JPS5893287A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5893287A
JPS5893287A JP19218081A JP19218081A JPS5893287A JP S5893287 A JPS5893287 A JP S5893287A JP 19218081 A JP19218081 A JP 19218081A JP 19218081 A JP19218081 A JP 19218081A JP S5893287 A JPS5893287 A JP S5893287A
Authority
JP
Japan
Prior art keywords
film
insulating film
recess
forming
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19218081A
Other languages
Japanese (ja)
Other versions
JPH0370386B2 (en
Inventor
Tetsunori Wada
哲典 和田
Makoto Dan
檀 良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19218081A priority Critical patent/JPS5893287A/en
Publication of JPS5893287A publication Critical patent/JPS5893287A/en
Publication of JPH0370386B2 publication Critical patent/JPH0370386B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to control the threshold voltage of a semiconductor device to the desired value against an MOS transistor of ultrafine size by controlling the thickness of an insulating film of the gate widthwise end of the surface of an element forming region. CONSTITUTION:The element forming region of a semiconductor substrate 11 is covered with a mask 12, and the substrate 11 is etched to form a recess having substantially vertical side wall at the substrate 11. An impurity of the same conductive type as the substrate 11 is implanted, thereby forming an inversion preventive layer 13. An SiO2 film 14 is buried in the field region in the state that the groove 15 is formed at the periphery. An SiO2 film 16 is accumulated to bury the groove 15, and a resist 17 is covered thereon to flatten the surface. Thereafter, the resist 17 and the film 16 are etched under the same conditions to become the equal etching speed, and the element forming region is exposed. Then, the element forming region is etched in this state, thereby forming a recess which is formed of an oblique surface 18 and a flat surface 19. When the surface is then oxidized, a gate oxidized film 20 of thick shape of section can be obtained at the end of the element forming region.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はフィールド領域に比較的厚いフィールド絶縁膜
を表面が平坦になるように埋めこむMO8型半導体装置
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an MO8 type semiconductor device in which a relatively thick field insulating film is buried in a field region so as to have a flat surface, and a method for manufacturing the same.

〔発明の技術的背景〕[Technical background of the invention]

半導体としてシリコンを用いた半導体装置、特にMOS
型半導体装置においては寄生チャネルによる絶縁不良を
なくシ、かつ寄生容量を小さくする為に、素子間のいわ
ゆるフィールド領域には厚い絶縁膜が形成される。
Semiconductor devices using silicon as a semiconductor, especially MOS
In a type semiconductor device, a thick insulating film is formed in a so-called field region between elements in order to eliminate insulation defects due to parasitic channels and to reduce parasitic capacitance.

従来このような素子間分離法としては選択酸化法が良く
知られている。これは素子形成領域を耐酸化性マスク、
代表的にはシリコン窒化膜で榎い、高温「ツ化をおこな
ってフィールド領域にのみ選択的に厚い酸化膜を形成す
る技術である。しかしこのような選択酸化法においては
、上記高温酸化中、シリコン窒化膜の下端部からフィー
ルド酸化膜が鳥のくちばしくバーズビーク)状にくいこ
む。このため素子形成領域の寸法誤差の原因となり、更
に乗積回路の高集積化を妨げている。また、フィールド
領域と素子形成領域の境界には約03〜0.5 、a 
m 8度の表面段差が形成される。この表面段差は選択
酸化後のリングラフィ精度の低下及び表面段差部での金
属配森の信頼性低下の原因となっていた。
A selective oxidation method is conventionally well known as such an element isolation method. This is an oxidation-resistant mask for the element formation area.
Typically, this technique involves forming a thick oxide film selectively only in the field region by using a silicon nitride film and performing high-temperature oxidation.However, in this selective oxidation method, during the high-temperature oxidation, The field oxide film is embedded in the shape of a bird's beak from the lower end of the silicon nitride film.This causes dimensional errors in the element formation area and further impedes high integration of multiplication circuits.Also, the field area and the boundary between the element formation region has a thickness of about 03 to 0.5, a
A surface step of 8 degrees is formed. This surface step caused a decrease in phosphorography accuracy after selective oxidation and a decrease in the reliability of the metal arrangement at the surface step.

