷量はQD
−cDX(VCC−VT−OV )=αo2pFx(6
v−xv−Gy)=α1pCとなる。したがってピッ)
線に生じる電圧変化は@L”の時aVt−Qst/Cn
=(L2pC/(L!1pF=(14′v%@a″の時
ΔVa=Qs*/C+a=QO8pC/u5pF=(L
16V テ、一方ビット線に生じる電圧変化はΔVD鴨
りん1=α1pC/αB pF=α2vとなるため、1
L@の読み出し電圧がΔVL−ΔVD=200mVであ
るのに対して、@H″の読み出し電圧がΔVD−ΔVn
=40mVと激減シ、センスアンプ回路の感度より小さ
くなった場合には、@H”を@L”と読みまちがう誤動
作を生じる。
On the other hand, the amount of charge delivered from the dummy cell to the bit line is QD
-cDX(VCC-VT-OV)=αo2pFx(6
v-xv-Gy)=α1pC. Therefore, beep)
The voltage change that occurs on the line is aVt-Qst/Cn when @L”
=(L2pC/(L!1pF=(14′v%@a″) ΔVa=Qs*/C+a=QO8pC/u5pF=(L
On the other hand, the voltage change occurring on the bit line is ΔVD Kamorin 1 = α1pC/αB pF = α2v, so 1
The read voltage of L@ is ΔVL - ΔVD = 200 mV, while the read voltage of @H'' is ΔVD - ΔVn
= 40 mV, which is lower than the sensitivity of the sense amplifier circuit, causing a malfunction in which @H" is mistakenly read as @L".

このように、従来のメモリ構成法では、ライトサイクル
とリードサイクμでVcc電圧が変動した場合に七Vプ
レートにVccを印加し九個では′L″の読み出し電圧
が減少することにより、一方セルプレートにVssを印
加した例では′H“の読み出し電圧が減少することによ
りメモリが誤動作を生じるという欠点があった。
In this way, in the conventional memory configuration method, when the Vcc voltage fluctuates between the write cycle and the read cycle μ, Vcc is applied to the 7V plate, and when the 'L' read voltage decreases in the 9V plate, one cell In the example in which Vss is applied to the plate, there is a drawback that the memory malfunctions due to a decrease in the 'H' read voltage.

一般的には、メモリセル容量をCsダミーセ〜容量をC
D電源電圧がリードサイク〃とフイトサイクμでVcc
からAVだけ1昇したとし、この時七μプレート電圧v
cpからaAVだけ変化したとする。
Generally, the memory cell capacity is Cs dummy cell ~ capacitance is Cs
D power supply voltage is Vcc with lead cycle and weight cycle μ
Suppose that AV increases by 1 from , and at this time the 7μ plate voltage v
Assume that only aAV changes from cp.

(aはVccの変化に対するセルデV−)電圧の変化率
でたとえば七μプレートにVccを印加した時ハ1 、
 Vssを印加した時は0である。)メモリセルに書き
込まれる電圧は@L″IがOV、@H’がVcc−VT
であり、電源電圧の変動後はそれぞれaAV。
(a is the rate of change in voltage relative to the change in Vcc).For example, when Vcc is applied to the 7μ plate,
It is 0 when Vss is applied. ) The voltage written to the memory cell is @L″I is OV, @H’ is Vcc-VT
and aAV after the change in power supply voltage.

Vc c −V丁子aΔV となる、従って電源電圧が
Vcc+ΔVに達し九後に読み出される電荷量はトラン
スフアゲ−艷に印加されるワード線信号の高しベμもy
cc+ΔVになるため、 @L”の時Qs L”CSX
 (Vc c+AV−VT−IAV )=Cs (VC
C−VT+(1−a )AM) ”H”の時Qs17c
m(Vcc+aV−Vt−(Vcc−VT+aAV))
=Cs(1−a )AMトなる。一方、ダミーセμから
の出力信号ハQn=Cn(Vcc+aV−Vt−Ov)
<DCVcc+Δv−Vr y″cあル、 ”L”と1
H”の中間の信号@L”レベμに近づくために@L”を
@H”と読み誤まる場合が生じ、一方a=OたとえばV
ssセルプV(Vcc−Vt+ΔV)=QDとなシ逆に
ダミーレベμが@H”レベμに近づく丸めに@H”を@
L”と読み誤まる場合が生じるのである。
Therefore, the amount of charge read out after the power supply voltage reaches Vcc + ΔV is equal to the height μ of the word line signal applied to the transfer gate.
Since it becomes cc + ΔV, Qs L”CSX when @L”
(Vc c+AV-VT-IAV)=Cs (VC
C-VT+(1-a)AM) Qs17c when “H”
m(Vcc+aV-Vt-(Vcc-VT+aAV))
=Cs(1-a)AM. On the other hand, the output signal from the dummy cell μ is Qn=Cn(Vcc+aV-Vt-Ov)
<DCVcc+Δv-Vry″c, “L” and 1
Since the intermediate signal @L" level of H" approaches μ, there are cases where @L" is mistakenly read as @H", while a=O, for example, V
ss cell V (Vcc - Vt + ΔV) = QD, conversely, the dummy level μ is @H” to round up to the level μ.
There are cases where it is misread as "L".

