JPS6227004A - Microporous membrane for filtration - Google Patents

Microporous membrane for filtration

Info

Publication number
JPS6227004A
JPS6227004A JP16297485A JP16297485A JPS6227004A JP S6227004 A JPS6227004 A JP S6227004A JP 16297485 A JP16297485 A JP 16297485A JP 16297485 A JP16297485 A JP 16297485A JP S6227004 A JPS6227004 A JP S6227004A
Authority
JP
Japan
Prior art keywords
membrane
hydrophilic
water
hydrophobic
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16297485A
Other languages
Japanese (ja)
Inventor
Masahiko Fukuda
正彦 福田
Yoshinao Doi
土井 良直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP16297485A priority Critical patent/JPS6227004A/en
Publication of JPS6227004A publication Critical patent/JPS6227004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To easily obtain the titled water filtration membrane permeable to the air mixed in the water in the filter and having an efficient filtration performance by making a hydrophilic porous membrane with the water permeability improved by hydrophilic inorg. particles partly hydrophobic with alkaline treatment. CONSTITUTION:The hydrophobic resin 1 of a polyolefinic resin such as polyethylene, a fluororesin, etc., and alkali-soluble inorg. particles 2 of silica, etc., having 0.005-5mum mean primary particle diameter are used to form a hydrophilic microporous membrane contg. 10-70wt% hydrophilic inorg. particles 2 in the three-dimensional network structure and having 30-80% porosity, 0.01-10mum mean pore diameter and 10-2,000mum thickness. A part of the membrane is treated with an aq. alkaline soln. to dissolve and remove the hydrophilic inorg. particles 2 and convert the <=20% in area of the porous membrane into a hydrophobic structure. Then a filter is assembled. The formation of the partially hydrophobic membrane by an aq. alkaline soln. may be also performed after the module of the hydrophilic microus membrane is made.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は濾過用微多孔膜、殊に水用濾過膜に関したもの
で、親水性無機粒子により透水性を向上させた疎水性親
木化多孔膜を部分的に疎水性にする事により水中の空気
の除去を容易にさせ、効率良いが過性能を有する構造の
濾過膜に係るものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a microporous membrane for filtration, particularly a water filtration membrane, in which a hydrophobic lignophilized membrane with improved water permeability by hydrophilic inorganic particles is used. The present invention relates to a filtration membrane having a structure in which air in water can be easily removed by partially making the porous membrane hydrophobic, and it is efficient but has a filtering performance.

[従来の技術] 従来より種々の親水性濾過膜が提案されている0例えば
、疎水性樹脂からなる三次元網目構造内にアルカリ溶解
性である親水性無機粒子を保持させた微多孔膜が提案さ
れている。この微多孔膜は、ll1li水性樹脂を使用
しているにもかかわらず、親水性無機粒子により永久親
水化され、濾過初期圧が低く水が過が容易であることを
特徴とした濾過膜である。しかし、この親木化微多孔膜
は透水は容易であるが、水に混入した気泡が膜の微孔を
透過する際には水の表面張力により透過容易でなく、孔
径が小さくなるほど圧力を高くしなければ空気は透過し
なくなる事は言うまでもない。
[Prior Art] Various hydrophilic filtration membranes have been proposed in the past. For example, a microporous membrane in which alkali-soluble hydrophilic inorganic particles are retained within a three-dimensional network structure made of a hydrophobic resin has been proposed. has been done. Although this microporous membrane uses ll1li aqueous resin, it is permanently hydrophilized by hydrophilic inorganic particles, and is characterized by a low initial filtration pressure and easy water filtration. . However, although water permeates easily through this microporous membrane, it is difficult for air bubbles mixed in water to pass through the membrane's micropores due to the surface tension of the water, and the smaller the pore size, the higher the pressure. Needless to say, if you don't do this, the air won't be able to pass through.

この様な親木化微多孔膜を利用して水用濾過器を作製し
た場合、水中に混入した空気は多孔膜を透過しにくく、
特に家庭用水道圧の様な低圧では空気が多孔膜表面を覆
い水の透過を妨げる事となり、透水量が極端に減少する
事がある。
When a water filter is made using such a microporous wood-treated membrane, it is difficult for air mixed into the water to pass through the porous membrane.
Particularly at low pressures such as household water pressure, air covers the surface of the porous membrane and prevents water from permeating, resulting in an extremely reduced amount of water permeation.