これに対し、上記バーズビークをなくシ、シかも表面段
差のない状態で、素子間分離用の厚い酸化膜を形成する
方法が、BOX法(iuringOxide 1nto
 3i11con Grove )として知られ、てい
る。以下にこのBOX法の工程を第1図を用いて簡単に
説明する。第1図(a)に示すように、たとえばシリコ
ン基8!1ζこ通常の写真食刻工程を用い、素子形成領
域をマスク2で覆い、フィールド領域のシリコン基板1
を所望のフィールド絶縁膜厚にイ4」当する深さにエツ
チングする。
On the other hand, a method for forming a thick oxide film for isolation between elements without the above-mentioned bird's beaks or surface steps is the BOX method (iuring oxide 1nto oxide film).
3i11con Grove). The steps of this BOX method will be briefly explained below using FIG. As shown in FIG. 1(a), for example, a silicon substrate 8!1ζ is formed by using a normal photolithography process, covering the element formation region with a mask 2, and then covering the silicon substrate 1 in the field region.
Etch to a depth corresponding to the desired field dielectric thickness by 4".

次に(b)に示す如く前記マスク2を用いてフィールド
反転防止のために、シリコン基板1と同電型の不純物、
たとえばP型基板の場合はホウ素をイオン注入し反転防
止層3を形成する。その後(c)に示す如く、リフト・
オフ加工によりフィールド領域にシリコン酸化膜4を、
周辺に溝5が形成された状態で埋めこむ。このリフト・
第11′1 フ工程は、たとえば以下のようにしておこなう。
Next, as shown in (b), using the mask 2, an impurity of the same electric type as the silicon substrate 1 is added to prevent field inversion.
For example, in the case of a P-type substrate, boron ions are implanted to form the anti-inversion layer 3. After that, as shown in (c), the lift
A silicon oxide film 4 is formed in the field area by off-processing.
It is buried with a groove 5 formed around the periphery. This lift
The 11'1 step is carried out, for example, as follows.

まず全面にプラズマCVD  5in2膜を堆積し、そ
のまま弗化アンモニウム溶液で1分程度エツチングする
。このとき素子形成領域周囲の側壁に堆積したプラズマ
CVD  5in2膜は、他の部位の8102膜よりエ
ツチングが急速に進むので、前記1111膜壁部のSi
 Ox膜が選択的に除去され、溝5が形成される。その
後素子形成領域上のマスク2を除去すると、マスク上に
堆積したプラズマCVD  Sin、膜が除去され、第
1図(C)に示した構造になる。次に(d)に示す如く
前記溝5を埋めこむように全面にCVD5iotllR
6を堆積し、更にその表面の凹部7を埋めこんで表面を
平坦化するように、流動性で、かつ後述のエツチング工
程で810□膜6と同じエツチング速度を有するレジス
ト等の被膜8を、塗布形成する。その後(e)に示す如
く、前記有機物pss及びCVD  5jOt膜6を均
一エツチングして素子形成領域を露出させる。
First, a plasma CVD 5in2 film is deposited on the entire surface, and then etched with an ammonium fluoride solution for about 1 minute. At this time, the plasma CVD 5in2 film deposited on the side walls around the element formation region is etched more rapidly than the 8102 film in other parts, so the Si on the 1111 film wall
The Ox film is selectively removed and grooves 5 are formed. Thereafter, when the mask 2 on the element formation region is removed, the plasma CVD Sin film deposited on the mask is removed, resulting in the structure shown in FIG. 1(C). Next, as shown in (d), CVD5iotllR is applied to the entire surface so as to fill the groove 5.
6 is deposited, and a film 8 such as a resist that is fluid and has the same etching rate as the 810□ film 6 in the etching process described later is deposited so as to fill the recesses 7 on the surface and flatten the surface. Apply and form. Thereafter, as shown in (e), the organic material pss and the CVD 5jOt film 6 are uniformly etched to expose the element formation region.

