JPS5893338A - Evaluating method for quality of silicon single crystal wafer - Google Patents

Evaluating method for quality of silicon single crystal wafer

Info

Publication number
JPS5893338A
JPS5893338A JP19469681A JP19469681A JPS5893338A JP S5893338 A JPS5893338 A JP S5893338A JP 19469681 A JP19469681 A JP 19469681A JP 19469681 A JP19469681 A JP 19469681A JP S5893338 A JPS5893338 A JP S5893338A
Authority
JP
Japan
Prior art keywords
wafer
single crystal
ray diffraction
heat treatment
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19469681A
Other languages
Japanese (ja)
Inventor
Susumu Kato
進 加藤
Keiji Yamauchi
山内 敬次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19469681A priority Critical patent/JPS5893338A/en
Publication of JPS5893338A publication Critical patent/JPS5893338A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To detect and evaluate the state of the generation of the heat-treatment induced defect of a Si single crystal wafer in a nondestructive manner by preparing the X-ray diffraction image of the silicon wafer annealed through an X-ray diffraction topography. CONSTITUTION:A thermal oxide film is formed to the main surface section of the Si wafer, which uses a (100) crystal face or a (111) crystal face as a main surface, through thermal oxidation treatment. The Si wafer to which the thermal oxide film is shaped is annealed in a nitrogen atmosphere. The X-ray diffraction image is prepared through the X-ray diffraction topography employing the characteristic X-rays of molybdenum in the (220) crystal face of the Si wafer.

Description

【発明の詳細な説明】 この発明はシリコン(Si′)I#結晶ウつ−/’i 
(以下「’ Siウェーハ」と略称する)の品質を評価
する方法に関するものである。
[Detailed Description of the Invention] This invention is a silicon (Si') I# crystal utsu-/'i
(hereinafter abbreviated as "Si wafer").

通常、大規模半導体集積回路装d(LSI)などの半導
体装置の基板には、カーボンヒータで加熱された石英る
つは内に81多結晶を溶融させた81融液中に種結晶を
ひたし回転させながら引上げて、この種結晶と同じ方位
の81単結晶を成長させるいわゆるチョクラルスキー(
OzOchralski)法(以下「C2法」と呼ぶ)
による81単結晶から作−成されたSiウェーハが用い
られている。このC2法によるS1単結晶の内部には、
この81単結晶の成長過程中において多量の酸素および
炭素がそれぞれ石英るつほおよびカーボンヒータから出
るノテ、1×10〜2×10 原子/am 程度の酸素
および1×10〜l X 10  原子/ am 程度
の炭素が含まれている。
Usually, for substrates of semiconductor devices such as large-scale semiconductor integrated circuits (LSIs), a seed crystal is immersed in a 81 melt made by melting 81 polycrystals in a quartz melt heated with a carbon heater and rotated. The so-called Czochralski (
(OzOchralski) method (hereinafter referred to as “C2 method”)
A Si wafer made from a 81 single crystal according to the authors is used. Inside the S1 single crystal produced by this C2 method,
During the growth process of this 81 single crystal, a large amount of oxygen and carbon are released from the quartz heater and the carbon heater, respectively. Contains about am carbon.

このように、酸素および炭素が含まれたS1単結晶から
作成されたSiウェーハを用いて半導体装置を製造する
場合には、熱酸化、不純物拡散などの熱処理工程におい
て、S1ウエーハ中に含まれている酸素や炭素を核とし
た積層欠陥などの結晶欠陥が誘起されたり、酸素や炭素
の析出物が形成されたシ、更には炭素が酸素を核とする
結晶欠陥の発生を増長させたりする。このような酸素や
炭素を核とする結晶欠陥および酸素や炭素の析出物を「
熱処理誘起欠陥」と呼ぶととkする。
In this way, when manufacturing a semiconductor device using a Si wafer made from an S1 single crystal containing oxygen and carbon, in the heat treatment process such as thermal oxidation and impurity diffusion, the S1 wafer contains Crystal defects such as stacking faults with oxygen and carbon as the core are induced, oxygen and carbon precipitates are formed, and carbon increases the occurrence of crystal defects with oxygen as the core. These crystal defects with oxygen and carbon as the core and oxygen and carbon precipitates are
This is called a heat treatment-induced defect.