この様な現象を防ぐため、従来は空気を抜くために、 (1)濾過器に機構上、空気抜きのバルブを付ける、 (2) !Ii水性の多孔膜を取付ける、等の方法がと
られている。
In order to prevent this kind of phenomenon, the conventional methods of removing air are: (1) mechanically attaching an air release valve to the filter; (2)! Methods such as attaching an aqueous porous membrane have been adopted.

しかしく1)の方法は濾過器に特別のバルブを取り付け
る必要があり構造上も特別の配慮が必要で経済性も悪い
。(2)の方法は疎水性の多孔膜により空気は抜ける事
を利用してはいるが、疎水性の多孔膜を別途用意し、親
水性膜とは別に濾過器に取付ける構造としなければなら
ず複雑な構造となり、しかも取付は部分に余分の空間が
必要となる為、か過器の利用容積が少なくなる。
However, method 1) requires a special valve to be attached to the filter, requires special consideration in terms of structure, and is not economical. Method (2) takes advantage of the fact that air escapes through a hydrophobic porous membrane, but the hydrophobic porous membrane must be prepared separately and attached to the filter separately from the hydrophilic membrane. The structure is complicated, and additional space is required for installation, which reduces the usable volume of the filter.

[発明が解決しようとする問題点] 本発明は、上記の問題点に鑑み簡単な濾過器構造により
経済的に且つ効率的に水の透水量を低下させる事が少な
く、空気抜きが得られる膜構造を持った水用濾過膜を提
供することを目的とするものである。
[Problems to be Solved by the Invention] In view of the above-mentioned problems, the present invention provides a membrane structure that economically and efficiently reduces the amount of water permeation and provides air removal through a simple filter structure. The purpose of this invention is to provide a water filtration membrane having the following properties.

[問題点を解決するための手段及び作用]本発明によれ
ば、ポリオレフィン系又はフッ素系樹脂からなる三次元
網目構造内に乎均一次粒子径0.005〜5戸讃のアル
カリ溶解性である親水性無機粒子を10〜70重量%保
持した多孔膜であって、その空隙率が30〜80%、平
均孔径0.01〜10ル騰、膜厚が10〜2000ル層
である膜をアルカリ処理により多孔膜面積の20%以下
の部分の親水性無機粒子を取り除き、部分的に疎水性構
造とした濾過用微多孔膜が提供される。
[Means and effects for solving the problems] According to the present invention, a three-dimensional network structure made of polyolefin or fluororesin has alkali solubility with a uniform primary particle size of 0.005 to 5 san. A porous membrane that retains 10 to 70% by weight of hydrophilic inorganic particles, has a porosity of 30 to 80%, an average pore diameter of 0.01 to 10 µl, and a film thickness of 10 to 2000 µl, is prepared using alkali. The treatment removes hydrophilic inorganic particles from a portion of 20% or less of the porous membrane area, thereby providing a microporous membrane for filtration that has a partially hydrophobic structure.

本発明の水用濾過膜は、本来微多孔膜を構成する樹脂が
疎水性であるが、空孔内に親水性無機粒子を含めている
ため見掛上親水性の多孔膜となり、水のが過が容易に行
なえる事となっている。
In the water filtration membrane of the present invention, the resin constituting the microporous membrane is originally hydrophobic, but since the pores contain hydrophilic inorganic particles, the porous membrane is apparently hydrophilic, and water is This makes it easy to do the same thing.

しかも親水性無機粒子がアルカリ性溶液によって可溶性
のもので部分的にアルカリによって取り除かれ、親水性
部と疎水性部が共存する微多孔膜である。
Moreover, the hydrophilic inorganic particles are soluble in an alkaline solution and are partially removed by the alkali, resulting in a microporous membrane in which a hydrophilic part and a hydrophobic part coexist.

本発明に使用される疎水性樹脂はポリエチレン、ポリプ
ロピレン、ポリブテン及びこれらの混合物、又はエチレ
ンプロピレン、ブテン、ヘキセンの二種以上の共重合物
2.ポリフッ化ビニリデン、オレフィン−四フッ化エチ
レンコーポリマー等、一般に疎水性樹脂と言われる樹脂
であり、水と長期に接触しても劣化が極めて少ない。
The hydrophobic resin used in the present invention is polyethylene, polypropylene, polybutene, a mixture thereof, or a copolymer of two or more of ethylene propylene, butene, and hexene.2. Polyvinylidene fluoride, olefin-tetrafluoroethylene copolymer, and other resins are generally referred to as hydrophobic resins, and they exhibit extremely little deterioration even when in long-term contact with water.