BOX法に於ては、シリコン$板のエツチングに反応性
イオンエツチングを用いることにより、素子領域の寸法
は写真食刻工程で形成したマスクの寸法によって規定さ
れ、素子領域の寸法変換差はゼロにすることができる。
In the BOX method, by using reactive ion etching to etch the silicon $ plate, the dimensions of the device region are defined by the dimensions of the mask formed in the photolithography process, and the difference in dimension conversion of the device region is reduced to zero. can do.

また、表面が平坦にできるため、リングラフィ精度の向
上と配線の信頼性も著しく向上する。
Furthermore, since the surface can be made flat, the accuracy of phosphorography and the reliability of wiring are significantly improved.

〔背景技術の問題点〕[Problems with background technology]

しかしながらこのようなりOX構造を用いて微小寸法、
たとえば1μm以下のゲート幅をもつMOS)ランジス
タを製作した場合、素子形成領域表面の端部で電位が高
くなり、素子形成領域の中央部表面に較べ反転し易く、
そのためトランジスタのしきい値電圧が低下する。この
ようにMOSトランジスタのしきい値゛電圧はゲート幅
に依存するので、集積化の妨げとなる。
However, using this OX structure, minute dimensions,
For example, when manufacturing a MOS (MOS) transistor with a gate width of 1 μm or less, the potential is higher at the edge of the surface of the element formation region and is more likely to be reversed than at the center surface of the element formation region.
Therefore, the threshold voltage of the transistor decreases. In this way, the threshold voltage of a MOS transistor depends on the gate width, which hinders integration.

〔発明の目的〕[Purpose of the invention]

本発明は上記BOX法の欠点に鑑みてなされたもので、
素子形成領域表面のゲート幅方向端部の絶縁膜厚を制御
することにより、上記欠点を除いた半導体装置及びその
製造方法を提供するものである。
The present invention was made in view of the drawbacks of the BOX method mentioned above.
It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same that eliminate the above-mentioned drawbacks by controlling the thickness of the insulating film at the ends in the gate width direction on the surface of the element forming region.

〔発明の概要〕[Summary of the invention]

本発明に於てはBOX法でフィールド絶縁膜を埋めこん
だ後、素子形成領域表面に例えば異方性エツチングを施
す。その結果素子形成領域端部に結晶方位で定まる一定
の角度の傾が1を有する四部が形成される。この状態で
ゲート酸化膜を形成すると、前記傾斜面の酸化速度は素
子形成領域中火部の平坦面より酸化速度が大きい為、中
央部で18 < 、&it部で厚いゲー)II化膜が、
再現性よく形成される。この結果微小寸法のMOSトラ
ンジスタに於ても素子領域のケート幅方向端部の′電位
が中央部とほぼ同じになり、前記のしきい値電圧低下が
なくなる。
In the present invention, after a field insulating film is buried by the BOX method, the surface of the element formation region is subjected to, for example, anisotropic etching. As a result, four portions having a constant angle of 1 determined by the crystal orientation are formed at the end of the element forming region. When a gate oxide film is formed in this state, the oxidation rate of the sloped surface is higher than that of the flat surface of the intermediate part of the element forming region, so that the gate oxide film is thicker than 18 < in the central part and thick in the &it part.
Formed with good reproducibility. As a result, even in a small-sized MOS transistor, the potential at the end portion in the gate width direction of the device region becomes approximately the same as that at the center portion, and the above-mentioned drop in threshold voltage is eliminated.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について、第2図を用いて説明する
Examples of the present invention will be described below with reference to FIG.