この発明の目的はと記の様な従来のものの欠点を除去す
るためになされたもので、メモリセμの七yプレートに
電源電圧の変化のほぼl/2!の変化をする電圧を印加
することによシフィトサイクμとリードサイクμでVc
c電圧に変化がちってもL”。
The purpose of this invention was to eliminate the drawbacks of the conventional ones as described above, and the change in power supply voltage on the 7y plate of the memory cell μ is approximately 1/2! By applying a voltage that changes Vc with shift cycle μ and lead cycle μ
c Even if there is a change in voltage, it is L”.

@H@共に読み出し電圧が変化しない様なMOSダイナ
ミックメモリを提供するものである。
Both @H and @H@ provide a MOS dynamic memory in which the read voltage does not change.

この場合はと述のa=172に相当し、  (Q8L+
Q8H)りyとフィトサイクルでVcc電圧に変化があ
っても変化がない場合と同様の読み出し電圧を1L″。
In this case, it corresponds to a=172 mentioned above, and (Q8L+
Q8H) The read voltage is 1L'', which is the same as when there is no change even if there is a change in the Vcc voltage during the phytocycle.

@H″m共に有していることがわかる。It can be seen that both @H″m have the same value.

この発明の一実施例を第5図に示す、セルプレー ) 
+111には、 Vccの変化の1/2の変化をする電
圧としてメモリチップ上に集積化した定電圧源で発生し
たVcc/2が印加されている。
An embodiment of this invention is shown in FIG.
+111 is applied with Vcc/2, which is generated by a constant voltage source integrated on the memory chip, as a voltage that changes by 1/2 of the change in Vcc.

セルプレート電圧にVcc/2を印加した場合について
、第6図に表面ボテンVヤμ図を用いて説明している。
The case where Vcc/2 is applied to the cell plate voltage is explained using a surface bottom V and μ diagram in FIG.

時刻T1ではライト動作が行なわれデータの0”。At time T1, a write operation is performed and the data is 0''.

@l@に応じてビット線がGV、4Vに設定されている
1時刻T、ではライト動作が完了し、ワード線電圧は低
レベルになシメモリセ〜にデータが書き込まれる。この
時、メモリ電圧は@L”の時Vt、=OV。
At 1 time T, when the bit line is set to GV and 4V according to @l@, the write operation is completed, and the word line voltage is set to a low level, and data is written into the memory memory. At this time, the memory voltage is @L", Vt, = OV.

”H’+2)時Vm=3V(Vcc−Vt=4V−IV
 ) トナッティルm時刻T3ではVcc電圧が4vか
ら6vに変化するのに伴いセルプレート電圧は2vから
3vに変化しているので、メモリ電圧は1L″、@H1
共にIVだけ高くなりVt=IV、Vu=4Vとなる1
時刻T4でワード線電圧が高レベルになりメモリ情報を
読み出す時ワード線電圧もVccと同じ変化をし、高し
ペ〃が6vになるためメモリセμからビット線。に伝達
される電荷量は1L”の時Qs L(: !I刈Vcc
−Vt−Vj )=α04pFX(6V−1v−1v)
=016pC”H”の時Qsa=Cs刈VCC−VT−
VH)=004pFX(6V−IV−4V)=α04p
Cとなる。一方ダミー七μからビット線に伝達される電
荷量はQD−CDX (VCC−VT−Ov)=α02
pFX(6v−1v−OY)=α1pCとなる。したが
ってビット線に生じる電圧変化は1L”の時ΔVL=Q
sL/′C5=(L16pC/α5pF=(L32V、
  ”H″の時ΔVsrQssr/C1t=(LO4p
C/QflpF=α08vで、一方ビット線に生じる電
圧変化はaVDQp/Cm=(L1pC/(L5pF=
(12Vとなるため、コノ場合は@L”、″H”の読み
出し電圧が共に120mVと、Vcc電圧が変化する前
と等しい値が確保されている。
"H'+2) Vm=3V (Vcc-Vt=4V-IV
) At time T3, the cell plate voltage changes from 2v to 3v as the Vcc voltage changes from 4v to 6v, so the memory voltage is 1L'', @H1.
Both increase by IV, making Vt=IV and Vu=4V1
At time T4, the word line voltage becomes high level, and when reading memory information, the word line voltage also changes in the same way as Vcc, and since the high voltage reaches 6V, the voltage is removed from the memory cell μ to the bit line. The amount of charge transferred to Qs L (: !
-Vt-Vj)=α04pFX(6V-1v-1v)
=016pC When “H” Qsa=Cs cutting VCC-VT-
VH)=004pFX(6V-IV-4V)=α04p
It becomes C. On the other hand, the amount of charge transferred from the dummy 7μ to the bit line is QD-CDX (VCC-VT-Ov) = α02
pFX(6v-1v-OY)=α1pC. Therefore, when the voltage change occurring on the bit line is 1L, ΔVL=Q
sL/′C5=(L16pC/α5pF=(L32V,
When “H” ΔVsrQssr/C1t=(LO4p
C/QflpF=α08v, while the voltage change occurring on the bit line is aVDQp/Cm=(L1pC/(L5pF=
(Since it is 12V, in this case, both @L" and "H" read voltages are 120mV, which is the same value as before the Vcc voltage changes.