又、本発明に使用されるアルカリ溶解性である親水性無
機粒子はシリカ、酸化マグネシウム、アルミナ、硫酸バ
リウム等一般に水に不溶とされ、アルカリによって溶解
するものである。該粒子の大きさは5pm以下の直径を
有するものが良く、好ましくは0.2〜0.01 p、
 mの直径を持つものが良い。
Further, the alkali-soluble hydrophilic inorganic particles used in the present invention are generally insoluble in water, such as silica, magnesium oxide, alumina, barium sulfate, etc., but are dissolved by alkali. The size of the particles is preferably 5 pm or less in diameter, preferably 0.2 to 0.01 p,
A diameter of m is good.

本発明に於て濾過膜として用いる三次元網目構造を有す
る親木化微多孔膜は例えば次の様にして容易に得ること
が出来る。即ち、親水性無機粉体7〜42容量%、溶解
パラメーター(SP値)84〜99の有機液状可塑剤3
0〜75容量%、重量平均分子量300.000未満で
数平均分子量15000以上のポリオレフィン10〜6
0容量%を混合して溶融成形し、かかる成形物から有機
液状可塑剤を抽出する事によって容易に得られる。又、
その後少なくとも一方向に延伸しても得られる。
The lignophilized microporous membrane having a three-dimensional network structure used as a filtration membrane in the present invention can be easily obtained, for example, in the following manner. That is, 7 to 42 volume % of hydrophilic inorganic powder and organic liquid plasticizer 3 having a solubility parameter (SP value) of 84 to 99.
0 to 75% by volume, polyolefin 10 to 6 with a weight average molecular weight of less than 300.000 and a number average molecular weight of 15,000 or more
It can be easily obtained by mixing 0% by volume, melt-molding, and extracting the organic liquid plasticizer from the molded product. or,
It can also be obtained by subsequently stretching in at least one direction.

延伸の際の温度雰囲気は結晶性樹脂を使用した場合はガ
ラス転移点以上溶融点以下で、好ましくは100℃以上
から溶融点の5℃下までの温度範囲、非品性樹脂を使用
した場合はη°′ラス転移点以上分解点以下で、好まし
くは100℃以上分解温度の10℃下までの温度範囲で
ある。
When a crystalline resin is used, the temperature atmosphere during stretching is above the glass transition point and below the melting point, preferably in a temperature range of 100°C or above and 5°C below the melting point, and when a non-grade resin is used. The temperature range is from η°' to the decomposition point, preferably from 100°C to 10°C below the decomposition temperature.

延伸する時期は成膜直後に連続されて、前記の温度条件
内で行なっても良く、一度成膜された後に可塑剤を抽出
し、その後前記の温度条件内で行っても良い。配向させ
るための延伸倍率は1.2倍〜3倍が好ましい。
The stretching may be carried out immediately after film formation under the above-mentioned temperature conditions, or the plasticizer may be extracted once the film is formed and then the stretching may be carried out under the above-mentioned temperature conditions. The stretching ratio for orientation is preferably 1.2 times to 3 times.

親木化微多孔膜は平膜に限らず、中空糸の形状として作
ったものも有効である。
The parent wood microporous membrane is not limited to a flat membrane, but one made in the form of hollow fibers is also effective.

本発明の水用濾過膜は前記親木化微多孔膜を成膜後、一
部分をアルカリ水溶液によって処理する事により、親水
性無機粒子を容易に溶解させ取り除くことが出来、親木
化微多孔膜の全面積の20%以下好ましくは5%以下を
疎水性徴多孔膜とじ親水部分と疎水部分を共存させた事
を特徴としたもので、該処理を行った後濾過器として組
立てて効果を発揮するものである。
The water filtration membrane of the present invention can easily dissolve and remove hydrophilic inorganic particles by treating a portion of the lignophilized microporous membrane with an alkaline aqueous solution after forming the lignophilized microporous membrane. 20% or less of the total area of the membrane, preferably 5% or less, is made up of a hydrophobic porous membrane and has a hydrophilic part and a hydrophobic part coexisting, and after the treatment, it can be assembled as a filter to exhibit its effectiveness. It is something.

