JPS5893798A - Purification of vegetable oil with membrane - Google Patents

Purification of vegetable oil with membrane

Info

Publication number
JPS5893798A
JPS5893798A JP19066081A JP19066081A JPS5893798A JP S5893798 A JPS5893798 A JP S5893798A JP 19066081 A JP19066081 A JP 19066081A JP 19066081 A JP19066081 A JP 19066081A JP S5893798 A JPS5893798 A JP S5893798A
Authority
JP
Japan
Prior art keywords
membrane
oil
weight
water
vegetable oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19066081A
Other languages
Japanese (ja)
Other versions
JPS5950718B2 (en
Inventor
武藤 善比古
松田 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Nisshin Oillio Group Ltd
Asahi Chemical Industry Co Ltd
Original Assignee
Nisshin Oil Mills Ltd
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oil Mills Ltd, Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Nisshin Oil Mills Ltd
Priority to JP19066081A priority Critical patent/JPS5950718B2/en
Priority to CA000415848A priority patent/CA1189087A/en
Priority to DE19823244007 priority patent/DE3244007C2/en
Publication of JPS5893798A publication Critical patent/JPS5893798A/en
Publication of JPS5950718B2 publication Critical patent/JPS5950718B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/008Refining fats or fatty oils by filtration, e.g. including ultra filtration, dialysis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fats And Perfumes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、植物性油の膜による精製方法に関する。さら
に詳しくは、粗製植物性油から多孔膜によシガム質を除
去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for refining vegetable oils by film. More specifically, the present invention relates to a method for removing shigami from crude vegetable oil using a porous membrane.

植物性油中のガム質は、好ましくない臭いや風味を生じ
たり、貯蔵中に沈澱したり、さらに脱色工程での白土を
不活性化し白土のロスを生じたりするので、ガム質は除
去(以後、脱ガムという)されなければならない。
Gummies in vegetable oils produce undesirable odors and flavors, precipitate during storage, and inactivate white clay during the decolorization process, resulting in loss of white clay. , called degumming).

植物性油の膜による脱ガム法として、すでに特公昭56
−14715号の方法が知られている。
As a degumming method using a film of vegetable oil, it was already published in 1983.
The method of No.-14715 is known.

この方法は、有機溶媒に溶かした植物性油から限外p過
膜によりガム質を分離除去するものであるが、膜の孔径
が非常に小さいため、膜を透過する油の抵抗が大きくな
シ、単位膜面積、単位時間当シの透過油量が少ない。す
なわち、脱ガム処理能力が小さいという欠点がある。し
たがって、膜面積を大きくすることが必要となシ、この
ため脱ガム処理コストが高くなる上、装置が太きくなシ
大きな設置スペースを必要とするといった問題があった
。さらに、透過油量の経時的な低下を回復させる手段と
して、膜に対し透過液側の面より供給液側の面へ、すな
わち、通常の液の流れ方向とは逆に流体を流す、いわゆ
る逆洗処理が有効であるが、このときも限外濾過膜は孔
径が小さいため、単位膜面積単位時間当シの逆洗流体透
過量が少なく、M表面に堆積したケーク層の剥離効果が
弱く、十分な逆洗効果、したがって透過油量の回復効果
が得られないという問題もあ′また。
In this method, gum substances are separated and removed from vegetable oil dissolved in an organic solvent using an ultrapolar membrane, but since the pore size of the membrane is very small, the oil has a high resistance to permeate through the membrane. , the amount of permeated oil per unit membrane area and unit time is small. That is, there is a drawback that the degumming treatment capacity is low. Therefore, it is necessary to increase the membrane area, which increases the cost of degumming treatment, and there are also problems in that the device is not thick and requires a large installation space. Furthermore, as a means to recover from the decrease in the amount of permeated oil over time, fluid is allowed to flow through the membrane from the surface on the permeate side to the surface on the feed liquid side, that is, in the opposite direction to the normal liquid flow direction. Washing treatment is effective, but since the pore size of the ultrafiltration membrane is small, the amount of backwash fluid permeated per unit membrane area per unit time is small, and the peeling effect of the cake layer deposited on the M surface is weak. There is also the problem that a sufficient backwashing effect, and thus an effect of recovering the amount of permeated oil, cannot be obtained.

以上のように既存の方法は非常に不満足表ものであった
As mentioned above, the existing methods are extremely unsatisfactory.

本発明は、鋭意検討の結果、上記欠点を全て解消したも
のであり、粗製植物性油に特別な工夫をこらして被処理
液とすること、および膜表面特性を選ぶことにより、限
外濾過膜のように小さな孔径の膜でないと通常分離しえ
ないガム質を、限外濾過膜と比較すると桁違いに大きな
孔径の膜での分離を可能ならしめ、その結果、単位膜面
積、単位時′間当りの送油量を大きくせしめ九本のであ
って、さらに被処理液の膜への供給方法および条件に工
夫をこらして、送油量の経時的な低下を小さくせしめた
吃のである。すなわち、本発明は、脱ガム処理効率の非
常に優れた画期的な植物注油の膜による脱ガム精製方法
である。
As a result of intensive studies, the present invention has solved all of the above-mentioned drawbacks, and by using crude vegetable oil as a liquid to be treated and by selecting the membrane surface characteristics, an ultrafiltration membrane has been developed. Gums, which normally cannot be separated using membranes with small pores, can be separated using membranes with pores that are orders of magnitude larger than ultrafiltration membranes. The nine valves are designed to increase the amount of oil fed per unit, and the method and conditions for supplying the liquid to be treated to the membrane are devised to reduce the decrease in the amount of oil fed over time. That is, the present invention is an innovative degumming purification method using a vegetable oil membrane that has extremely high degumming efficiency.

すなわち、本発明は、ガム質を含む粗製植物性油を、水
が0.1〜10重量%共存下で攪拌しながら熟成した後
、平均孔径がO,OSm3μで膜表面の臨界表面張力が
33dyn 7cm未満の多孔膜の表面に接触させ、そ
の膜面に対し平行に線速O,OSm/&cc−3m/S
ccで流し、ガム質を水と共に濃縮分離し、実質的にガ
ム質および水を含まない植物注油を得ることを特徴とす
る植物注油の膜による精製方法である。また、本発明は
、上記方法において、粗製植物性油の熟成に際し、ガム
質含量の0.01〜5.0倍の酸を添加することによシ
、さらに著しい脱ガム効果が発揮される、実質的にガム
質、水および添加した酸を含まない植物注油を得る植物
注油の膜による精製方法である。
That is, in the present invention, after ripening crude vegetable oil containing gum while stirring in the coexistence of 0.1 to 10% by weight of water, the average pore size is O, OSm3μ, and the critical surface tension of the membrane surface is 33dyn. Contact with the surface of a porous membrane of less than 7 cm, and apply a linear velocity of O, OSm/&cc-3m/S parallel to the membrane surface.
This is a method for refining vegetable oil using a membrane, which is characterized by flowing the plant oil at cc, concentrating and separating the gummy substance together with water, and obtaining a vegetable oil substantially free of gummy substance and water. Further, the present invention provides that, in the above method, by adding acid in an amount of 0.01 to 5.0 times the gummy content during aging of the crude vegetable oil, a more remarkable degumming effect is exhibited. A process for the membrane purification of vegetable oils which yields vegetable oils that are substantially free of gums, water and added acids.

本発明が対象とする41[物性前は、ナタネ油、大豆油
、アマニ油、サフラワー油、ヒマワリ油、トウモロコシ
油、綿実油、ゴマ油、ヌカ油、ヒマシ油、オリーブ油、
ツバキ油、ヤシ油、パーム油、エノ油、麻実油、キリ油
、カポック油、茶油などであるが、特にナタネ油、大豆
油、ヒマワリ油、サフラワー油、綿実油、ゴマ油につい
ては、これら植物注油の原油のガム質含有量が大きく、
効果が顕著であることから好適である。植物注油かへキ
サン、アセトン等の有機溶媒との混合物、たとえばミセ
2であってもよく、また、植物注油の原料に含まれてい
るガム質以外の天然の汚染物、たとえば、ロウ質、遊離
脂肪酸、イオウ化合物、ペプチド、色素、アルデヒド、
ケトン等が含まれていてもよく、さらに採油もしくは精
製工程中で意図的にもしくは無意識に混入する微量の汚
染物、たとえに、アルカリ、金属イオン、無機および有
機の固体微粒子等が含まれていてもよい。
41 targeted by the present invention [physical properties include rapeseed oil, soybean oil, linseed oil, safflower oil, sunflower oil, corn oil, cottonseed oil, sesame oil, bran oil, castor oil, olive oil,
These include camellia oil, coconut oil, palm oil, eno oil, hempseed oil, tung oil, kapok oil, tea oil, etc., but especially rapeseed oil, soybean oil, sunflower oil, safflower oil, cottonseed oil, and sesame oil. The gummy content of the crude oil used for lubrication is large;
This is suitable because the effect is remarkable. The vegetable oil may be a mixture with an organic solvent such as hexane or acetone, such as Mise 2, and it may also contain natural contaminants other than gummy substances contained in the raw materials for the vegetable oil, such as waxy substances and free substances. fatty acids, sulfur compounds, peptides, pigments, aldehydes,
It may contain ketones, etc., and may also contain trace amounts of contaminants that are intentionally or unintentionally mixed in during the oil extraction or refining process, such as alkalis, metal ions, inorganic and organic solid particles, etc. Good too.