この熱処理誘起欠陥がB1ウェーハの半導体装置の活性
領域が形成される主面部に形成されると、この熱処理誘
起欠陥によって半導体装置の電気的′特性が著しく低下
する。このために、従来、81ウエーハの品質を評価す
る手段として、Siウェーハ中の型巣や炭素の含有量を
赤外線の吸収によヴて測定する方法と、B1ウェーハの
主面部に1.000〜15.0OOA程度の厚さの熱酸
化膜を形成したのち、この熱酸化膜をジルトル(81r
tl)エツチング液まfc Lti セ:7 (Sec
co)エツチング液を用いてエツチング除去してSiウ
ェーハの主面部を露出させ、この露出させられたSiウ
ェーハの主面部についての熱処理誘起欠陥の発生状態の
観察ととの熱処理誘起欠陥による転位ピットの計数とを
行ういわゆるO8法とが用いられている。ところで、8
1ウエーハ中の酸素や炭素の含有量を゛測定する方法で
は、とのwR:I#や炭素の含有量と熱処理誘起欠陥の
発生との関連が現状においては十分に解明されていない
めで、この酸素や炭素の含有量の測定値と熱処理誘起欠
陥の発生とを1対1に対応させることができない。また
08法では、この方法が8ユウエーハの半導体装置の活
性領域が形成される主面部における熱処理誘起欠陥の発
生状態を観察するものであるから、81ウエーハの内部
における熱処理誘起欠陥の発生状態を全く検出評価する
ことができない。しかし、この81ウエーハの内部にお
ける熱処理誘起欠陥の発生状態を検出評価することは、
最近注目されている、Siウェーハの内部に発生した′
熱処理誘起欠陥による歪場がこのB1ウェーハの主面部
に発生する熱処理誘起欠陥を吸収するいわゆるイントリ
ンシックゲッタ(Intrinsic Getter)
効果を有効に活用するためには、不可欠である。
When this heat treatment-induced defect is formed on the main surface of the B1 wafer where the active region of the semiconductor device is formed, the heat treatment-induced defect significantly deteriorates the electrical characteristics of the semiconductor device. To this end, conventional methods for evaluating the quality of 81 wafers include a method of measuring the mold cavity and carbon content in the Si wafer by absorption of infrared rays; After forming a thermal oxide film with a thickness of about 15.0OOA, this thermal oxide film was
tl) Etching liquid fc Lti Sec: 7 (Sec
co) Etching away using an etching solution to expose the main surface of the Si wafer, and observing the state of occurrence of heat treatment-induced defects on the exposed main surface of the Si wafer, and determining the formation of dislocation pits due to heat treatment-induced defects. The so-called O8 method, which performs counting, is used. By the way, 8
This is because the relationship between wR:I# and carbon content and the occurrence of heat treatment-induced defects is not fully clarified by the method of measuring the content of oxygen and carbon in a wafer. It is not possible to make a one-to-one correspondence between the measured values of oxygen and carbon content and the occurrence of heat treatment-induced defects. In addition, in the 08 method, since this method observes the occurrence of heat treatment-induced defects in the main surface where the active region of the semiconductor device of the 81 wafer is formed, the occurrence of heat treatment-induced defects inside the 81 wafer cannot be observed at all. Unable to detect and evaluate. However, it is difficult to detect and evaluate the occurrence of heat treatment-induced defects inside the 81 wafer.
'
A so-called intrinsic getter in which the strain field due to heat treatment-induced defects absorbs the heat treatment-induced defects generated on the main surface of the B1 wafer.
This is essential to effectively utilize the effects.