以上のように、この発明によればメモリ七μの七yプレ
ート電圧にVcc/2を印加するようにしたのでライト
サイクルとリードサイクルのVcc電圧の変化による読
み出し電圧の変化を除去することが可能にな9動作マー
ジンの大きいMOSダイナミックgAMを得ることがで
きる。
As described above, according to the present invention, since Vcc/2 is applied to the 7y plate voltage of the memory 7μ, it is possible to eliminate the change in the read voltage due to the change in the Vcc voltage between the write cycle and the read cycle. A MOS dynamic gAM with a large operating margin can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMOSダイナミックメモリのメモリアレ
イを示す構成図、第2図はメモリのライトサイクルとリ
ードサイクμでのVcc電圧変化の様子を示す波形図、
第3図は従来の構成である七μプレートにVccを印加
した場合のVcc電圧の変化が読み出し電圧に与える影
響を説明するための図、第4図は今一つの従来の構成で
ある七μプレートにVssを印加した場合のVcc電圧
の変化が読み出し電圧に与える影響を説明するための図
、第6図は本発明によるメモリ七μのセルプレーFにV
cc/2を印加したMOSダイナミックメモリのメモリ
アレイを示す構成図、第6図は本発明の七μプレートに
Vc C/2を印加した場合のVccの変化が読み出し
電圧に与える影響を説明するための図である。 α)はメモリ七μ、(匂はセンスアンプ回路%(3)は
ダミーセμ、(4)はビット線、(6)はフード線、(
6)はダミーワード線、(7)は−p線、(81は七μ
プレート。 (9)は七μプレート、11olはトランスフアゲ−)
1川はプリチャージグー)、HlはグーF酸化膜、+1
1はブイーμド酸化膜、841はN領域 なお、図中同一符号は同一1+は相当部分を示す。 代理人 葛野信− 第2図 Trot   刀 肴 第6図 手続補正書(自発] 昭和 51V2月 4日 A龜 特許庁長官殿 1、事件ノ表示     特願昭56−191181号
2、発明の名称 MO8ダイナミックメモリ 3、補正をする者 6、補正の対象 図面 6、補正の内容 図面中、第1図および第6図を別紙のとおり訂正する。 以上 刊
FIG. 1 is a configuration diagram showing a memory array of a conventional MOS dynamic memory, and FIG. 2 is a waveform diagram showing how Vcc voltage changes during memory write cycle and read cycle μ.
Fig. 3 is a diagram for explaining the effect of a change in Vcc voltage on the read voltage when Vcc is applied to a 7μ plate, which has a conventional configuration, and Fig. 4 shows a 7μ plate, which has another conventional configuration. FIG. 6 is a diagram for explaining the influence of the change in Vcc voltage on the read voltage when Vss is applied to the memory cell F of the 7μ memory according to the present invention.
FIG. 6 is a block diagram showing a memory array of a MOS dynamic memory to which cc/2 is applied, and is used to explain the effect that a change in Vcc has on the read voltage when Vc/2 is applied to the 7μ plate of the present invention. This is a diagram. α) is the memory 7 μ, (the sense amplifier circuit % (3) is the dummy set μ, (4) is the bit line, (6) is the food line, (
6) is a dummy word line, (7) is a -p line, (81 is a 7μ
plate. (9) is a 7μ plate, 11ol is a transfer plate)
1 river is precharge goo), Hl is goo F oxide film, +1
1 is a bulk oxide film, 841 is an N region, and the same reference numerals and 1+ in the drawings indicate corresponding parts. Agent Makoto Kuzuno - Figure 2 Trot Sword Figure 6 Procedural amendment (self-motivated) February 4, 1971 Mr. A. Commissioner of the Patent Office 1, Indication of case Patent application No. 191181-1981 2, Name of invention MO8 Dynamic Memory 3, person making the amendment 6, drawing to be amended 6, contents of the amendment Figures 1 and 6 in the drawings are corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 α)1トランジスタ形ダイナミツクメモリにおいて、七
μデv−)に電源電圧の変化の172程度の変化をする
電圧を印加することを特徴とするMOSダイナミックメ
モリ。 ■電源電圧をVccとしたとき、七μプレートに印加す
る電圧をV((/2とした特許請求の範囲第1項記載の
MOSダイナミックメモリ。 (3)セルプレート電圧発生回路をメモリチップ玉に集
積化することを特徴とする特許請求の範囲第1項記載の
MOSダイナミックメモリ。
[Scope of Claims] α) A MOS dynamic memory characterized in that in a one-transistor type dynamic memory, a voltage that changes by about 172 times the change in the power supply voltage is applied to 7μ dv-). ■When the power supply voltage is Vcc, the voltage applied to the 7μ plate is V((/2). MOS dynamic memory according to claim 1. (3) The cell plate voltage generation circuit is connected to the memory chip ball. 2. The MOS dynamic memory according to claim 1, wherein the MOS dynamic memory is integrated.
JP56191131A 1981-11-27 1981-11-27 Mos dynamic memory Pending JPS5894190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191131A JPS5894190A (en) 1981-11-27 1981-11-27 Mos dynamic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191131A JPS5894190A (en) 1981-11-27 1981-11-27 Mos dynamic memory