本発明でいうガム質とは、植物注油の原料に含まれる天
然の汚染物のうちアセトン不溶物のことであり、一般K
 IJン脂質がその主成分となっている。
The gum substance in the present invention refers to acetone-insoluble substances among natural contaminants contained in raw materials for vegetable oil, and
Its main component is IJ lipid.

本発明において8、ガム質が植物性油重量に対し0.1
重量−以上含まれている粗製植物性油である場合、脱ガ
ム効果が顕著であり好ましい。0.1重菫チ未満では実
質的な脱ガム効果がない。
In the present invention, the gum quality is 0.1 based on the weight of vegetable oil.
When the crude vegetable oil is contained in an amount equal to or more than 10% by weight, the degumming effect is significant, which is preferable. If the amount is less than 0.1 times, there is no substantial degumming effect.

また粗製植物性油を、水が植物性前垂ff1K対し0.
1〜10重量%、好ましくは0.5〜5.0重蓋−共存
下で攪拌しながら熟成する必要がある。水が0.1重量
−未満では実質的な脱ガム効果がなく、また水が10重
量eljを越えると送油量が著しく低下し、さらに場む
によっては水およびガム質が膜を透過することもあり好
ましくない。
In addition, crude vegetable oil was mixed with water at a rate of 0.
It is necessary to ripen it in the presence of 1 to 10% by weight, preferably 0.5 to 5.0%, with stirring. If the water content is less than 0.1% by weight, there will be no substantial degumming effect, and if the water content exceeds 10% by weight, the oil delivery rate will decrease significantly, and depending on the situation, water and gum may permeate through the membrane. There is also something undesirable.

さらに、粗製植物性油を、水が0.1〜1011量チ共
存下で攪拌する前に、ガム質含量に対し100チ濃度の
酸に換算して0.01〜3.0倍重蓋のr:1kを添加
し、攪拌しながら熟成されたものにすることによシ、一
層顕著な脱ガム効果の得られることがわかった。酸添加
量が0.01倍未満の場合は実質的に酸添加め効果がな
く、5.O倍を越えると酸の無駄が多くコスト的に好ま
しくない。
Furthermore, before stirring the crude vegetable oil in the coexistence of 0.1 to 1011 parts of water, add 0.01 to 3.0 times the acid concentration based on the gummy content. It has been found that a more significant degumming effect can be obtained by adding r:1k and aging the product while stirring. If the amount of acid added is less than 0.01 times, there is substantially no effect of adding acid, and 5. If it exceeds 0 times, there will be a lot of wasted acid, which is not desirable in terms of cost.

#添加は粗製植物性油に水が多量に共存しない条件下で
実施するのが、酸の使用量を少なくする上で望ましく、
シたがって、水を0.1〜10重量−共存させるべく水
を添加する場合、水添加前に酸院加することが好ましい
#It is desirable to add the acid under conditions where a large amount of water does not coexist in the crude vegetable oil in order to reduce the amount of acid used.
Therefore, when adding water to coexist with 0.1 to 10% of water by weight, it is preferable to add acid before adding water.

酸としては、リン酸、硫酸、硝酸、硼酸、クエン識、シ
ュウ酸等のいずれか111もしくはこれらの混合物が使
用されることが好ましい。
As the acid, it is preferable to use any one of phosphoric acid, sulfuric acid, nitric acid, boric acid, citric acid, oxalic acid, etc., or a mixture thereof.

以上に示す粗製植物性油の処理により、限外濾過膜のよ
うな小孔径の膜でないと通常分離しえない小さなガム質
が粗大化すると推定しており、この給米、限外p過膜と
比べ桁違いに孔径の大きな次に示す多孔膜によりカム質
の分離が可能になったtのと考えている。
It is estimated that the processing of crude vegetable oil described above coarsens the small gums that cannot normally be separated using a membrane with a small pore size such as an ultrafiltration membrane. We believe that the porous membrane shown below, which has an order of magnitude larger pore diameter than the previous one, made it possible to separate the cams.

次に多孔膜の特徴について説明する。Next, the characteristics of the porous membrane will be explained.

上記被処理液を多孔膜で脱ガムと同時に脱水するために
は、孔径および表面特性に特徴ある多孔膜を使用する必
要のあることがわかった。
It has been found that in order to dehydrate the liquid to be treated using a porous membrane at the same time as degumming, it is necessary to use a porous membrane that is characterized by its pore size and surface characteristics.

本発明で使用される多孔膜は、平均孔径が0.05〜3
μ、好ましくは0.1〜1μのものである。平均孔径が
0.05μ未満では、単位膜面積、単位時間当りの透過
量が小さいため大きな膜面積を必要とし好ましくなく、
5μを越えると、ガム質および水の膜透過が著しく、脱
ガム、脱水効果が小さく好ましくない。なお、本発明に
示す平均孔径は電子顕微鏡観察により測定される。
The porous membrane used in the present invention has an average pore diameter of 0.05 to 3.
μ, preferably 0.1 to 1 μ. If the average pore diameter is less than 0.05μ, the amount of permeation per unit membrane area and unit time is small, so a large membrane area is required, which is undesirable.
If it exceeds 5μ, the gum quality and water permeation through the membrane will be significant, and the degumming and dehydration effects will be small, which is not preferable. Note that the average pore diameter shown in the present invention is measured by electron microscopic observation.

さらに多孔膜の臨界表面張力(re )が33dyn 
/ crn未満なることが必要である。52 dyn/
m以上のときガム質および水の膜透過が著しく、精製植
物性油中に灸蓋のガム質や水が混入す石の・で好ましく
ない。つまり、固体微粒子では一般に多孔膜の孔径で分
離性がtlとんど決まるが、ガム質や水のような固体微
粒子でない場合は、孔径だけでは分離性が決まらず、膜
表面とガム質および水の親和性も分離性を決めるものと
判断できる。
Furthermore, the critical surface tension (re) of the porous membrane is 33 dyn.
/crn. 52 dyn/
When it is more than m, the membrane permeation of gum and water is significant, and it is not preferable because the gum and water of the moxibustion cap are mixed into the purified vegetable oil. In other words, for solid particles, the pore size of the porous membrane generally determines the separation performance (tl), but for non-solid particles such as gum or water, the pore size alone does not determine the separation performance; It can be judged that the affinity of can also determine separability.

臨界表面張力(rc )が55 d−Yn / cm未
満の多孔膜は、臨界表面張力が55 dyn / cI
11未満の樹脂単独、またはこれらの樹脂の組合せ、ま
たはこれらの樹脂と上記臨界表面張力を有しない樹脂と
を組合せたブレンドポリマーかコポリマーで、最終的に
得られた樹脂の臨界表面張力が35dyn/c1n未満
の本のから形成される。
A porous membrane with a critical surface tension (rc) of less than 55 d-Yn/cm has a critical surface tension of 55 dyn/cI
11 or a combination of these resins, or a blend polymer or copolymer consisting of a combination of these resins and a resin that does not have the above critical surface tension, and the critical surface tension of the final resin is 35 dyn/ Formed from books less than c1n.

また、多孔膜上にコーティングや化学結合表どの手段に
より、膜表面の臨界表面張力が上記範囲の値を有するよ
う調整された多孔膜も使用できる。
It is also possible to use a porous membrane in which the critical surface tension of the membrane surface is adjusted to have a value within the above range by means of coating or a chemical bond table on the porous membrane.

多孔膜の形成材料として具体的には、ポリエチレン、ポ
リプロピレン、ポリブテン、ポリイソブチレン、ポリペ
ンテン、ポリ4−メチルイソペンテンなどのボリルフィ
ンおよびフツネ原子を一つ以上含むこれらのノ・ロゲン
化物;4−フッ化エチレンーパーフルオロアルキルビニ
ルエーテル共重合体;エチレン、プロピレン、ブテン、
インブチレン、ペンテン、ヘキセン、1−フッ化エチレ
ン、フッ化ビニリデン、3−フッ化エチレン、4−フッ
化エチレン、3−フッ化塩化エチレンあるいFi6−フ
ツ化プロピレンなどのエチレン系炭化水素またはフッ素
原子を一つ以上含むノ10ゲン置換エチレン系炭化水素
の組合せからなる共重合体、およびポリエチレ/とポリ
プロピレン、ポリフッ化ビニリデン、ポリ4−フッ化エ
チレンあるいはポリスチレンの組合せ、ポリプロピレン
とポリフッ化ビニリデンあるいはポリ4−フッ化エチレ
ンの組合せ、ポリフッ化ビニリデンとポリスルホン、ポ
リアクリロニトリル、ポリフェニレンオキサイドあるい
はポリ4−フッ化エチレンの組合せなどのブレンドポリ
マーなどが挙げられる。好ましくはポリエチレン、ポリ
プロピレン、エチレン−プロピレンコポリマー、ポリフ
ッ化ビニリデン、エチレン−テトラフルオロエチレンコ
ポリマー、4−7 ツ化エチレンー6−フフ化プロピレ
ンコポリマー、4−フッ化エチレンーパーフルオロアル
キルビニルエーテルコボリマーおよびこれらのブレンド
ポリマーが使用される。
Specific examples of materials for forming the porous membrane include polyethylene, polypropylene, polybutene, polyisobutylene, polypentene, poly4-methylisopentene, and other borylfin and fluoride compounds containing one or more futune atoms; 4-fluoride; Ethylene-perfluoroalkyl vinyl ether copolymer; ethylene, propylene, butene,
Ethylene hydrocarbons or fluorine such as inbutylene, pentene, hexene, 1-fluoroethylene, vinylidene fluoride, 3-fluoroethylene, 4-fluoroethylene, 3-fluorochloroethylene, or Fi6-fluoropropylene Copolymers consisting of a combination of 10-substituted ethylene hydrocarbons containing one or more atoms, and combinations of polyethylene/and polypropylene, polyvinylidene fluoride, poly(4-fluoroethylene) or polystyrene, polypropylene and polyvinylidene fluoride, or polystyrene. Blend polymers such as a combination of 4-fluoroethylene, polyvinylidene fluoride and polysulfone, polyacrylonitrile, polyphenylene oxide, or poly4-fluoroethylene may be mentioned. Preferably polyethylene, polypropylene, ethylene-propylene copolymer, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, 4-7 fluorinated ethylene-6-fluorinated propylene copolymer, 4-fluorinated ethylene-perfluoroalkyl vinyl ether copolymer, and these. Blend polymers are used.