アルカリ水溶液処理により部分的疎水化は、濾過器に組
み立てた後に行う事も可能である。すなわち本発明に使
用する親木化微多孔平膜をプリーツ型、スパイラル型等
のモジュールに製作後、あるいは親木化微多孔中空糸膜
をモジュールに製作後、水中の空気の溜り易いモジュー
ル上部を一部アルカリ水溶液により処理し、親木化微多
孔膜の親水性無機粒子を溶解、除去する事によっても本
発明の構造の水用濾過膜を得ることができる。
Partial hydrophobization by alkaline aqueous solution treatment can also be performed after assembly into a filter. In other words, after fabricating the wood-based microporous flat membrane used in the present invention into pleated or spiral-type modules, or after fabricating the wood-based microporous hollow fiber membrane into modules, the upper part of the module, where air in water tends to accumulate, is removed. The water filtration membrane having the structure of the present invention can also be obtained by partially treating the membrane with an alkaline aqueous solution to dissolve and remove the hydrophilic inorganic particles of the lignified microporous membrane.

本発明の構造の水用濾過膜は、疎水性部分が水に濡れな
いため濾過器内の水に混入した空気はこの部分を透過し
て抜け、親木化微多孔膜の部分を空気が覆って有効が過
面積を減少させる事を防止できる。もちろん親水性微多
孔膜を水が透過し濾過を行うに必要とする圧力で疎水化
部分より水が不透でありその空孔が水濡れしない孔径の
条件を本発明に使用する親木化微多孔膜で設計する必要
がある。
In the water filtration membrane with the structure of the present invention, since the hydrophobic part does not get wet with water, the air mixed in the water in the filter passes through this part and escapes, and the air covers the part of the lignophilized microporous membrane. This effectively prevents the excess area from decreasing. Of course, the pore size conditions used in the present invention are such that the hydrophilic microporous membrane is impermeable to water and its pores do not get wet under the pressure required for water to permeate through the hydrophilic microporous membrane and perform filtration. It is necessary to design it with a porous membrane.

本発明の水用濾過膜を使用する事により、水が過、特に
ミクロン、サブミクキロンオーダーの孔径を持つ親水性
徴多孔膜として常に一般に問題となっている水中の気泡
により親水性徴多孔膜面が覆われ水通過面積が減少する
現象が無くなり、濾過膜と一体化された同素材の樹脂を
用いた空気抜きが可能となった。
By using the water filtration membrane of the present invention, the surface of the hydrophilic porous membrane is prevented by air bubbles in the water, which has always been a problem as a hydrophilic porous membrane with a pore size on the order of microns or submicrons. This eliminates the phenomenon of being covered and reducing the water passage area, making it possible to vent air using the same resin that is integrated with the filtration membrane.

従って構造上非常に簡便な方法となり、特別な空気抜き
用バルブの設置を行い、手動による操作を行って空気抜
きを時々行なわなくても常時空気抜きが可能となった。
Therefore, it is a very simple method in terms of structure, and it has become possible to constantly bleed air without having to install a special air bleed valve and manually operate the air bleed.

又、疎水性多孔膜を別に取り付は空気を取り除く方法も
提案されてはいるが、濾過膜とは一体化でなく疎水性多
孔膜を取り付ける部分が必要となり、組立構造的にも複
雑にならざるを得す濾過器の内部に余分なスペースが必
要となる。
In addition, a method has been proposed in which the hydrophobic porous membrane is attached separately to remove air, but it is not integrated with the filtration membrane and requires a part to attach the hydrophobic porous membrane, making the assembly structure complicated. Unavoidably, extra space is required inside the filter.

本発明の構造の濾過膜を使用する事により濾過効率が空
気の存在によって低下せず高効率が回部となり、その構
造が単純で組立コストが安く経済的でしかも特別の操作
を必要とせずに空気が抜け、非常に新規な水用濾過膜が
得られた。
By using the filtration membrane of the structure of the present invention, the filtration efficiency does not decrease due to the presence of air, and the filtration efficiency is high.The structure is simple, the assembly cost is low, and it is economical, and does not require special operations. The air was removed and a very novel water filtration membrane was obtained.

本発明の濾過膜の機能を図によって説明する。The functions of the filtration membrane of the present invention will be explained using figures.