第2図(a)に示す如く半導体基板、たとλば面方位(
100)のシリコン基板11に通常の写真食刻工程を用
い、素子形成領域をマスク12で梳いフィールド領域の
シ1l−iン基)Fillを、所望のフィールド絶縁膜
厚に相当する量エツチングする。このとき、エツチング
法として反応性イオンエツチングを用いれば、はy垂直
な側不純物、たとえばP型基板の場合はホウ素をイオン
注入し、て反転防止層13を形成する。その後(b)に
示す如く、リフト・オフ加工によりフィールド領域に第
1の絶縁膜としてプラズマCVD膜14を、周辺に溝1
5が形成された状態で埋めこむ。ついで(C)に示す如
く前記溝15を埋めこむように第2の絶縁膜としてCV
D  8102膜16を堆積し、更に流動性物質たとえ
ばレジスト17を表面が平坦になるように塗布する。
As shown in FIG. 2(a), the semiconductor substrate has a plane orientation of λ
Using a normal photolithography process on the silicon substrate 11 of 100), the element forming region is covered with a mask 12, and the field region's fill is etched by an amount corresponding to the desired field insulating film thickness. At this time, if reactive ion etching is used as the etching method, the inversion prevention layer 13 is formed by implanting ions of an impurity perpendicular to the y direction, such as boron in the case of a P-type substrate. Thereafter, as shown in (b), a plasma CVD film 14 is formed as a first insulating film in the field region by lift-off processing, and grooves 14 are formed around the periphery.
5 is formed and embed it. Next, as shown in (C), a CV film is formed as a second insulating film so as to fill the groove 15.
A D8102 film 16 is deposited, and a fluid material such as a resist 17 is further applied so that the surface is flat.

ここで、レジスト17の代わりに溶融可能なガラス膜た
とえばりン硅化ガラス +1ンーポロン硅化ガラス膜な
どを形成後溶融して平坦な被膜を形成してもよい。次に
(d)に示す如く前記レジスト17およびCVD  5
io2膜16をエツチング速度の等し謬エツチング条件
で均一エツチングして素子形成領域を碓出させる。この
状態で水酸化カリウムとイソプロピルアルコールの混合
液により、素子形成領域をエツチングする。前記混合液
はプラズマCVD  S i o2膜14およびCvD
 5102膜ノロは、T、 ”7−+−7りせず、シリ
コン基鈑ノ1のみを、結晶の面方位に応じた速度でエツ
チングする。面方位(ion)のSi基板を用いた場合
には約1分間のエツチングで約500 A−T:ツチン
グされ(e)に示す如く面方位(111)の斜−[71
11B及び同(100)の平坦面19からなる凹部が形
成される。ついで約900Cの酸素′jX−囲気中で酸
化する。酸素莢囲気中では(100)面より(111)
面の酸化速度が大きく、またCVD  5in2膜16
伸からも酸化される為(f)に示す如く素子形成領域端
部で厚い断面形状のゲート酸化膜20が得られる。この
後通常のシリコンゲートプロセスによりMOSトランジ
スタを形成する。
Here, instead of the resist 17, a meltable glass film such as a phosphorus silicide glass +1-poron silicide glass film may be formed and then melted to form a flat film. Next, as shown in (d), the resist 17 and the CVD 5
The io2 film 16 is uniformly etched under etching conditions with equal etching speed to form an element formation region. In this state, the element formation region is etched using a mixed solution of potassium hydroxide and isopropyl alcohol. The mixed liquid is a plasma CVD SiO2 film 14 and a CvD
The 5102 film slag etches only the first silicon substrate at a speed that corresponds to the plane orientation of the crystal without etching T. is etched for about 1 minute, resulting in about 500 A-T etching, and as shown in (e), the diagonal plane orientation (111) -[71
11B and a concave portion consisting of a flat surface 19 (100) is formed. It is then oxidized in an oxygen atmosphere of about 900C. (111) from the (100) plane in the oxygen capsule atmosphere
The surface oxidation rate is high, and the CVD 5in2 film 16
Since the gate oxide film 20 is also oxidized from the expansion, a thick cross-sectional gate oxide film 20 is obtained at the end of the element formation region, as shown in (f). Thereafter, a MOS transistor is formed by a normal silicon gate process.

本実施例によれば、ゲート酸化膜が形成される部分は、
それ以前に他の物質たとλばCVDSi□、膜16等で
榎われることがなく、酸化膜形成直前にエツチングによ
り露出されるのでチャネル領域表面部の不純物による汚
染がない。
According to this embodiment, the portion where the gate oxide film is formed is
Before that, other materials such as λ, CVDSi□, film 16, etc. are not exposed, and the surface of the channel region is not contaminated by impurities because it is exposed by etching immediately before forming the oxide film.