臨界表面張力は、以下の方法で測定する。均一素材から
形成された多孔膜の場合は、その木材樹脂を用いて均一
な無孔性フィルムを製膜し、測定用サンプルとする。多
孔膜が均一素材からなるものでなく、膜表面に檀々の化
学種がコーティングされたり、化学結合されてい、るも
のの場合は、膜を形成しているのと同じ素材の樹脂で均
一な無孔實フィルムを製膜し、その表面に多孔膜と同−
栄件下でコーティングまたは化学結合を施し、測定用サ
ンプルとする。臨界表面張力とは、接触角θ;0°の時
の表面張力であるから、上記サンプルの接触角を種々の
表面張力を持った液体で測定し、外そう法によりθ=0
6の時の表面張力を求めれば、臨界表面張力が得られる
Critical surface tension is measured by the following method. In the case of a porous membrane formed from a uniform material, a uniform nonporous film is formed using the wood resin and used as a sample for measurement. If the porous membrane is not made of a uniform material, but the surface of the membrane is coated or chemically bonded with various chemical species, it may be made of a uniform material made of the same resin that forms the membrane. A porous film is formed, and the same porous film is coated on its surface.
The sample is coated or chemically bonded under suitable conditions and used as a measurement sample. The critical surface tension is the surface tension when the contact angle θ is 0°, so the contact angle of the above sample was measured with liquids with various surface tensions, and the separation method was used to determine θ = 0.
If the surface tension at the time of 6 is determined, the critical surface tension can be obtained.

本発明の多孔膜は、気孔率が15〜95%のものが好ま
しい。気孔率が15−未満では透過油量が小さく、また
95チを越えると膜の強匿が小さくなシ、いずれも好ま
しくない。
The porous membrane of the present invention preferably has a porosity of 15 to 95%. If the porosity is less than 15, the amount of permeated oil will be small, and if it exceeds 95, the membrane will not be tightly packed, both of which are unfavorable.

なお、気孔率(P)は次式で定義される。Note that the porosity (P) is defined by the following formula.

ρb p = (1−−) x 100   (チ)ρa・ ρa:空孔を有しない膜の比重 ρb=多孔膜の重量をその体積で割ったも多孔膜の膜厚
は0.01〜41111が好ましい。つまり、膜厚が0
.01諺膨未満では膜強度が小さく、また4 IImを
越えると送油量が小さ・〈なり、いずれも好ましくない
ρb p = (1--) x 100 (ch) ρa・ρa: specific gravity of membrane without pores ρb = weight of porous membrane divided by its volume, thickness of porous membrane is 0.01 to 41111 preferable. In other words, the film thickness is 0
.. If the swelling is less than 01, the membrane strength will be low, and if it exceeds 4 IIm, the amount of oil fed will be small, both of which are unfavorable.

プ状、中空糸状等実際の使用に好適なように成形され使
用されるが、モジュールの小型化およびその構造の簡素
化の点で中空糸状が好ましい。
The module may be formed into a shape suitable for actual use, such as a hollow fiber shape or a hollow fiber shape, but a hollow fiber shape is preferable in terms of miniaturization of the module and simplification of its structure.

中空糸状膜の場合、その内径は0.1〜10m11が好
ましい。内径が0.1111I未満では、中空糸膜端面
におけるガム質等の詰シが発生して好ましくなく、10
關を越えると、その膜を使用したモジュールの体積が太
きくなり好ましくない。
In the case of a hollow fiber membrane, the inner diameter thereof is preferably 0.1 to 10 m11. If the inner diameter is less than 0.1111I, it is undesirable because clogging with gum or the like occurs at the end face of the hollow fiber membrane.
If the thickness exceeds the threshold, the volume of the module using the membrane becomes large, which is not preferable.

以上の条件に合致する多孔膜の製膜方法としては、公知
の方法が適用でき、たとえば特開昭52−70988号
に示されるような溶融法がある。
As a method for forming a porous membrane that meets the above conditions, known methods can be applied, such as a melting method as disclosed in JP-A-52-70988.

その他、ミクロ相分離法、嬌伸法、放射線照射法などが
適用される。
Other methods that can be applied include the microphase separation method, the Masanobu method, and the radiation irradiation method.

次に被処理液の多孔膜への供給方法条件について説明す
る。
Next, the conditions for supplying the liquid to be treated to the porous membrane will be explained.

被処理液を多孔膜表面に接触させ、その面に対し平行に
縁速が0.05 m / sac % S m / s
ec 、好ましくは0.1 m /暎〜2 m / s
ecで流すことが効率よい脱ガi処理のため必要である
ことがもかった。縁速か0.05m/see未満では、
送油量が小さくなるため好ましくなく、また5Tn/&
ec′fc越えると、エネルギー消費量が大きくなる上
、被処理液に高圧をかけて流す必要が生じるため膜破損
が生じたり、一方、高圧になることを避けようとして膜
間l!i1を大きくすると、モジュール体積が非常に大
きくなるので好ましくない。
The liquid to be treated is brought into contact with the porous membrane surface, and the edge speed is 0.05 m/sac % S m/s parallel to the surface.
ec, preferably 0.1 m/s~2 m/s
It was found that flowing with EC was necessary for efficient degassing treatment. If the edge speed is less than 0.05m/see,
This is not preferable because the amount of oil fed becomes small, and 5Tn/&
If ec'fc is exceeded, not only will energy consumption increase, but the liquid to be treated will need to be flowed under high pressure, which may cause membrane damage.On the other hand, in an attempt to avoid high pressure, the intermembrane l! Increasing i1 is not preferable because the module volume becomes extremely large.

被処理液が多孔膜と接触する際の濾過圧力は0.01〜
5気圧が好ましい。濾過圧力が0.01気圧未満では、
送油量が小さぐなり、5気圧を越えると、IIILを破
損することが多くなり、171cエネルギー消費量が大
きくなるので好ましくない。
The filtration pressure when the liquid to be treated comes into contact with the porous membrane is 0.01~
5 atmospheres is preferred. If the filtration pressure is less than 0.01 atm,
If the amount of oil fed becomes small and exceeds 5 atm, it is not preferable because IIIL is often damaged and 171c energy consumption increases.

被処理液が多孔膜と接触する際の濾過温度は、植物性油
が有機溶媒との混合物でない場合は20〜95℃が好ま
しく、植物性油が有機溶媒との混合物の場合は、沸点が
15℃以上の有機溶媒を用い、20℃以上有機溶媒の沸
点より5℃低い温度以下であることが好ましい。濾過温
度が20℃未満では、被処理液の粘度が大きくなり送油
量が小さくなるため好ま′シ<なく、95℃を越える場
合吃しくは有機溶媒の沸点より5℃低い温度を越える場
合は、水もしくは有機溶媒の蒸発が著しく愈り好ましく
ない。
The filtration temperature when the liquid to be treated comes into contact with the porous membrane is preferably 20 to 95°C if the vegetable oil is not a mixture with an organic solvent, and if the vegetable oil is a mixture with an organic solvent, the boiling point is 15°C. It is preferable to use an organic solvent having a temperature of 20°C or higher and 5°C lower than the boiling point of the organic solvent. If the filtration temperature is less than 20°C, the viscosity of the liquid to be treated will increase and the amount of oil fed will be small, so it is not preferable. , evaporation of water or organic solvent is significantly reduced, which is undesirable.

膜により濃縮されたガム質および水を含む液(濃縮fL
)奢数度同−の膜に接触′させる、いわゆる部分循環濾
過法が膜面積当りの送油量を小さくしうるので好ましい
Liquid containing gum and water concentrated by the membrane (concentrated fL
) The so-called partial circulation filtration method, in which the oil is brought into contact with membranes of the same degree of strength, is preferable because the amount of oil fed per membrane area can be reduced.

さらに、濃縮倍率(被処理液中のガム質濃度に対する濃
縮液中のガム質濃度の比)が経時的に一定となることが
操作性もしくは1膜の有効利用性から好ましく1.この
ため濃縮液管一部系外に排出すると共に、残った濃縮液
に透過液量および排出濃縮液量にみあった量の未濃縮液
(被処理液〕を混入調整し、部分循環濾過することが好
ましい。その際の濃縮倍率は1.5倍以上が好適である
。1.5倍未満では濃縮度が低いため処理効率が悪く好
ましくない。
Furthermore, from the viewpoint of operability or effective utilization of one membrane, it is preferable that the concentration ratio (the ratio of the gum concentration in the concentrated liquid to the gum concentration in the liquid to be treated) is constant over time. For this reason, part of the concentrate pipe is discharged outside the system, and the remaining concentrate is mixed with an amount of unconcentrated liquid (liquid to be treated) that matches the amount of permeated liquid and the amount of discharged concentrated liquid, and is partially circulated and filtered. In this case, the concentration ratio is preferably 1.5 times or more. If it is less than 1.5 times, the concentration is low and the processing efficiency is poor, which is not preferable.