親木化微多孔膜(疎水化処理を行っていない!I)を使
用してなる濾過装置の概略図は第1図の様で水中の微粒
子捕捉脂力や透水性能は非常に優れているが、親木化微
多孔膜が水により濡れた後、原水中に含まれて来る気泡
は膜を透過しにくく容器の上部に溜る。一般に微多孔膜
の微孔が水によって満たされた状態で空気を透過させる
場合、同一素材であれば孔径の大きさと空気にかかる圧
力は反比例の関係にあり、孔径が小さい程空気を透過さ
せる為の圧力は高くする事が必要である。
A schematic diagram of a filtration device using a wood-treated microporous membrane (without hydrophobic treatment! After the microporous membrane has been wetted with water, air bubbles contained in the raw water are difficult to pass through the membrane and accumulate at the top of the container. Generally, when the pores of a microporous membrane are filled with water and allow air to pass through, if the material is the same, the size of the pore diameter and the pressure applied to the air are inversely proportional, and the smaller the pore diameter, the more air passes through. It is necessary to increase the pressure.

通常液体により微孔を満した状態で空気が微孔を透過す
る時の関係式はD=30γP刊で表わされる。但し、D
:孔径(gm)、γ:液体表面張力(dynew−’ 
) 、 P :圧力(mmHg) 。
Normally, the relational expression when air passes through the micropores with the micropores filled with liquid is expressed by D=30γP. However, D
: Pore diameter (gm), γ: Liquid surface tension (dyne-'
), P: Pressure (mmHg).

従って第1図の様に濾過膜を介在した濾過器に空気が外
筒側にある場合で濾過膜が親水性で微孔を水が満してい
る様な場合、濾過膜を透過させて空気を排出させようと
すると、前記計算式により概算すると孔径0.2μ層の
時15kg/cm2の圧力を加えないと空気は透過しな
い事となり、非常に高圧を必要とすることがわかり、現
に水により測定するとその近似データが得られている。
Therefore, as shown in Figure 1, when air is on the outer cylinder side of a filter with a filtration membrane in between, and the filtration membrane is hydrophilic and water fills the pores, the air passes through the filtration membrane. When trying to discharge water, it is estimated using the above formula that when the pore size is 0.2μ, air will not pass through the layer unless a pressure of 15kg/cm2 is applied, and it turns out that extremely high pressure is required. When measured, approximate data is obtained.

しかし微孔中に水を満されていない時は空気は微孔を通
して圧力の低い方向に容易に流れる。従って、この作用
を利用し、親水性徴多孔膜の一部を疎水性とする事によ
り木が低圧力で微孔内に浸入しない様な部分を作り、親
水性と疎水性とを共存させた本発明の濾過膜を作成した
However, when the pores are not filled with water, air easily flows through the pores in the direction of lower pressure. Therefore, by making use of this effect and making a part of the hydrophilic porous membrane hydrophobic, we created a part that prevents wood from penetrating into the micropores under low pressure, and this book allows both hydrophilic and hydrophobic properties to coexist. A filtration membrane of the invention was created.

このが過膜を使用したが過装置は第2図の様になり、上
部に作成した疎水部分は全く水を含まない為上部に集合
した気泡は水圧によりこの部分を透過し、外部へ流出す
る。この疎水性部分は濾過膜の上部に設ける事が最も効
率が良く、又第3図の如く濾過膜の全周でなく一部でも
効果がある。
This uses a filter membrane, but the filter device looks like Figure 2.The hydrophobic part created at the top does not contain any water, so the air bubbles that collect at the top permeate through this part due to water pressure and flow out to the outside. . It is most efficient to provide this hydrophobic portion on the upper part of the filtration membrane, and it is effective even if it is not provided all around the filtration membrane but only partially as shown in FIG.

水は他の親木部分を透過して濾過される事となる。従っ
てこの疎水部分の面積を大きくすると親水性の部分が少
なくなり濾過効率が落ちるので少なくとも全面積の20
%以下とする事が望ましい。
The water will pass through other parts of the parent tree and be filtered. Therefore, if the area of this hydrophobic part is increased, the hydrophilic part decreases and the filtration efficiency decreases, so at least 20% of the total area
It is desirable to keep it below %.

第4図は第2図の疎水性部分と親水性部分を拡大したも
ので疎水性部分は空気を親水性部分は水を通す機構を図
示したものである。
FIG. 4 is an enlarged view of the hydrophobic portion and hydrophilic portion of FIG. 2, and illustrates the mechanism through which air passes through the hydrophobic portion and water through the hydrophilic portion.