Publications (1)

Publication Number Publication Date
JPS5894190A true JPS5894190A (en) 1983-06-04

Family

ID=16269387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191131A Pending JPS5894190A (en) 1981-11-27 1981-11-27 Mos dynamic memory

Country Status (1)

Country Link
JP (1) JPS5894190A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010494A (en) * 1983-06-29 1985-01-19 Fujitsu Ltd Semiconductor memory
JPS6161293A (en) * 1984-08-31 1986-03-29 Mitsubishi Electric Corp Dynamic memory
JPS61177699A (en) * 1985-01-31 1986-08-09 Toshiba Corp Dynamic type semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376687A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor memory device
JPS57111879A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Semiconductor storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376687A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor memory device
JPS57111879A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Semiconductor storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010494A (en) * 1983-06-29 1985-01-19 Fujitsu Ltd Semiconductor memory
JPH0381236B2 (en) * 1983-06-29 1991-12-27 Fujitsu Ltd
JPS6161293A (en) * 1984-08-31 1986-03-29 Mitsubishi Electric Corp Dynamic memory
JPS61177699A (en) * 1985-01-31 1986-08-09 Toshiba Corp Dynamic type semiconductor memory device

Similar Documents

Publication Publication Date Title
US9082471B2 (en) Power saving memory apparatus, systems, and methods
US4636981A (en) Semiconductor memory device having a voltage push-up circuit
JP3124781B2 (en) Semiconductor integrated circuit device
EP0073677B1 (en) A mis transistor circuit including a voltage holding circuit
JPS6146977B2 (en)
JPS628874B2 (en)
US6882559B2 (en) Ferroelectric memory supplying predetermined amount of direct-current bias electricity to first and second bit lines upon reading data from memory cell
JPS5894190A (en) Mos dynamic memory
US4823322A (en) Dynamic random access memory device having an improved timing arrangement
JPS6226117B2 (en)
JPH06309871A (en) Semiconductor memory using low power supply voltage
US4733373A (en) Dynamic memory with improved arrangement for precharging bit lines
JP2000036194A (en) Semiconductor memory
JPH09297992A (en) Sense amplifier circuit
JPH01162296A (en) Dram
EP0068894B1 (en) Dynamic random access memory device
JP2679033B2 (en) Semiconductor storage device
JPS6146978B2 (en)
JP2647948B2 (en) Semiconductor memory device
JPS62165787A (en) Semiconductor memory device
JPH0581859A (en) Semiconductor integrated circuit device
JPH03222186A (en) Restoring method for memory cell
JPS6196593A (en) Dynamic-type ram
JPH0271492A (en) Active restoring circuit
JP2861198B2 (en) Control method of semiconductor memory device