第1図に部分循壌戸適法の一例の概念図を示した。こ\
で、Atl1被処理液、BFi濃縮液、cFi透過液、
Dは排出am液、Ed躾、Fはモジュール、piiポン
プである。
Figure 1 shows a conceptual diagram of an example of the partial circulation law. child\
So, Atl1 treated liquid, BFi concentrated liquid, cFi permeated liquid,
D is the discharge am fluid, Ed pump, F is the module, and the PII pump.

透過液量の経時的な低下を回復させる手段としてJII
K対する逆洗処理が知られているが、本発明の膜は、限
外V過膜と比べ孔径の非常に大きな膜であるため逆洗効
果が非常に顕著である。このときの逆洗液としては、I
IIを透過して得られたP液が好適′Cめシ、さらに植
物性油が有機溶媒との混会物である場合、その同一の有
機溶媒の使用も好ましい。
JII as a means to recover from the decrease in permeate volume over time.
Although backwashing treatment for K is known, the membrane of the present invention has a much larger pore size than the ultra-V membrane, so the backwashing effect is very significant. The backwash liquid at this time is I
The P liquid obtained by permeation through II is preferred.If the vegetable oil is a mixture with an organic solvent, it is also preferred to use the same organic solvent.

本発明は、さらに濃縮液を数度異なる膜と接触させる多
段弐濾過法にも適用できる。$2図に多段式F適法の一
例の概念図を示した。こ\て、Aは被処理液、B1 m
 Btは濃縮液、El # g、はモジュール、Pl 
# p、はポンプである。
The present invention can also be applied to a multi-stage filtration method in which the concentrate is brought into contact with different membranes several times. Figure $2 shows a conceptual diagram of an example of the multi-stage F-proper method. Here, A is the liquid to be treated, B1 m
Bt is concentrated liquid, El #g is module, Pl
#p is a pump.

以下実施例によシ本発明を具体的に説明する。The present invention will be specifically explained below using examples.

実施例1 ポリグロビレン21.5重!チ、ジブチルフタレート(
DBP)55.5重量%、微粉シリカ23.0重量%を
混練機で混合した後、粉砕機で粉砕した。
Example 1 Polyglobylene 21.5 times! H, dibutyl phthalate (
55.5% by weight of DBP) and 23.0% by weight of finely divided silica were mixed in a kneader and then ground in a pulverizer.

この原料を二軸押出機および中空ノズルを使用して中空
糸状に溶融押出ししたのち冷却して引取った。この中空
糸を1.1.1−)リクロルエタンに浸漬してDBPを
抽出除去した後乾燥し、さらに40重量%苛性ソーダ水
溶液に浸漬して微粉シリカを溶解し、希薄゛苛性ソーダ
水溶液札よび水にて洗浄し、さらに乾燥して中空糸状多
孔膜を得た。
This raw material was melt-extruded into a hollow fiber shape using a twin-screw extruder and a hollow nozzle, then cooled and taken off. 1.1.1-) The hollow fibers were immersed in dichloroethane to extract and remove DBP, dried, further immersed in a 40% by weight aqueous solution of caustic soda to dissolve the finely divided silica, and diluted with a dilute aqueous solution of caustic soda and water. It was washed and further dried to obtain a hollow fiber porous membrane.

この膜は、内径0.7m1%膜厚300μ、平均孔径0
.15μ、気孔率69%、r C= 29.0dyn/
画であった。
This membrane has an inner diameter of 0.7m1%, a film thickness of 300μ, and an average pore size of 0.
.. 15μ, porosity 69%, r C = 29.0dyn/
It was a painting.

この中空糸状膜を用いて、有効膜rki積0.1ゴなる
モジュールを作った。
Using this hollow fiber membrane, a module with an effective membrane rki product of 0.1 was fabricated.

一方、ナタネ油の圧さく油75容jlチと抽出油25容
f−の混合油に、50℃にて油に対し1.7重量sの水
を少量づつ添加しながら攪拌熟成し、被処理液をfjs
儂した。この被処理液中のガム質は1.1重量%、水分
は1.8重量%であった。
On the other hand, a mixed oil of 75 volumes of compressed rapeseed oil and 25 volumes of extracted oil was stirred and aged at 50°C while adding 1.7 weights of water to the oil little by little. liquid fjs
I did it. The gum content in this liquid to be treated was 1.1% by weight, and the water content was 1.8% by weight.

なお、ガム質はアセトン不溶量で、水分はカールフィッ
シャー法にて、それぞれ足音しておシ、以下の実施例に
おいて(同じ方法で定にしている。
In addition, the gum substance was determined by the amount insoluble in acetone, and the water content was determined by the Karl Fischer method, and in the following examples (the same method was used).

先Me モジュールにこの被処理液を接触させ、一速Q
、6 m / 式、平均濾過圧力1.0気圧、p過温度
45C,III縮倍率S、O倍にて部分微積濾過したと
ころ、得られた透過油中のガム質は0.66重量%、水
分Fia、ts重普チであシ、脱ガム効果および脱水効
果と吃良好でめった。このときの透過量は、定常濾過状
態で4j t/hrでめった。
The first Me module is brought into contact with the liquid to be treated, and the first speed Q
, 6 m/formula, average filtration pressure 1.0 atm, p filtration temperature 45C, and partial microvolume filtration at III reduction ratio S, O times, the gum quality in the obtained permeated oil was 0.66% by weight. , moisture Fia, TS heavy dryness, degumming effect, dehydration effect, and good stuttering effect. The amount of permeation at this time was 4j t/hr under steady filtration conditions.

実施例2 ナタネ油の圧さく油75容蓋優と抽出油25容量−の混
合油に、40℃にて50重t−クエン酸水溶液を油に対
し0.6重量%を少量づつ添加しながら攪拌し、その後
、油に対し1.5容量チの水を少量づつ僑加しながら攪
拌熟成して被処理gt−作った。この被処理液中のガム
質#ilj重量優、水分は′−I L 8重量−であっ
た。
Example 2 To a mixed oil of 75 volumes of pressed rapeseed oil and 25 volumes of extracted oil, a 50% heavy t-citric acid aqueous solution was added little by little at 40°C in an amount of 0.6% by weight based on the oil. The mixture was stirred, and then 1.5 volumes of water was added little by little to the oil, and the mixture was stirred and aged to prepare the treated gt. The liquid to be treated had a gummy substance #ilj by weight and a moisture content of '-IL8 by weight.

この被処理液を実施例1と同一のモジュールおよび同一
の条件にて部分循*濾過したところ、得られた透過油中
のガム質FiO,18重量%、水分は0.15重1*で
あシ、酸添加処理により実施例1よりさらに良好な脱ガ
ム効果が得られた。このときの定常濾過状態での透油量
は4.OL / hrであつた。
When this treated liquid was partially circulated* filtered using the same module and the same conditions as in Example 1, the obtained permeated oil contained gummy FiO of 18% by weight and water content of 0.15% by weight. A better degumming effect than in Example 1 was obtained by the acid addition treatment. At this time, the oil permeation amount in the steady filtration state is 4. I was an office lady/hr.

実施例3〜7、比較例2〜5 被処理液として、水の晧加量を変化させた他は実施例1
と同じ条件で表1に示す7種のものを作った。
Examples 3 to 7, Comparative Examples 2 to 5 Example 1 except that the amount of water used as the liquid to be treated was changed.
The seven types shown in Table 1 were made under the same conditions as above.

これら被処理液の濾過温度を50℃にした他は、実施例
1と同一のモジュールおよび同一の条件にて部分循1j
vi過した。
Partial circulation 1j was carried out using the same module and under the same conditions as in Example 1, except that the filtration temperature of these liquids to be treated was 50°C.
I passed the vi.

各被処理液について、透過油中のガム質および定常沖過
状態での透油量を表1に示した。
For each liquid to be treated, the gum quality in the permeated oil and the amount of oil permeated under steady offshore conditions are shown in Table 1.

この結果より、被処理液中の水共存量として0,1〜1
0重量−が、脱ガム効果および透油量の点で好ましいこ
とがわかる。
From this result, the amount of coexisting water in the liquid to be treated is 0.1 to 1.
It can be seen that 0 weight is preferable in terms of degumming effect and oil permeation amount.

実施例8 高密度ポリエチレン22.9重量%、ジオクチルフタレ
ート(DOP ) 55,5重its、倣粉シリカ23
.5Nt優を混線機で混合した後、粉砕機で粉砕した。
Example 8 High density polyethylene 22.9% by weight, dioctyl phthalate (DOP) 55.5wts, imitation powder silica 23
.. After mixing 5Nt in a mixer, it was pulverized in a pulverizer.

この原料を二軸押出慎およびTダイにて平膜状に溶融押
出しした後、冷却して引取った。
This raw material was melt-extruded into a flat film using a twin-screw extruder and a T-die, then cooled and taken off.