本発明の構造を持った濾過膜はアルカリ可溶の親水性無
機粒子をアルカリ水溶液によって溶解させる事により疎
水性樹脂のみによって構成された疎水性徴多孔膜となり
第5図の如き構造の疎水性、親水性が共存する濾過膜と
なる。
The filtration membrane having the structure of the present invention becomes a hydrophobic porous membrane composed only of hydrophobic resin by dissolving alkali-soluble hydrophilic inorganic particles in an alkaline aqueous solution, and becomes a hydrophobic and hydrophilic membrane with a structure as shown in Fig. 5. It becomes a filtration membrane with both properties.

疎水性・親水性の部分が一部に集中する必要はなく分散
されて数ケ所以上に分かれても良い。
The hydrophobic/hydrophilic portions do not need to be concentrated in one part, and may be dispersed and divided into several locations.

本発明に使用する親水化微多孔膜は一軸又は二軸方向に
延伸した微多孔膜を用いる事も可能である。
As the hydrophilized microporous membrane used in the present invention, it is also possible to use a microporous membrane stretched uniaxially or biaxially.

[実施例] 次に実施例を挙げて本発明を更に詳しく説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

実施例1 疎水性樹脂としてポリエチレン55重量部、親水性無機
粒子として平均粒子径0.1 g層のシリカ45重量部
を使用してなる三次元網目構造の多孔膜を使用してプリ
ーツ型モジュールを2未組立て、一本のモジュール上部
の多孔膜の一部に苛性ソーダ50%水溶液を塗布し、水
洗してシリカを溶出された後モジュールを乾燥して本発
明の濾過膜を得た(試料l)、残りの苛性ソーダ処理を
行なわないモジュール(比較試料1)と透水性について
テストした。テストはUFp過水を水槽中に入れ散気管
にて気泡を入れポンプにて通水した。その結果を第6図
に示す、試料lは時間が経過しても、透水量に変化はな
く濾過膜が経時変化少なく正常に作用している事を示し
ているが、比較試料lは経時的に透水量が低下しか過有
効面積が減少して行くものと考えられ、濾過器を止めて
モジュールを検査した所、空気が充満している事が確か
められた。
Example 1 A pleated module was fabricated using a porous membrane with a three-dimensional network structure made of 55 parts by weight of polyethylene as a hydrophobic resin and 45 parts by weight of silica with an average particle diameter of 0.1 g as a hydrophilic inorganic particle. 2. A 50% aqueous solution of caustic soda was applied to a part of the porous membrane on the top of one unassembled module, and after washing with water to elute the silica, the module was dried to obtain the filtration membrane of the present invention (Sample 1). The remaining module without caustic soda treatment (Comparative Sample 1) was tested for water permeability. In the test, UFp superhydrant was placed in a water tank, air bubbles were added through an aeration tube, and water was passed through using a pump. The results are shown in Figure 6.Sample 1 shows no change in water permeability over time, indicating that the filtration membrane is functioning normally with little change over time, but comparative sample 1 shows no change over time. It is thought that the water permeation rate decreases and the effective area decreases, and when the filter was stopped and the module was inspected, it was confirmed that it was filled with air.

実施例2 疎水性樹脂としてポリエチレン55重量部親水性無機粒
子として平均粒子径0.1 p厘のシリカ45重量部を
使用してなる三次元網目構造の中空糸多孔膜を紡出冷却
後書た本発明に使用する濾過膜を総状にして巻き取り一
部を苛性ソーダ水溶液50%に浸漬した後、直ぐに流水
にてアルカリ分を洗い落し、乾燥後モジュールに組立て
(試料2)た、別に同じヂ過膜を苛性ソーダ処理をせず
モジュールに組立て(比較試料2)テストを行った。テ
ストはOF水を水槽に入れカーボン粒子を懸濁させて散
気管にて気泡を入れた水をポンプにて各々のモジュール
に透水した。その結果を第7図に示す。
Example 2 A hollow fiber porous membrane with a three-dimensional network structure was prepared by using 55 parts by weight of polyethylene as a hydrophobic resin and 45 parts by weight of silica with an average particle diameter of 0.1 p as a hydrophilic inorganic particle after spinning and cooling. The filtration membrane used in the present invention was rolled up into a whole shape, a portion was immersed in a 50% caustic soda aqueous solution, the alkali content was immediately washed off with running water, and after drying, it was assembled into a module (sample 2). The membrane was assembled into a module without caustic soda treatment (comparative sample 2) and tested. In the test, OF water was placed in a water tank, carbon particles were suspended in it, and air bubbles were added to the water using an aeration pipe, and the water was permeated through each module using a pump. The results are shown in FIG.