このようなS1ウエーハの熱処理誘起欠陥の発生には、
このSiウェーハが作成され九81単結晶中の酸素や炭
素の含有量、この日1単結晶の結晶成長中に受けた熱履
歴などの81単結晶特性と、この81ウエーハが半導体
::・・装置の製造工程中に受ける熱処理温度、熱処理
時間、熱処理(ロ)数などの製造条件とが関与している
ので、このB1ウェーハの熱感4vs起欠陥の発生状態
を検出評価して半導体装置の製造栄件の最適化を図るた
めには、従来、OS法によΣ破壊検査を繰返し行う数多
くの実験が必費となり、半導体装置の製造ラインにおい
てS1ウエーハの熱処理誘起欠陥の発生状態を非破壊的
に検出評価することが不可能であった。
For the occurrence of such heat treatment-induced defects in S1 wafers,
This Si wafer was created and the 81 single crystal properties such as the content of oxygen and carbon in the single crystal, the thermal history received during the crystal growth of the 1 single crystal on this day, and the 81 wafer is a semiconductor. Since the manufacturing conditions such as the heat treatment temperature, heat treatment time, and number of heat treatments (b) during the device manufacturing process are involved, the thermal sensation 4 vs. defect occurrence state of this B1 wafer is detected and evaluated to determine the quality of the semiconductor device. Conventionally, in order to optimize manufacturing efficiency, it has been necessary to conduct numerous experiments by repeatedly conducting Σ-destructive inspection using the OS method. It was impossible to detect and evaluate the

この発明は、上述の点に鑑みてなされたも゛ので、S1
ウエーハの主面部に熱酸化膜を形成し、との熱酸化膜が
形成されたS1ウエーハをアニールしたのち、このSi
ウェーハのX線回折トポグラフィによるxi回折像を作
成し、このX線回折像によってこのS1ウエーハの熱処
理誘起欠陥の発生状態を非破壊的に検出評価する新規な
方法を提供することを目的とする。
This invention was made in view of the above points, so S1
After forming a thermal oxide film on the main surface of the wafer and annealing the S1 wafer on which the thermal oxide film was formed, this Si
The present invention aims to provide a novel method for non-destructively detecting and evaluating the state of occurrence of heat treatment-induced defects in this S1 wafer by creating an xi diffraction image based on X-ray diffraction topography of the wafer and using this X-ray diffraction image.

以下、バイポーラ形の半導体集積回路装置(IC)を製
造する場合におけるこの発明の一実施例+QSiウェー
ハの品質評価方法について説明する。
Hereinafter, a method for evaluating the quality of a QSi wafer according to an embodiment of the present invention in the case of manufacturing a bipolar semiconductor integrated circuit device (IC) will be described.

この実施例の方法では、まず、バイポーラ形のICの製
造過程における埋込み不純物拡散層を形成する工程終了
までの各工程に対応する熱処理工程として、950〜1
150℃の温度で10〜20時間の熱酸化処理によって
(100)結晶面または(ill)結晶面を主面にする
S1ウエーハの主面部に熱酸化膜を形成する第1の工程
と、この熱酸化膜が形成された81ウエーハを、窒素雰
囲気中において950〜1280℃の温度で5〜lO時
間アニールする第2の工程とを設定し、これらの第1お
よび第2の工程を終了したS1ウエーハの(2go)結
晶面におけるモリブデン(Mo)の特性X線を用いたX
線回折トポグラフィによるX線回折像を作成する。この
とき作成されたX線回折像は、この81ウエーハの(2
20)結晶面で形成されたものであるから、この81ク
エーハの内部における熱処理誘起欠陥の発生状態を示す
In the method of this embodiment, first, a heat treatment step of 950 to 1
A first step of forming a thermal oxide film on the main surface of the S1 wafer with the (100) crystal plane or the (ill) crystal plane as the main surface by thermal oxidation treatment at a temperature of 150°C for 10 to 20 hours; A second step was performed in which the 81 wafer on which the oxide film was formed was annealed at a temperature of 950 to 1280° C. for 5 to 10 hours in a nitrogen atmosphere, and the S1 wafer was subjected to the first and second steps. X using characteristic X-rays of molybdenum (Mo) on the (2go) crystal plane of
Create an X-ray diffraction image using line diffraction topography. The X-ray diffraction image created at this time was (2
20) Since it is formed on a crystal plane, the state of occurrence of heat treatment-induced defects inside this 81-quafer is shown.