この膜を1.1.1−)リクロルエタンに浸漬してDO
Pを抽出除去した後、乾燥し、さらに40電量−1苛性
ソーダ水溶液に浸漬して微粉シリカを溶解し、希薄苛性
ソーダ水溶液および水にて洗浄し、さらに乾燥して平膜
状多孔膜を得た。
This membrane was immersed in 1.1.1-) dichloroethane and DO
After extracting and removing P, it was dried, further immersed in a 40 coul-1 caustic soda aqueous solution to dissolve fine powder silica, washed with a dilute caustic soda aqueous solution and water, and further dried to obtain a flat porous membrane.

この膜は、膜厚300μ、平均孔径0,12μ、気孔率
70 Ls、  rC= 31 dyn /cW1であ
った。
This membrane had a thickness of 300μ, an average pore diameter of 0.12μ, a porosity of 70 Ls, and rC=31 dyn/cW1.

この平膜をパイオエーンジニアリング社裂フィルターホ
ルダー(UD−6,有効膜面積0.08m’)に取付け
、実施例2と同じ被処理液を用いて、巌速0.4m/s
ec、平均濾過圧力1.0気圧、洲過温度55℃、濃縮
倍率5倍にて部分循環濾過した。
This flat membrane was attached to a Paio Engineering Co., Ltd. filter holder (UD-6, effective membrane area 0.08 m'), and using the same liquid to be treated as in Example 2, the rolling speed was 0.4 m/s.
Partial circulation filtration was carried out at EC, average filtration pressure of 1.0 atm, filtration temperature of 55° C., and concentration ratio of 5 times.

得られた透過油中のガム質Fi0.12重IIk−1水
分#′i0.10重量%であり、脱ガム、脱水効果とも
良好であった。このときの定常p過状態での送油量Fi
2.2t/hrであツタ。
The resulting permeated oil had a gummy Fi of 0.12 heavy IIk-1 water #'i of 0.10% by weight, and had good degumming and dehydration effects. At this time, the oil supply amount Fi in the steady p excess state
Ivy at 2.2t/hr.

実施例9〜13、比較例5〜5 膜と・して以下のものを用いて、植物性油の脱ガム実験
を行なった。
Examples 9 to 13, Comparative Examples 5 to 5 Degumming experiments for vegetable oil were conducted using the following membranes.

A膜:ポリフッ化ビニリデン20部をジメチルホルムア
ミ、ドとアセトンの混合〜溶媒(体積混合比20/80
 ) 80部に溶解した原液を中空ノズルより押出し、
水中で凝固させ中空糸状膜を得た。この膜は、内径Q、
7111、膜厚200μ、平均孔径0,02 、a、r
c=25dYrl/1M1であった。
Membrane A: A mixture of 20 parts of polyvinylidene fluoride, dimethylformamide, and acetone ~ solvent (volume mixing ratio 20/80)
) Extrude the stock solution dissolved in 80 parts through a hollow nozzle,
A hollow fiber membrane was obtained by coagulating in water. This membrane has an inner diameter Q,
7111, film thickness 200μ, average pore diameter 0.02, a, r
c=25dYrl/1M1.

B膜:ポリフッ化ビニリデンジメチルアセトアミド、ポ
リエチレングリコールをそれぞれ20重ii%、  6
0重g’Is、20 M量’ls混合fmlllし、中
空ノズルより押出し水中で凝固させ中空糸状膜を得た。
B film: 20% by weight of polyvinylidene dimethylacetamide fluoride and polyethylene glycol, 6
0 weight g'Is and 20 M amount'ls were mixed, extruded through a hollow nozzle, and coagulated in water to obtain a hollow fiber membrane.

この膜は、内径0.7+111゜膜厚190μ、平均孔
径0.D 5 p、rc =25 dyn 7画であっ
た。
This membrane has an inner diameter of 0.7+111°, a film thickness of 190μ, and an average pore diameter of 0. D 5 p, rc = 25 dyn 7 strokes.

C膜:高密度ポリエチレン22.9重量%、DOP53
.5重量%、微粉シリカ25.5重量%を混線、粉砕後
、二軸抽出機および中空ノズルにて溶融押出した後、脱
DOP、脱シリカを行なって中空糸状膜を得た。こ゛の
膜は、内径0,7部ma、膜厚300μ、平均孔径0.
12p、rc=31 dyn/zであった。
C film: high density polyethylene 22.9% by weight, DOP53
.. After mixing and pulverizing 5% by weight and 25.5% by weight of fine powder silica, the mixture was melted and extruded using a twin-screw extractor and a hollow nozzle, and then DOP and silica were removed to obtain a hollow fiber membrane. This membrane has an inner diameter of 0.7 mm, a thickness of 300 μm, and an average pore diameter of 0.7 mm.
12p, rc=31 dyn/z.

D膜:実施例1と同じ中空糸状膜であり、内径0.71
111、膜厚300μ、平均孔径0.15μ、rc=2
9dyn/−でありた。
D membrane: The same hollow fiber membrane as in Example 1, with an inner diameter of 0.71
111, film thickness 300μ, average pore diameter 0.15μ, rc=2
It was 9 dyn/-.

E膜:エチレン−テトラフルオロエチレン共重合体26
.7各l!iチ、DOP 60.0容t % 、微粉シ
リカ13.3容量−を混練、粉砕後、ニー押出機および
中空ノズルにて溶融押出した後、脱DOP、脱シリカを
行なって中空糸状膜を得た。この膜は、内@0.7em
a、膜厚500μ、平均孔径0.5μ、rc = 26
,5 dyp 、I cmであった。
E membrane: ethylene-tetrafluoroethylene copolymer 26
.. 7l each! After kneading and pulverizing DOP 60.0 volume t % and fine powder silica 13.3 volume, the mixture was melted and extruded using a knee extruder and a hollow nozzle, and then DOP and silica were removed to obtain a hollow fiber membrane. Ta. This film is within @0.7<em>m
a, film thickness 500μ, average pore diameter 0.5μ, rc = 26
, 5 dyp, I cm.

F膜:ボリフツ化ビニリデン26.7容量−1DOP6
0.0容thtチ、微粉シリカ13.3重量−を混練、
粉砕後、二軸押出機および中空ノズルにて溶融押出した
後、脱DOP、脱シリカを行なって中空糸状膜を得た。
F membrane: Vinylidene polyfluoride 26.7 capacity - 1DOP6
Knead 0.0 volume tht, 13.3 weight of fine powder silica,
After pulverization, the mixture was melt-extruded using a twin-screw extruder and a hollow nozzle, and then DOP and silica were removed to obtain a hollow fiber membrane.

この膜は、内径0.7■1、膜厚500μ、平均孔径3
μ、rc = 25 dyn /fMであった。
This membrane has an inner diameter of 0.7cm, a thickness of 500μ, and an average pore diameter of 3.
μ, rc = 25 dyn/fM.

G膜:上記F膜を長手方向に5倍延伸した。この膜は、
内径0.5mm、膜厚155μ、平均孔径5μ、r C
” 25 dyn / にy1であった。
G film: The above F film was stretched 5 times in the longitudinal direction. This membrane is
Inner diameter 0.5mm, film thickness 155μ, average pore diameter 5μ, r C
” It was y1 at 25 dyn/.

H膜:エチレン−ビニルアルコール共重合体(エチレン
含量33モルチ、ケン化度99%以上) 25.5容童
チ、グリセリン59.0容量チ、微粉シリカ15.5容
量チを混練、粉砕後二軸押出機および中空ノズルにて溶
融押出しfc後、温水にて脱グリセ5リンし、さらに4
0重量−苛性ソーダ水溶液にて脱シリカして中空糸状膜
を得た。この膜は、内径0.7mm、膜厚500μ、平
均孔径0.15μ、rC== 33 dyn / cr
nであった。
H membrane: Ethylene-vinyl alcohol copolymer (ethylene content: 33 mol, degree of saponification 99% or more) 25.5 vol. mol. After melt extrusion fc using a shaft extruder and hollow nozzle, deglycerate 5 phosphorus with warm water, and further 4
A hollow fiber membrane was obtained by removing the silica using a 0 weight - caustic soda aqueous solution. This membrane has an inner diameter of 0.7 mm, a film thickness of 500 μ, an average pore diameter of 0.15 μ, and rC==33 dyn/cr.
It was n.

上記各種中空糸状膜にて有効膜面積0.1ゴなるモジュ
ールを作り、水添加量を4.0重量−にした他IIi実
施例2と同じ被処理液を用いて、線速0.5m / s
ec 、平均p過圧力1.0気圧1.濾過温度40℃、
濃縮倍率4倍にて部分循11濾過した。
A module with an effective membrane area of 0.1 was made using the various hollow fiber membranes mentioned above, and the same liquid to be treated as in Example 2 was used, except that the amount of water added was 4.0 wt. s
ec, average p overpressure 1.0 atm 1. Filtration temperature 40℃,
Partial circulation 11 filtration was carried out at a concentration factor of 4 times.

得られた透過油中のガム質、水分および定常p過状態で
の送油量の結果を第2表に示す。
Table 2 shows the results of the gum quality and water content in the obtained permeated oil and the amount of oil fed in a steady state of excess p.

なお、被処理液中のガム質は1.1重1%、水分は4.
5重量−であった。
The gum content in the liquid to be treated is 1.1% by weight and the water content is 4.1% by weight.
5 weight.