試料2は透水量が増すと共に原水側圧力は増加するが、
原水中のカーボンにより濾過膜が目詰りし透水量が減少
し通常予想されるが過特性が出ている。しかし比較試料
2は透水量の増加と共に圧力が異常に高まり透過特性が
極端に落ちる。これは濾過膜の微孔がカーボンにより詰
まって透水量が減少するのみではなく空気溜りができて
濾過面精が減少する作用も含まれていると考えられる。
In sample 2, the pressure on the raw water side increases as the water permeability increases, but
The carbon in the raw water clogs the filtration membrane, reducing the amount of water permeation, resulting in overflow characteristics, which is normally expected. However, in Comparative Sample 2, as the water permeation rate increases, the pressure increases abnormally and the permeation characteristics drop extremely. This is thought to be due to the fact that not only the micropores of the filtration membrane are clogged with carbon, reducing the water permeation rate, but also air pockets are created, which reduces the filtration quality.

モジュールを分解して調べて見ると試料1は濾過膜であ
る中空糸の疎水性以外の部分が全面的に灰色に汚れ親水
化部は総て透水している事を表わしており空気の溜りも
全く無かった。しかし比較試料2はモジュール内に空気
が溜り、しかも中空糸は空気の溜った所はほとんどカー
ボンが付着しておらず親木化の部分も透水していない事
が明確であった。
When we disassembled the module and examined it, we found that in sample 1, the non-hydrophobic parts of the hollow fibers that are the filtration membrane were completely gray, indicating that all the hydrophilic parts were permeable to water, and there were also air pockets. There was none at all. However, in Comparative Sample 2, air was trapped inside the module, and it was clear that almost no carbon was attached to the hollow fibers in the areas where air was trapped, and water did not permeate through the hollow fibers.

[発明の効果] 本発明のび適用微多孔膜は、親水性無機粒子により透水
性を向上させた親木化多孔膜を部分的に疎水性にしであ
るために、親水性の部分で透水性を確保するとともに、
疎水性の部分で水中の空気の除去を行わしめることがで
き、低圧で効率よくか過を行うことができる。
[Effects of the Invention] The stretchable microporous membrane of the present invention is a lignophilized porous membrane whose water permeability has been improved by hydrophilic inorganic particles, which is partially made hydrophobic. In addition to ensuring that
Hydrophobic parts can remove air from the water, allowing efficient filtration at low pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は親木化微多孔膜(疎水化処理を行っていない膜
)を使用した濾過装置の概略説明図、第2図は本発明に
係る部分的に疎水性構造とした濾過用微多孔膜を使用し
た濾過装置の概略説明図、第3図は第2図のx−x断面
図、第4図は第2図のAの部分の拡大図、第5図は第2
図の装置に使用した膜の疎水性部分と親水性部分を拡大
したもので、疎水性部分は空気を、親水性部分は水を通
す機構を図示した概略説明図、第6図は実施例1におけ
る試験結果のグラフ、第7図は実施例2における試験結
果のグラフである。
Figure 1 is a schematic explanatory diagram of a filtration device using a wood-treated microporous membrane (a membrane that has not been subjected to hydrophobization treatment), and Figure 2 is a microporous filtration device with a partially hydrophobic structure according to the present invention. A schematic explanatory diagram of a filtration device using a membrane, FIG. 3 is a sectional view taken along the line xx in FIG. 2, FIG. 4 is an enlarged view of part A in FIG. 2, and FIG.
This is an enlarged view of the hydrophobic and hydrophilic parts of the membrane used in the device shown in the figure, and is a schematic explanatory diagram illustrating the mechanism in which the hydrophobic part allows air to pass through and the hydrophilic part allows water to pass through. Figure 6 is Example 1 FIG. 7 is a graph of the test results in Example 2.

Claims (1)

【特許請求の範囲】[Claims] ポリオレフィン系又はフッ素系樹脂からなる三次元網目
構造内に平均一次粒子径0.005〜5μmのアルカリ
溶解性である親水性無機粒子を10〜70重量%保持し
た多孔膜であって、その空隙率が30〜80%、平均孔
径0.01〜10μm、膜厚が10〜2000μmであ
る膜をアルカリ処理により多孔膜面積の20%以下の部
分の親水性無機粒子を取り除き、部分的に疎水性構造と
したろ過用微多孔膜。
A porous membrane containing 10 to 70% by weight of alkali-soluble hydrophilic inorganic particles with an average primary particle diameter of 0.005 to 5 μm in a three-dimensional network structure made of polyolefin or fluororesin, the porosity of which is A membrane with an average pore size of 0.01 to 10 μm and a thickness of 10 to 2000 μm is treated with an alkali to remove hydrophilic inorganic particles in an area of 20% or less of the porous membrane area, resulting in a partially hydrophobic structure. Microporous membrane for filtration.
JP16297485A 1985-07-25 1985-07-25 Microporous membrane for filtration Pending JPS6227004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16297485A JPS6227004A (en) 1985-07-25 1985-07-25 Microporous membrane for filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16297485A JPS6227004A (en) 1985-07-25 1985-07-25 Microporous membrane for filtration