第1図(a)に81ウエーハのX線回折像を示すように
、81ウエーハの全面に熱処理誘起欠陥の発生が観察さ
れる場合には、第1図(′b)に08法によってエツチ
ングされた上記81クエーへの主面部の光学写真を示す
ように1この81ウエーハの主面部に熱処理誘起欠陥の
発生が全く観察されない。
As shown in the X-ray diffraction image of wafer 81 in Fig. 1(a), when heat treatment-induced defects are observed on the entire surface of wafer 81, Fig. 1('b) shows the X-ray diffraction image of wafer 81. As shown in the optical photograph of the main surface of the 81 wafer, no heat treatment-induced defects were observed on the main surface of the 81 wafer.

また、これとは逆に、第2図(a)にX線回折像を示す
ように、Siウェーハ・の全面に熱処理誘起欠陥の発生
が観察されない場合には、第2図(b)に光学写真を示
すように、このS1ウエーハの主面部に熱処理誘起欠陥
の発生が顕著に観察される。また、第3図(a)にX線
回折像を示すように、Siウェーハの周縁部のみに熱処
理誘起欠陥の発生が観察される場合には、第3図(b)
に光学写真を示すように、このS1ウエーハの主面部の
周縁部以外の中央部に熱処理誘起欠陥の発生が観察され
る。以上のことから、Siウェーハの内部に発生した熱
処理誘起欠陥による歪場がこの日1ウエーノ・の主面部
に発生する熱処理誘起欠陥を吸収することが容易に理解
される。
Conversely, if no heat treatment-induced defects are observed on the entire surface of the Si wafer, as shown in the X-ray diffraction image in Figure 2(a), the optical As shown in the photograph, heat treatment-induced defects are clearly observed on the main surface of this S1 wafer. In addition, as shown in the X-ray diffraction image in FIG. 3(a), when heat treatment-induced defects are observed only at the peripheral edge of the Si wafer, the X-ray diffraction image shown in FIG. 3(b)
As shown in the optical photograph, heat treatment-induced defects are observed in the central portion of the main surface of this S1 wafer other than the peripheral portion. From the above, it is easily understood that the strain field due to the heat treatment-induced defects generated inside the Si wafer absorbs the heat treatment-induced defects generated on the main surface of the silicon wafer.

次に、CZ法で引上げられた81単結晶の種結晶側の頭
部の酸素濃度(1,8X 1018fi子/am3)と
81融准側の尾部の酸素濃度(1,5X 1018原子
/am3)とが、−赤外線吸収法による測定では同一で
あるとみなされる第1および第2の81単結晶のそれぞ
れの頭部、中央部および尾部から作成されたS1ウエー
ハの品質を評価する仁の発明の他の実施例を第4図(a
)および(b)について説明する。
Next, the oxygen concentration at the head on the seed crystal side of the 81 single crystal pulled by the CZ method (1,8X 1018 fi atoms/am3) and the oxygen concentration at the tail on the 81 fusion side (1,5X 1018 atoms/am3) - Assessing the quality of S1 wafers made from the head, center and tail of each of the first and second 81 single crystals, which are considered to be identical when measured by infrared absorption. Another example is shown in Figure 4 (a
) and (b) will be explained.