比較例6〜7 膜として以下のものを用いて植物性油の脱ガム実験を行
なった。
Comparative Examples 6-7 Degumming experiments on vegetable oil were conducted using the following membranes.

IM:ナイロン6,10を15 ?/10Dadの濃度
で硝酸に俗解した後、流処し、オイルサルフェートを添
加した凝固浴中に浸漬して数面させ、水洗して平膜を得
た。この膜は、膜厚200μ、平均孔径o、17μ、r
c=57、Odyn / cmであった。
IM: Nylon 6,10 to 15? After dipping into nitric acid at a concentration of /10Dad, it was poured, immersed in a coagulation bath to which oil sulfate had been added several times, and washed with water to obtain a flat membrane. This membrane has a thickness of 200μ, an average pore diameter of o, 17μ, and r
c=57, Odyn/cm.

J膜:塩化ビニル15重量%、ポリエチレングリコール
10重tチ、ジメチルホルムアミド85重量−を均一に
混合して流延し、乾燥して水中に浸漬して平膜を得た。
J membrane: 15% by weight of vinyl chloride, 10% by weight of polyethylene glycol, and 85% by weight of dimethylformamide were uniformly mixed and cast, dried, and immersed in water to obtain a flat membrane.

この膜は、膜厚200μ、平均孔径0.10μ、rc=
39、Odyn / cmであった。
This membrane has a thickness of 200μ, an average pore diameter of 0.10μ, and rc=
39, Odyn/cm.

上記2aiの平膜をバイオエンジニアリング社製7 (
kfi−ホkf −(UD−6、有効膜面積0.08m
’)に取付け、実施例9〜13と同じ被処理液を用い〜
て、線速0.4m/sec、平均濾過圧力1.ot/c
11、濾過温度40℃、濃縮倍率4”倍にて部分循JJ
IFmした。
The above 2ai flat membrane was made by Bio Engineering Co., Ltd. 7 (
kfi-hokf-(UD-6, effective membrane area 0.08m
') and using the same liquid to be treated as in Examples 9 to 13.
Linear speed: 0.4 m/sec, average filtration pressure: 1. ot/c
11. Partial circulation JJ at a filtration temperature of 40°C and a concentration ratio of 4”
I did IFm.

得られた透過油中のガム質、水分の結果を表3に示す。Table 3 shows the results of the gum quality and water content in the obtained permeated oil.

表  3 性として平均孔径が0.05〜3μ、臨界表面張力rc
が35 dyn /6H未満が、逃油量、脱ガム効果、
脱水効果の点で好ましいことがわかる。
Table 3 Average pore diameter is 0.05 to 3μ, critical surface tension rc
is less than 35 dyn/6H, the amount of oil escaping, the degumming effect,
It can be seen that this is preferable in terms of dehydration effect.

実施例14 内径を1,5illにした他は実施例11と同一じ膜を
用いて、有効膜面積0.1ゴ、有効長25αなるモジュ
ールを作シ、実施例2と同じ被処理液を用いて、平均p
過圧力4.0気圧、濾過温度45℃、濃縮倍率S、O倍
にて、線速を表4に示す如く種々変化させて部分循環濾
過した。
Example 14 Using the same membrane as in Example 11 except that the inner diameter was 1.5ill, a module with an effective membrane area of 0.1mm and an effective length of 25α was produced, and the same liquid to be treated as in Example 2 was used. , the average p
Partial circulation filtration was performed at an overpressure of 4.0 atm, a filtration temperature of 45° C., and a concentration ratio of S and O times, while varying the linear velocity as shown in Table 4.

いずれの線速においても透過油中のガム質は0.18重
瀘チ、水分1jO015重を−で変化はなかったが、定
常濾過状態での逃油量および膜のピンホール発生までの
耐久時間は線速の影響を受け、表4に示す結果が得られ
た。すなわち、−速0.05rn / sec未満では
逃油量が小さくて好ましくなく、また3、OtrL /
 secを越えると膜の耐久性に劣り、さらにエネルギ
ー消費量も大きくなることから、線速は0,05 tn
 / sec以上jam/sec以下が好ましいことが
わかる。
At any line speed, the gum quality in the permeated oil was 0.18 times the filter and the moisture was 1jO015 times -, which did not change, but the amount of oil escaping under steady filtration conditions and the durability time until pinholes appeared in the membrane was influenced by the linear speed, and the results shown in Table 4 were obtained. That is, if the speed is less than 0.05 rn/sec, the amount of oil escaping will be small and it is not preferable.
If the linear velocity exceeds 0.05 tn, the durability of the film will be poor and the energy consumption will also increase.
It can be seen that more than /sec and less than jam/sec is preferable.

表  4 実施例15 差圧2.5気圧で10秒間のF液逆洗を1回715分の
ひん皺で実施した他は、実施例2と同じ条件′で植物性
油の精製を実施した。
Table 4 Example 15 Vegetable oil was purified under the same conditions as in Example 2, except that backwashing with F liquid was carried out for 10 seconds at a differential pressure of 2.5 atm, and the process was repeated for 715 minutes.

得られた透過油中のガム質は0,18重蓋−1水分Fi
O,151:!t%と’Q例1ト差n ナカツ* カ、
足′PP;濾過状態での平、均透油蓋は7,2 l/h
rと実施例1の結果の1.8倍に向上し、顕著な逆洗効
果が見られた。
The gum quality in the obtained permeated oil is 0.18 heavy lids - 1 moisture Fi
O,151:! Difference between t% and 'Q example 1t n Nakatsu*ka,
Feet'PP: Average oil permeability in filtered state is 7.2 l/h
r was improved to 1.8 times the result of Example 1, and a remarkable backwashing effect was observed.

実施例16 差圧2.0気圧で30秒間のν液逆洗を1回/30分の
びん度で実施した他は、実施例12と同じ条件で植物性
油の精製を実施した。
Example 16 Vegetable oil was purified under the same conditions as in Example 12, except that ν liquid backwashing was carried out for 30 seconds at a differential pressure of 2.0 atm at a bottle rate of once/30 minutes.

得られた透過油中のガム質Fi0.15重1−1水分は
0.12重量−と実施例12と差はなかったが、定常p
過状態での平均透油量Fi8.Ol/hrと実施例12
の結果の2.0倍に向上し、顕著な逆洗効果が見られ次
The gummy Fi 0.15 weight 1-1 water content in the obtained permeated oil was 0.12 weight -, which was the same as in Example 12, but the steady p
Average oil permeation amount Fi8. Ol/hr and Example 12
The result was improved by 2.0 times, and a remarkable backwashing effect was observed.

実施例17   ・ ナタネ油の圧さく油40容量チと抽出油4ay量チおよ
びn−ヘキサン20容量チの混合物に1.40℃にて油
に対し1.25重ik優の水を少量づつ添加しながら攪
拌、熟成して被処理液を作った。
Example 17 - To a mixture of 40 volumes of pressed oil of rapeseed oil, 4 volumes of extracted oil and 20 volumes of n-hexane, at 1.40°C, water of 1.25 parts by weight relative to the oil was added little by little. While stirring and aging, a liquid to be treated was prepared.

この被処理液中のガム質、水分は、それぞれ油に対し1
.53重量%、1.30重量%であった。
The gum quality and water content in this liquid to be treated are each 1 to 1 oil.
.. They were 53% by weight and 1.30% by weight.

この被処理液を実施例1と同一のモジュールおよび同一
の条件にて部分循環濾過した。
This liquid to be treated was subjected to partial circulation filtration using the same module and under the same conditions as in Example 1.

得られた透過油のガム質、水分はそれぞれ油に対し0.
58重量%、水分1joj2重量%であり、脱ガム効果
および脱水効果は良好であった。このときの透袖量(ヘ
キサンとの混合油)は、定常p過状態で5.5t/hr
であった。
The gum quality and water content of the obtained permeated oil are respectively 0.0% relative to the oil.
The degumming effect and the dehydration effect were good. The amount of transparent sleeves (mixed oil with hexane) at this time was 5.5 t/hr in a steady p state.
Met.

実施例1B ナタネ油の圧さく油40容量チと抽出油40容量チおよ
びn−ヘキサン20容tチの混合物に、40℃にて50
重量%のシュウ酸水溶液を油に対し1.0!1%を少量
づつ添加しながら攪拌し、その後、油に対し3.1重量
%の水を少量づつ添加しながら攪拌、熟成して被処理液
管作った。この被処理陣中のカム質、水分は、それぞれ
油忙対し1.32重量%、3.6重量%であった。
Example 1B A mixture of 40 volumes of pressed rapeseed oil, 40 volumes of extracted oil and 20 volumes of n-hexane was heated at 40°C for 50 minutes.
Add 1.0!1% by weight of oxalic acid aqueous solution to oil little by little while stirring, then stir while adding 3.1% by weight of water to oil little by little, age and process. I made a liquid pipe. The cam quality and water content in this treated layer were 1.32% by weight and 3.6% by weight, respectively, relative to the oil content.

この被処理液を実施例12と同一のモジュールおよび同
一の条件で部分循11濾過した。
This liquid to be treated was subjected to partial circulation 11 filtration using the same module and the same conditions as in Example 12.