また素子形成領域とフィールド領域の境界の段差は約1
000A以下でも素子形成領域端部の電位と中央部の電
位をほぼ等しくすることができる。この程度の基板表面
の凹凸は、後に続くリソグラフィ工程での寸法精度の低
下及び表面段差部での金属配線の段切れ等の信頼性低下
は生じない。
Also, the step difference between the element formation region and the field region is approximately 1
Even if the voltage is less than 000 A, the potential at the end of the element formation region and the potential at the center can be made almost equal. This degree of unevenness on the substrate surface does not cause a decrease in dimensional accuracy in the subsequent lithography process or a decrease in reliability such as breakage of the metal wiring at the surface step portion.

なお、本実施例では素子形成領域を異方性エツチングす
る際に水酸化力11ウムとイソプロピルアルコールの混
合液を用いたが、他のエツチング方法たとえばエチレン
ジアミンとピロカテコールの混合液を用いても同様の効
果がKlられる。さらにこのエツチング工程はp・方性
エツチングでなくとも索子形成領域表面が凹部になるよ
うエツチングすれば同様の幼芽が得られる。
In this example, a mixture of 11 um hydroxide and isopropyl alcohol was used for anisotropic etching of the element formation region, but the same effect can be obtained using other etching methods, such as a mixture of ethylenediamine and pyrocatechol. The effect of is Kl. Furthermore, even if this etching step is not p-oriented etching, similar sprouts can be obtained by etching so that the surface of the cord formation region becomes a concave portion.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば従来のBOX法の特
徴を損なうことなく、微細寸法のMOSトランジスタに
対しても、そのしきい値電圧を所望の値に制御すること
ができる。
As described above, according to the present invention, it is possible to control the threshold voltage of a micro-sized MOS transistor to a desired value without impairing the characteristics of the conventional BOX method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(elは従来のBOX法による素子間分
離用本化膜の製造工程を示す断面図、第2図(a)〜(
f)は不発明の一実施例の晃造工程を示す断面図である
。 11・・・シ11コン基勝、12・・・マスク、13・
・・反転防止層、14・・・5io2模(第1の絶縁膜
)、15・・・!運、16・・・5102膜(第2の絶
縁膜)、17・・・レジスト(平坦化肢fa)、1g・
・・斜面、19・・・平坦面、20・・・ゲート酸化膜
。 出願人代理人 弁理士 鈴 江 武 彦1 ) 第1図 ど 422− l−〜                   メー\
Φ              呻−
Figure 1 (al to (el) is a cross-sectional view showing the manufacturing process of a real film for element isolation using the conventional BOX method, and Figure 2 (a) to (el).
f) is a sectional view showing the manufacturing process of an embodiment of the invention. 11...Shi11 Con Motokatsu, 12...Mask, 13.
...Inversion prevention layer, 14...5io2 model (first insulating film), 15...! luck, 16...5102 film (second insulating film), 17... resist (flattening edge fa), 1g.
...Slope, 19...Flat surface, 20... Gate oxide film. Applicant's agent Patent attorney Takehiko Suzue 1) Figure 1 422-l-~ Me\
Φ Moan-