この実施例の方法においても、上記第1および第2の8
1単結晶のそれぞれの頭部、中央部および尾部から作成
され(100)結晶面または(1XX)結晶面を主面に
する81ウエーハの、上述の第1および第2の工程終了
後に、これらの81ウエーハの(220)結晶面におけ
る、MOの特性X線を用いたX線回折トポグラフィによ
るX線回折像を作成する。
In the method of this embodiment as well, the first and second 8
After completing the above-mentioned first and second steps of 81 wafers made from the head, center and tail of each single crystal and having the (100) crystal plane or (1XX) crystal plane as the main surface, these An X-ray diffraction image is created by X-ray diffraction topography using MO characteristic X-rays on the (220) crystal plane of the 81 wafer.

第4図(ay−は1@1081単結晶の頭部(イ)、中
央部(ロ)および尾部←うからそれぞれ作成された81
ウエーハのX線回折像を示す。
Figure 4 (ay- is 81 created from the head (a), center (b), and tail of the 1@1081 single crystal, respectively.
An X-ray diffraction image of the wafer is shown.

第4図(a)に示すように、第1の81単結晶の頭部(
イ)、中央部(ロ)および尾部←→がらそれぞれ作成さ
れたSiウェーハの全面に熱処理誘起欠陥の発生が観測
されず、第1の81単結晶の頭部から尾部に至るまで同
一品質でiることがわかる。
As shown in FIG. 4(a), the head of the first 81 single crystal (
No heat treatment-induced defects were observed on the entire surface of the Si wafers prepared from a), center (b), and tail ←→, and the quality was the same from the head to the tail of the first 81 single crystal. I understand that.

第4図(b)は#I2の81単結晶の頭部(イ)、中央
部(ロ)および尾部(ハ)からそれぞれ作成されたS1
ウエーハのX線回折像を示す。
Figure 4(b) shows S1 made from the head (a), center (b) and tail (c) of #I2 81 single crystal.
An X-ray diffraction image of the wafer is shown.

第4図(b)に示すように、第2の81単結晶の頭部(
イ)および尾部(ハ)から作成されたS1ウエーハの全
面に熱処理誘起欠陥の発生が観測されるが、中央部(ロ
)から作成されたS1ウエーハの全面に熱処理誘起欠陥
の発生が観測されない。これによって、M2の81単結
晶の頭部(イ)お+び尾部If1の結晶方位と中央部(
ロ)の結晶方位とが異なることがわかる。
As shown in Figure 4(b), the head of the second 81 single crystal (
The occurrence of heat treatment-induced defects is observed on the entire surface of the S1 wafer created from the central region (b) and the center region (b), but no heat treatment-induced defects are observed on the entire surface of the S1 wafer created from the center region (b). As a result, the crystal orientation of the head (a) and tail part If1 of the 81 single crystal of M2 and the central part (
It can be seen that the crystal orientation of (b) is different.

以上のように、上記各実施例で、は、81ウエーハの熱
処理誘起欠陥の発生状態を非破壊的に検出評価すること
が可能となり、バイポーラ形のICの製造ラインにおい
て行うことができる。
As described above, in each of the above embodiments, it is possible to non-destructively detect and evaluate the state of occurrence of heat treatment-induced defects in the 81 wafer, and this can be performed on a bipolar IC manufacturing line.

上記各実施例では、MOの特性X線を用いたが、必ずし
もこれはMOの特性x1mに限定する必要がなく、その
他のタングステン、銅などの特性X線を用いてもよい。
In each of the above embodiments, the characteristic X-ray of MO is used, but this is not necessarily limited to the characteristic x1m of MO, and characteristic X-rays of other tungsten, copper, etc. may also be used.