得られた透過油のガム質、水分は、それぞれ油に対し0
.10重tS、0.o7重Jlt1?”あシ、脱カム効
果および脱水効果は良好であった。このときの通油量(
ヘキサンとの混合油)は、定常濾過状態で5.8t/h
rであった。
The gum quality and water content of the obtained permeated oil are 0 relative to the oil.
.. 10 fold tS, 0. o7ju Jlt1? ``The reeds, de-camming effect, and dehydration effect were good.The amount of oil passed at this time (
Mixed oil with hexane) is 5.8t/h in steady filtration state.
It was r.

上記同−粂件で、さらに差圧2.5気圧で10秒間のn
−ヘキサンによる逆洗処理を1回/20分のひん度で実
施したところ、定常濾過状態での平均透油量(ヘキサン
との混合油) 1lt7,5 l/hrと大きくなシ、
顕著なn−ヘキサンによる逆洗効果が見られた。
In the same case as above, a further 10 seconds of n at a differential pressure of 2.5 atm.
- When backwashing treatment with hexane was carried out at a frequency of once/20 minutes, the average oil permeation amount (mixed oil with hexane) during steady filtration was as large as 1lt7.5l/hr.
A remarkable backwashing effect due to n-hexane was observed.

実施例19 ヒマワリ油に40℃にて0.5重tSの水を少量づつ添
加しながら攪拌した後、5℃に急冷して、被処理液を作
った。この被処理液中のガム質は0.31重量%、水分
は0.5重tht−であった。
Example 19 Water of 0.5 weight tS was added little by little to sunflower oil at 40° C. while stirring, and then rapidly cooled to 5° C. to prepare a liquid to be treated. The gum content in this liquid to be treated was 0.31% by weight, and the water content was 0.5% by weight.

この被処理液を実施例1と同じモジュールにて、脱ガム
脱水試験を行なった。
This treated liquid was subjected to a degumming and dehydration test using the same module as in Example 1.

p過条件は、線速0.5m/scc、平均濾過圧1.0
気圧、濾過温度25℃、濃縮倍率8.0倍での部分循m
濾過である。
P filtration conditions are linear velocity 0.5 m/scc, average filtration pressure 1.0
Partial circulation at atmospheric pressure, filtration temperature of 25°C, and concentration ratio of 8.0 times.
It's filtration.

得られた透過油中のガム質ijO,01重量−以下であ
り、水分Fio、o s重1%で、良好な脱水脱ガム効
果が見られ次。このときの通油量は、定常濾過状態で1
.7t/hrであった。
The gummy content of the obtained permeated oil was less than 1% by weight, and the water content was 1% by weight, indicating a good dehydration and degumming effect. The amount of oil flowing at this time is 1 in the steady filtration state.
.. It was 7t/hr.

実施例20 ダイズ油に40℃にて50重t*のシュウ酸水溶液を油
に対し0,5重量%少量づつ添加しながら攪拌し、その
後、油に対し3.5重量%の水を少量づつ添加しながら
攪拌、熟成して、被処理液を作った。この被処理液中の
ガム質は1.42重量%、水分Fi3.8重量%であっ
た。 ゛ この被処理液を実施例1と同じモジュール、同じp過条
件にて脱ガム脱水試験を行なった。
Example 20 50 weight t* of an oxalic acid aqueous solution was added to soybean oil at 40°C in small amounts of 0.5% by weight based on the oil while stirring, and then 3.5% by weight water based on the oil was added little by little. While stirring and aging, a liquid to be treated was prepared. The gum content in this treated liquid was 1.42% by weight, and the water content Fi was 3.8% by weight. A degumming and dehydration test was conducted on this liquid to be treated using the same module and the same p-filtration conditions as in Example 1.

得られた透過油中のガム質は0.04重量%、水分は0
.07重量−で−アシ、良好な脱ガム脱水効果が得られ
て訃り、このときの通油量は、定常濾過状態で3,8 
l/hrであった。
The gum content in the obtained permeated oil was 0.04% by weight, and the water content was 0.
.. At 07 weight, a good degumming and dehydration effect was obtained, and the amount of oil passed at this time was 3.8 in the steady filtration state.
It was l/hr.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における部分循環p適法の一例を示す説
明図、第2図は本発明における多段弐濾適法の一例を示
す説明図である。 一°゛〜ど騒 隼l弓 P 昭和57年4月20日 特許庁長官 島田妻構 殿 1 事件Q表示 特願昭567190640号 2 発明の名称 植物性油の膜による精製方法 5 補正をする者 事件との関係・特許出願人 (003)旭化成工業株式会社 郵便番号105 東京都港区虎ノ門−丁目2番29号虎ノ門産業ビル5階
明細書の発明の詳細な説明の橢 6 補正の内容 明細書の記載を次のとおり補正する。 11)、第6頁2〜5行の r本発明において・・・・・・・・・・・・−・・・・
・脱ガム効果が愈い。」 を削除する。 (21%第6頁6行の 「また」を「本発明において」と訂正する。 (311第7頁7行、の 「ン酸、シュウ酸等の」を ° 「ン酸、シュウ酸、酢酸等の」と訂正する。 (41,第8頁2行の 「透過量」を「透油量」と訂正する、 (5)、JH5頁2行。 「5 xi / 5lcjを「3m/5acJと訂正す
る。 (61,第15頁14行の 「20」を「10」と訂正する。 (7)、第13頁17行の r20cJを[10CJと訂正する。 (8)、第13頁18行の 「20CJを「1OCJと訂正する。 (9)、第14頁6行の 「小さく」を「大きく」と訂正する。 aω%第17頁5行の 「透過量」を「透油量」と訂正する。 Ql)、第17jjl1行の 「1.5容量−」を「1.5重量%」と訂正する。 aり、第20頁2行の 「22.9重量−」をf−25,0重量%」と訂正する
。 11第20頁9行の 「先筒性ソーダ水溶液」を「−苛性ソーダ水溶液」と訂
正する。 04%第21頁15〜14行の 「ポリ7ツ化ビニリデンジメチルアセトアミド」を「ポ
リフッ化ビニリデン、ジメチルアセトアミド」と訂正す
る。 仙、第21頁20行の 「22.9重量−」を「25,0重量%」(US、第2
2頁2行の 「二軸抽出機」ヲ「二軸押出機」と訂正する。 a?)、第22頁19行の 「13.3重量%」を「15.S容量嗟」と訂正する。 (IL第24頁−4行の 「第2表」を「表2」と訂正する。 a場、第26頁12行の 「855重量%を「75重量饅」と訂正する。 GL M26頁19行o r 1.Of/a+IJtr
1.ofi圧Jと訂正する。 (21)、第34頁1行と2行の間に下記の記載を挿入
する。 「  実施例21 実施例16で得られた透過油に活性白土2.0重量−を
加え、120[で20分脱色を行った後。 蒸気量5,5重量嘩、260Cで90分脱色管実施して
試料Pを得た。比較のため、膜処理前の同一の原油を用
いて、従来法である遠心分離法によ8脱ガム工程、脱酸
工程を経て、上記と同様な条件なお、色[FLg1ビボ
ンド比色計によl I m 5.4鶴セルを使用して評
価した。クロロフィルはCX−4704(て評価した。 曝光特性は螢光灯6時間照射後の値である。 S 本発明は、従来法の遠心分離法と比較して、薬品類を消
費する脱酸工程を省略することができ。 さらに工程が簡略化されたエネルギー消費の小さいすぐ
れた精製方法であ)、得られた精製油の液質は、従来法
である遠心分離法によるものし比較して遜色のないもの
である。」
FIG. 1 is an explanatory diagram showing an example of the partial circulation p-appropriate method according to the present invention, and FIG. 2 is an explanatory diagram showing an example of the multistage two-filtration method according to the present invention. 1°゛~Do Noisy Hayabusa Bow P April 20, 1980 Commissioner of the Patent Office Mr. Tsumada Shimada 1 Incident Q Indication Patent Application No. 1988 567190640 2 Title of Invention Method for Refining Vegetable Oil by Membrane 5 Person Making Amendment Relationship to the case / Patent applicant (003) Asahi Kasei Kogyo Co., Ltd. Postal code 105 5th floor, Toranomon Industrial Building, 2-29 Toranomon-chome, Minato-ku, Tokyo Detailed description of the invention in the specification 6 Description of amendments amend the description as follows. 11), page 6, lines 2 to 5 r In the present invention...
・Easy degumming effect. ” to be deleted. (21% "Also" on page 6, line 6 is corrected to "in the present invention". (311, page 7, line 7, "phosphoric acid, oxalic acid, etc." (41, "Permeation amount" on page 8, line 2 is corrected as "oil penetration amount". (5), JH page 5, line 2. "5 xi/5lcj is changed to "3m/5acJ". Correct. (61, Correct "20" on page 15, line 14 to "10". (7), Correct r20cJ on page 13, line 17 to [10CJ. (8), Page 13, line 18. Correct ``20CJ'' to ``1OCJ.'' (9) Correct ``small'' in line 6 of page 14 to ``large''. Change ``permeation amount'' in line 5 of page 17 to ``oil permeation amount.'' Correct it. 0% by weight.''" is corrected to "polyvinylidene fluoride, dimethylacetamide." Sen, page 21, line 20, "22.9% by weight -" is corrected to "25.0% by weight" (US, No. 2
On page 2, line 2, "twin-screw extractor" has been corrected to "twin-screw extruder." a? ), "13.3% by weight" on page 22, line 19 is corrected to "15.S capacity". (IL page 24, line 4, “Table 2” is corrected as “Table 2”. In field a, page 26, line 12, “855% by weight” is corrected to “75 weight rice cake.”) GL M page 26, line 19 Row or r 1.Of/a+IJtr
1. Correct it as ofi pressure J. (21), page 34, insert the following statement between lines 1 and 2. Example 21 After adding 2.0 weight of activated clay to the permeated oil obtained in Example 16 and decolorizing it at 120°C for 20 minutes. Sample P was obtained.For comparison, using the same crude oil before membrane treatment, it was subjected to eight degumming steps and a deoxidation step using the conventional centrifugation method under the same conditions as above. Color was evaluated using a FLg1 Vibond colorimeter using a 5.4 Tsuru cell. Chlorophyll was evaluated using CX-4704. Light exposure characteristics are values after 6 hours of irradiation with a fluorescent lamp.S Compared to the conventional centrifugation method, the present invention can omit the deoxidizing step that consumes chemicals. Furthermore, it is an excellent purification method with simplified steps and low energy consumption). The liquid quality of the refined oil obtained is comparable to that produced by the conventional centrifugation method.