Publications (1)

Publication Number Publication Date
JPS6227004A true JPS6227004A (en) 1987-02-05

Family

ID=15764818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16297485A Pending JPS6227004A (en) 1985-07-25 1985-07-25 Microporous membrane for filtration

Country Status (1)

Country Link
JP (1) JPS6227004A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753468A1 (en) * 1995-04-28 1997-01-15 Heineken Technical Services B.V. Beverage container with means for frothing the beverage and method of frothing the beverage
WO1998044348A1 (en) * 1997-04-02 1998-10-08 The Perkin-Elmer Corporation Detection of low level hydrophobic analytes in environmental samples
WO2000058437A1 (en) * 1999-03-31 2000-10-05 Gore Enterprise Holdings, Inc. Respiratory aids
JP2008036635A (en) * 2001-03-06 2008-02-21 Asahi Kasei Chemicals Corp Method of manufacturing hollow fiber membrane
US9255744B2 (en) 2009-05-18 2016-02-09 Dpoint Technologies Inc. Coated membranes for enthalpy exchange and other applications
CN110316872A (en) * 2019-07-18 2019-10-11 贵州财经大学 A kind of hydroxyapatite defluoridation filter material device and its technique
JPWO2022259834A1 (en) * 2021-06-09 2022-12-15

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753468A1 (en) * 1995-04-28 1997-01-15 Heineken Technical Services B.V. Beverage container with means for frothing the beverage and method of frothing the beverage
US6306491B1 (en) 1996-12-20 2001-10-23 Gore Enterprise Holdings, Inc. Respiratory aids
WO1998044348A1 (en) * 1997-04-02 1998-10-08 The Perkin-Elmer Corporation Detection of low level hydrophobic analytes in environmental samples
WO2000058437A1 (en) * 1999-03-31 2000-10-05 Gore Enterprise Holdings, Inc. Respiratory aids
JP2008036635A (en) * 2001-03-06 2008-02-21 Asahi Kasei Chemicals Corp Method of manufacturing hollow fiber membrane
US9255744B2 (en) 2009-05-18 2016-02-09 Dpoint Technologies Inc. Coated membranes for enthalpy exchange and other applications
CN110316872A (en) * 2019-07-18 2019-10-11 贵州财经大学 A kind of hydroxyapatite defluoridation filter material device and its technique
JPWO2022259834A1 (en) * 2021-06-09 2022-12-15

Similar Documents

Publication Publication Date Title
EP0037836B1 (en) Polyvinylidene fluoride resin hollow filament microfilter and process for producing same
DE60125461T2 (en) Porous hollow fiber membranes and process for their preparation
JP4172819B2 (en) Hollow fiber membrane
US4547289A (en) Filtration apparatus using hollow fiber membrane
US6540915B2 (en) Antimicrobial semi-permeable membranes
JP7157790B2 (en) Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid and method for producing beer
CN115487695A (en) Asymmetric PES (polyether sulfone) filter membrane for virus removal and preparation method thereof
JP5798680B2 (en) Pressurized hollow fiber membrane module
JP6694326B2 (en) Composite membrane
KR20110089254A (en) Composite semipermeable membrane and manufacturing method therefor
WO2002102500A1 (en) Membrane polymer compositions
JPS6227004A (en) Microporous membrane for filtration
JPS5893798A (en) Purification of vegetable oil with membrane
JP6374291B2 (en) Hollow fiber membrane module
JP3255385B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
GB2145938A (en) Hollow fibers for use in dialysis and artificial kidney
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
CN107715697A (en) A kind of hollow fiber film assembly being used in membrane chemical reactor
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
DE60037262T2 (en) Device and membrane for the removal of viruses
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method
JP2002079066A (en) Hollow fiber membrane and its production method
KR102508296B1 (en) A water treatment device using a precision filtration film of a highly permeable hydrophilic cellulose