なお、これまで、バイポーラ形の工0を製造する一合を
例にとシ述べたが、この発明はこれに限らず、MO8形
半導体装置などのその他の半導体装置を製造する場合に
も適用することができる0以上、説明したように、この
発明の81ウエーハの品質評価方法では、81ウエーI
・の主面部に熱酸化膜を形成し、この熱酸化膜が形成さ
れた81ウエーハをアニールしたのち、このS1ウエー
ノ・のX線回折トポグラフィによるX線回折像を作成し
、このX線回折像によってこの81ウエーI・の熱処理
誘起欠陥の発生状態を検出計価するので、非破壊的であ
り、半導体装置の製造ラインにおいて行うことができる
Although the above has been described using an example of manufacturing a bipolar type semiconductor device, the present invention is not limited to this, but can also be applied to manufacturing other semiconductor devices such as MO8 type semiconductor devices. As explained above, in the 81 wafer quality evaluation method of the present invention, the 81 wafer I
After forming a thermal oxide film on the main surface of the S1 wafer and annealing the wafer 81 on which the thermal oxide film was formed, an X-ray diffraction image was created using the X-ray diffraction topography of this S1 wafer, and this X-ray diffraction image This method detects and evaluates the occurrence of heat treatment-induced defects in the 81-way I. Therefore, it is non-destructive and can be performed on the manufacturing line of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、第2図(alおよび第3図(a)はこの
発明の一実施例における81ウエー/SのX線回折トポ
グラフィによるX線回折像を示し、第1図(b)、第2
図(b)および第3図(b)はそれぞれ第1図(a)、
第2図(a)および第3図(a)の上記S1ウエーノ1
の08法によってエツチングされた主面部の光学写真を
示す。第4図(&)および(b)はそれぞれこの発明の
他の実施例における第1および第2の81単結晶のそれ
ぞれの頭部(イ)、中央部(ロ)および尾部C→から作
成された81ウエーハのX@回折トポグラフィによるX
線回折像を示す。 代理人 葛野信−(外1名) 手続補正書(方式) 特許J1長官殿 ■、小事件表示    特願昭56−194696号2
、発明の名称  シリコン単結晶ウェーハの品質評価方
法:(、補正をする者 6、補正の対象 図面の第4図(、)および(b) 7、補正の内容 Tll  図画の第1図(、)および(b)を別紙図面
のとおりに訂正する。 8、添付書類の0鍮 訂正後q)第4図(a)および(b)を示す図面1過 以上 手゛続補正書(自発) 特許庁長官殿 1、事(’Iの表示    特願昭56−194696
号2、発明の名称  シリコン単結晶ウェーハの品質評
価方法3、補正をする者 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書の第9頁第7行〜#I8行および第9頁第
8行K「結晶方位」とあるのを「結晶品質」と訂正する
。 以上
Figures 1(a), 2(al) and 3(a) show X-ray diffraction images based on an 81 way/S X-ray diffraction topography in one embodiment of the present invention, and Figure 1(b) , second
Figure (b) and Figure 3 (b) are respectively Figure 1 (a) and Figure 3 (b).
The above S1 ueno 1 in FIGS. 2(a) and 3(a)
An optical photograph of the main surface portion etched by the 08 method is shown. Figures 4 (&) and (b) are respectively created from the head (a), center (b) and tail C→ of the first and second 81 single crystals in other embodiments of the present invention. X of 81 wafers @X by diffraction topography
A line diffraction image is shown. Agent Makoto Kuzuno (1 other person) Procedural amendment (method) Mr. Commissioner of Patent J1■, Minor case indication Patent application No. 194696-1983 2
, Name of the invention Quality evaluation method for silicon single crystal wafers: (, Person making the correction 6, Figure 4 (,) and (b) of the drawing to be corrected 7. Contents of correction Tll Figure 1 of the drawing (,) and (b) are corrected as shown in the attached drawings. 8. After correction of the attached documents q) Drawing 1 showing Figure 4 (a) and (b) Procedural amendment (voluntary) Patent Office Mr. Secretary, 1, Matter (Display of 'I' Patent Application 1983-194696
No. 2, Title of the invention Quality evaluation method for silicon single crystal wafers 3, Person making the amendment 5, Detailed description of the invention in the specification subject to amendment 6, Contents of the amendment (1) Page 9 of the specification In lines 7 to #I8 and page 9, line 8 K, "crystal orientation" is corrected to "crystal quality."that's all

Claims (1)