Claims (1)

【特許請求の範囲】 tl+  ガム質を含む粗製植物性油を、水が0.1〜
10重量%共存下で9攪拌しながら熟成した後、平均孔
径が0.05〜5μでm表面の臨界表面張力がS 3 
dyn/z未満の多孔膜の表面に接触させ、その膜面に
対し平行に線速0,05 m/sec〜3m/sacで
流し、ガム質を水と共に濃縮分離し、実質的にガム質お
よび水を含まない植物性油を得ることを特徴とする植物
性油の膜による精製方法。 (2)ガム質を含む粗製植物性油に、該ガム質含量の0
.01〜3.0倍の酸を添加し、かつ水が0.1〜10
重量%共存下で攪拌しながら熟成した後、平均孔径が0
.05〜5μで膜表面の臨界表面張力がS 5 dyn
 / cm未滴の多孔膜の表面に接触させ、その膜面に
対し平行に線速0,05m/see〜3m/sa:で流
し、・・ガム質を水と共に濃縮分離し、実質的にガム質
および水を含まない植物性油を得ることを%徴とする植
物性油の膜による精製方法。
[Claims] tl+ Crude vegetable oil containing gummy matter, water content is 0.1~
After aging in the coexistence of 10% by weight with stirring for 9 hours, the average pore size is 0.05-5μ and the critical surface tension of the m surface is S3.
It is brought into contact with the surface of a porous membrane of less than dyn/z, and is flowed parallel to the membrane surface at a linear velocity of 0.05 m/sec to 3 m/sac to concentrate and separate the gums together with water. A method for refining vegetable oil using a membrane, which is characterized by obtaining a vegetable oil that does not contain water. (2) Crude vegetable oil containing gummy substances has a gummy content of 0.
.. Add 0.1 to 3.0 times the acid and add 0.1 to 10 times the amount of water.
After aging with stirring in the coexistence of % by weight, the average pore size is 0.
.. 05~5μ, the critical surface tension of the membrane surface is S 5 dyn
/ cm droplets are brought into contact with the surface of the porous membrane, and flowed parallel to the membrane surface at a linear speed of 0.05 m/see to 3 m/sa...gummy matter is concentrated and separated with water, and the gum substance is substantially A method for refining vegetable oil using a membrane, which is characterized by obtaining a vegetable oil that is free of high quality and water.
JP19066081A 1981-11-30 1981-11-30 Purification method using vegetable oil film Expired JPS5950718B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19066081A JPS5950718B2 (en) 1981-11-30 1981-11-30 Purification method using vegetable oil film
CA000415848A CA1189087A (en) 1981-11-30 1982-11-18 Method of refining a vegetable oil
DE19823244007 DE3244007C2 (en) 1981-11-30 1982-11-27 Process for refining vegetable oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19066081A JPS5950718B2 (en) 1981-11-30 1981-11-30 Purification method using vegetable oil film

Publications (2)

Publication Number Publication Date
JPS5893798A true JPS5893798A (en) 1983-06-03
JPS5950718B2 JPS5950718B2 (en) 1984-12-10

Family

ID=16261778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19066081A Expired JPS5950718B2 (en) 1981-11-30 1981-11-30 Purification method using vegetable oil film

Country Status (3)

Country Link
JP (1) JPS5950718B2 (en)
CA (1) CA1189087A (en)
DE (1) DE3244007C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022906A (en) * 1983-07-18 1985-02-05 Asahi Chem Ind Co Ltd Washing method of porous membrane
JPH02255896A (en) * 1988-06-21 1990-10-16 Unilever Nv Purification of glyceride oil
JPH03215598A (en) * 1989-06-26 1991-09-20 Unilever Nv Method for purifying collected olive oil
JPH0551593A (en) * 1991-08-26 1993-03-02 Nisshin Oil Mills Ltd:The Production of edible oil

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8423229D0 (en) * 1984-09-14 1984-10-17 Unilever Plc Treating triglyceride oil
US5286886A (en) * 1988-06-21 1994-02-15 Van Den Bergh Foods Co., Division Of Conopco, Inc. Method of refining glyceride oils
FR2760756B1 (en) * 1997-03-17 2003-09-19 Richard De Nyons PROCESS FOR PRODUCING HYPOALLERGENIC VEGETABLE OILS
JP2000219886A (en) 1999-02-01 2000-08-08 Masatoshi Matsumura Method and apparatus for conversion of vegetable oil (virgin) or waste vegetable oil to fuel for diesel engine
AU2001264880A1 (en) * 2000-05-24 2001-12-03 The Texas A And M University System Degumming of edible oils by ultrafiltration
ATE240144T1 (en) * 2000-07-22 2003-05-15 Hubert Tippkoetter METHOD FOR TREATING USED VEGETABLE OILS
DE60218319D1 (en) * 2002-10-31 2007-04-05 Carapelli Firenze S P A Process for the physical treatment of olive oil
DE102006023990B4 (en) * 2006-05-22 2008-07-03 Chmiel, Horst, Prof. Dr.-Ing. Removal of hydrophilic substances from oils by means of membranes
DE102006060107A1 (en) * 2006-12-08 2008-06-12 Westfalia Separator Ag Method for separation of solids from fluid product, involves passing of solids in solid bowl centrifuge and its purification by membrane filtration device
DE102007016157A1 (en) 2007-04-02 2008-10-09 Bayer Technology Services Gmbh Process for the separation of product mixtures from transesterification reactions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1509543A (en) * 1974-05-16 1978-05-04 Unilever Ltd Purification process
GB1564402A (en) * 1975-11-13 1980-04-10 Unilever Ltd Purification process
GB2014184B (en) * 1978-01-10 1982-05-19 Asahi Chemical Ind Method of separating oil from oil-containing liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022906A (en) * 1983-07-18 1985-02-05 Asahi Chem Ind Co Ltd Washing method of porous membrane
JPH0470931B2 (en) * 1983-07-18 1992-11-12 Asahi Kasei Kogyo Kk
JPH02255896A (en) * 1988-06-21 1990-10-16 Unilever Nv Purification of glyceride oil
JPH03215598A (en) * 1989-06-26 1991-09-20 Unilever Nv Method for purifying collected olive oil
JPH0551593A (en) * 1991-08-26 1993-03-02 Nisshin Oil Mills Ltd:The Production of edible oil

Also Published As

Publication number Publication date
JPS5950718B2 (en) 1984-12-10
CA1189087A (en) 1985-06-18
DE3244007A1 (en) 1983-06-01
DE3244007C2 (en) 1986-06-12

Similar Documents

Publication Publication Date Title
JPS58179297A (en) Vegetable oil treatment
JPS5893798A (en) Purification of vegetable oil with membrane
EP0037836B1 (en) Polyvinylidene fluoride resin hollow filament microfilter and process for producing same
JP5496901B2 (en) Use of porous hollow fiber membranes to produce clarified biopharmaceutical cultures
JP5431347B2 (en) Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
DE60125461T2 (en) Porous hollow fiber membranes and process for their preparation
US4780211A (en) Method of dewatering using PTFE membrane
WO2014030585A1 (en) Porous polyamide hollow fiber membrane having very small pore diameter, and method for producing same
WO2017155034A1 (en) Porous membrane, porous membrane module, porous membrane manufacturing method, manufacturing method for clarified liquids, and manufacturing method for beer
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
WO2015125852A1 (en) Hollow fiber membrane module for cleaning platelet suspension
JP2008284471A (en) Polymeric porous hollow fiber membrane
WO2015104871A1 (en) Porous hollow fiber membrane, method for producing same, and water purification method
JPS6219205A (en) Preparation of ultrafilter membrane
Miao et al. Production of polyethersulfone hollow fiber ultrafiltration membranes. I. Effects of water (internal coagulant) flow rate (WFR) and length of air gap (LAG)
GB1565113A (en) Semipermeable membranes and method for producing same
WO2020100763A1 (en) Filtration method in which porous membrane is used
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
WO1998058728A1 (en) Polyacrylonitrile-base hollow-fiber filtration membrane
JPS6227004A (en) Microporous membrane for filtration
KR20230079041A (en) Nanofiltration membrane and its manufacturing method
Ohya et al. Reverse osmosis characteristics of cellulose acetate butyrate membranes
JP5705445B2 (en) Method for producing purified collagen hydrolyzate
DE3882217T2 (en) Ultrafiltration membrane made of polyvinyl formal and process for its production.
JPH10263374A (en) Filter for filtering fermented drink