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板表面のほぼ垂直な1■壁を有する凹部
にフィールド絶縁膜が埋設され、このフィールド絶縁膜
で囲まれた領域にMOSトランジスタを形成してなる半
導体装置に於て、前記MOSトランジスタのゲート絶縁
膜は、ゲート幅方向の両端部の膜厚が中央部のそれより
も厚く形成されていることを特徴とする半導体装置。
(1) In a semiconductor device in which a field insulating film is buried in a recess having a substantially vertical wall on the surface of a semiconductor substrate, and a MOS transistor is formed in a region surrounded by the field insulating film, the MOS transistor A semiconductor device characterized in that the gate insulating film is formed to be thicker at both ends in the gate width direction than at the center.
(2)半導体基板のフィールド領域にはソ垂直な側壁を
有する凹部を形成する工程と、この凹部に表面が平坦に
なるようにフィールド絶縁膜を埋設する工程と、素子形
成領域の基板表面を凹状になるようエツチングする工程
と、この素子形成領域にゲート幅方向両端部の斜面での
膜厚が中央部でのそれより厚くなるようにゲート酸化膜
を形成してMO8I−ランジスタを形成する工程とを備
えたことを特徴とする半導体装置の製造方法。
(2) A step of forming a recess with vertical sidewalls in the field region of the semiconductor substrate, a step of burying a field insulating film in the recess so that the surface is flat, and a step of forming the substrate surface in the element formation region into a recess. and a step of forming a MO8I-transistor by forming a gate oxide film in this element formation region so that the film thickness on the slopes at both ends in the gate width direction is thicker than that at the center. A method for manufacturing a semiconductor device, comprising:
(3)  凹部にフィールド絶縁膜を埋設する工程は、
リフトオフ法により凹部の周辺に溝が形成された状態で
この凹部に第1の絶縁膜を形成する工程と、前記溝を埋
めるように全面に第2の絶縁膜を形成する工程と、全面
に表面が平坦になる流動性物質による被膜を形成する工
程と、この被膜および前記第2の絶縁膜をこれらのエツ
チング速度が等しいエツチング条件で素子形成領域の基
孕表面が露出するまで均一エツチングする工程とからな
る特許請求の範囲第2項記載の半導体装置の製造方法。
(3) The process of embedding the field insulating film in the recess is as follows:
A step of forming a first insulating film in the recess with a groove formed around the recess by a lift-off method, a step of forming a second insulating film over the entire surface so as to fill the groove, and a step of forming a second insulating film over the entire surface so as to fill the groove. a step of uniformly etching this film and the second insulating film under etching conditions with equal etching rates until the substrate surface of the element forming region is exposed; A method of manufacturing a semiconductor device according to claim 2, comprising:
JP19218081A 1981-11-30 1981-11-30 Semiconductor device and manufacture thereof Granted JPS5893287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19218081A JPS5893287A (en) 1981-11-30 1981-11-30 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19218081A JPS5893287A (en) 1981-11-30 1981-11-30 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5893287A true JPS5893287A (en) 1983-06-02
JPH0370386B2 JPH0370386B2 (en) 1991-11-07

Family

ID=16287003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19218081A Granted JPS5893287A (en) 1981-11-30 1981-11-30 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5893287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141346A (en) * 1986-12-03 1988-06-13 Sony Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141346A (en) * 1986-12-03 1988-06-13 Sony Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0370386B2 (en) 1991-11-07

Similar Documents

Publication Publication Date Title
US5387540A (en) Method of forming trench isolation structure in an integrated circuit
US4295924A (en) Method for providing self-aligned conductor in a V-groove device
KR100270464B1 (en) Method of forming recessed oxide isolation
US6635945B1 (en) Semiconductor device having element isolation structure
US4497108A (en) Method for manufacturing semiconductor device by controlling thickness of insulating film at peripheral portion of element formation region
US6232646B1 (en) Shallow trench isolation filled with thermal oxide
JPS61137338A (en) Manufacture of semiconductor integrated circuit device
US4885261A (en) Method for isolating a semiconductor element
JPH02277253A (en) Manufacture of semiconductor device
JPS5898943A (en) Manufacture of semiconductor device
US4504333A (en) Method of making field oxide regions
US6444539B1 (en) Method for producing a shallow trench isolation filled with thermal oxide
JPS5893287A (en) Semiconductor device and manufacture thereof
JPS63188952A (en) Manufacture of semiconductor device
JPH01222457A (en) Manufacture of semiconductor device
JP3190144B2 (en) Manufacturing method of semiconductor integrated circuit
JPS5846648A (en) Manufacture of semiconductor device
JP2517751B2 (en) Method for manufacturing semiconductor device
KR0161727B1 (en) Element isolation method of semiconductor device
JPS63257244A (en) Semiconductor device and manufacture thereof
KR950007422B1 (en) Semiconductor device isolation method
KR100245087B1 (en) Method of forming an element isolation film in a semiconductor device
JPH0550138B2 (en)
KR970009273B1 (en) Method for forming the field oxide on the semiconductor element
JPH0429354A (en) Manufacture of semiconductor integrated circuit device