【特許請求の範囲】[Claims] (1)  シリコン単結晶ウェー!・の主面部に熱酸化
膜を形成する工程、この熱酸化膜が形成された上記シリ
コン単結晶ウエーノ1をアニールする工程、およびこの
アニールされた上記シリコン単結晶ウェーハのX線回折
トポグラフィによるX線回折像を作成する工程を備え、
上記X線回折像によってよ記シリコン単結晶ウェーハの
熱処理誘起欠陥の発生状態を検出評価することを特徴と
するシリコン単結晶ウェーハの品質評価方法。
(1) Silicon single crystal wafer!・A step of forming a thermal oxide film on the main surface of the wafer, annealing the silicon single crystal wafer 1 on which the thermal oxide film is formed, and an X-ray analysis by X-ray diffraction topography of the annealed silicon single crystal wafer. It includes a step of creating a diffraction image,
A method for evaluating the quality of a silicon single crystal wafer, comprising detecting and evaluating the state of occurrence of heat treatment-induced defects in the silicon single crystal wafer using the X-ray diffraction image.
JP19469681A 1981-11-30 1981-11-30 Evaluating method for quality of silicon single crystal wafer Pending JPS5893338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19469681A JPS5893338A (en) 1981-11-30 1981-11-30 Evaluating method for quality of silicon single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19469681A JPS5893338A (en) 1981-11-30 1981-11-30 Evaluating method for quality of silicon single crystal wafer

Publications (1)

Publication Number Publication Date
JPS5893338A true JPS5893338A (en) 1983-06-03

Family

ID=16328747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19469681A Pending JPS5893338A (en) 1981-11-30 1981-11-30 Evaluating method for quality of silicon single crystal wafer

Country Status (1)

Country Link
JP (1) JPS5893338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966683A (en) * 2015-07-16 2015-10-07 麦斯克电子材料有限公司 Method of using section cutting corrosion technology to detect microdefect in silicon wafer body
CN112670200A (en) * 2020-12-29 2021-04-16 杭州中欣晶圆半导体股份有限公司 Method for detecting oxidation stacking fault

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966683A (en) * 2015-07-16 2015-10-07 麦斯克电子材料有限公司 Method of using section cutting corrosion technology to detect microdefect in silicon wafer body
CN112670200A (en) * 2020-12-29 2021-04-16 杭州中欣晶圆半导体股份有限公司 Method for detecting oxidation stacking fault

Similar Documents

Publication Publication Date Title
JPS6124240A (en) Semiconductor substrate
JPH04163920A (en) Manufacture of si substrate
JPH1050715A (en) Silicon wafer and manufacture thereof
JPS5893338A (en) Evaluating method for quality of silicon single crystal wafer
JP2936916B2 (en) Quality evaluation method of silicon single crystal
JP2010177238A (en) Method of manufacturing epitaxial wafer, and method of manufacturing semiconductor device
TW202041726A (en) Production method for monocrystalline silicon wafer and monocrystalline silicon wafer
JP3080501B2 (en) Silicon wafer manufacturing method
JP3011982B2 (en) Method for manufacturing semiconductor device
JP3204309B2 (en) How to monitor heavy metal contamination
JPH05144827A (en) Processing method of silicon wafer
JP2001044398A (en) Laminated substrate and manufacture thereof
JP4952871B2 (en) Silicon wafer evaluation method
JP2007311672A (en) Method of manufacturing soi substrate
JPH039078B2 (en)
US10648101B2 (en) Silicon wafer
JPH11297704A (en) Evaluation method for oxygen deposit density
JPS5885534A (en) Manufacture of semiconductor silicon
JPS60176241A (en) Manufacture of semiconductor substrate
JPS6097619A (en) Manufacture of semiconductor
JP3001513B2 (en) Manufacturing method of semiconductor wafer
JP2010040638A (en) Method of manufacturing soi substrate
JP2883752B2 (en) Silicon wafer manufacturing method
JPS60198735A (en) Manufacture of semiconductor device
JPH08264398A (en) Manufacture of silicon semiconductor wafer