JPS5892289A - Variable wavelength semicondutor laser - Google Patents

Variable wavelength semicondutor laser

Info

Publication number
JPS5892289A
JPS5892289A JP56191050A JP19105081A JPS5892289A JP S5892289 A JPS5892289 A JP S5892289A JP 56191050 A JP56191050 A JP 56191050A JP 19105081 A JP19105081 A JP 19105081A JP S5892289 A JPS5892289 A JP S5892289A
Authority
JP
Japan
Prior art keywords
wavelength
saw
frequency
varied
oscillating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56191050A
Other languages
Japanese (ja)
Inventor
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP56191050A priority Critical patent/JPS5892289A/en
Publication of JPS5892289A publication Critical patent/JPS5892289A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1234Actively induced grating, e.g. acoustically or electrically induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure

Abstract

PURPOSE:To vary the oscillating wavelength in a broad range, by forming a comb shaped electrode ultrasonic wave oscillator (IDT) on a light confining layer so that the pitches of the oscillator are different depending on positions, thereby making the oscillating frequency vary. CONSTITUTION:When an electric field of a frequency (f) is applied to an IDT10, an SAW is generated and proparated in the light emitting direction along a p type GaAs layer 3. Single mode vertical oscillation can be generated by the SAW. Laser light having a wavelength lambda shown by an expressionIis obtained, where LAMBDA is the wavelength of the SAW. When the frequency (f) of the applied electric field is varied, DELTAlambda is obtained by an expression II, where V is the propagating speed of the SAW. When the oscillating frequency of the IDT10 is varied by DELTAf, the oscillating wavelength can be varied by DELTAlambda. The pitches between the electrodes are different. With the frequencies f1-fn corresponding to the different wavelengths LAMBDA1-LAMBDAn of the SAW as the center, each frequency can be varied by DELTAf. The corresponding oscillating wavelength can be varied by DELTAlambda with lambda1-lambdan as the centers.

Description

【発明の詳細な説明】 この発明は、レーザ発振波長を任意に変えうる可変波長
半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tunable wavelength semiconductor laser whose laser oscillation wavelength can be changed arbitrarily.

従来より、長距離光伝送のために開発された単−縦モー
ド発振を行なう半導体レーザとして、GaAs −Ga
□−xAl!xA! 2重へテロ構造DFB (Dis
tributed fee4back )レーザ・ダイ
オードが知られている。このレーザ・ダイオードは光閉
じ込め層上に1μm以下の一定周期のコルゲーションを
形成したもので、コルゲーションの周期Aによって発振
波長λが λ−2n A / m        *** (11
n;活性層の屈折率 m;ブラック回折の次数 の関係で決まり、この発振波長λで単一波長発振の縦モ
ード動作が安定に行なわれるという利点がある。しかし
ながら、コルゲーションの形成は、その周期が通常1μ
m以下と小さいため、電子ビーム露光法や永ログラフイ
ックな方法によらなければならず、GaAs  活性層
等の光閉じ込め層上にこれらの方法でコルゲーションを
形成したのちGaニーxAl!xAs  層を成長させ
る必要があるため、熱損傷が生じる問題があり、また製
造工程が複雑であるという欠点がある。しかも発振波長
はコルゲーションの周期で決まり安定である反面、可変
とすることができないことにより、多重通信の一手法で
ある派長多重通信への応用展開の途が閉ざされていると
いう問題もある。
Conventionally, GaAs-Ga semiconductor lasers have been developed as single-longitudinal mode oscillation semiconductor lasers developed for long-distance optical transmission.
□-xAl! xA! Double heterostructure DFB (Dis
Tributed fee4back) laser diodes are known. This laser diode has a corrugation with a constant period of 1 μm or less formed on an optical confinement layer, and the oscillation wavelength λ is λ-2n A / m *** (11
n; refractive index of the active layer m; determined by the relationship of order of Black diffraction, and has the advantage that longitudinal mode operation of single wavelength oscillation is stably performed at this oscillation wavelength λ. However, the period of corrugation formation is usually 1 μm.
Since it is small (less than m), it is necessary to use an electron beam exposure method or an erographic method, and after forming corrugations using these methods on an optical confinement layer such as a GaAs active layer, Ga knee x Al! The need to grow the xAs layer poses a problem of thermal damage, and the manufacturing process is complicated. Moreover, while the oscillation wavelength is determined by the corrugation period and is stable, it cannot be made variable, which poses the problem of closing the possibility of application to branch multiplex communication, which is a method of multiplex communication.

この発明は、製造が容易で安定な単−縦モード発振が可
能であり、かつ発振波長を広範囲に可変とすることので
きる可変波長半導体レーザを提供することを目的とする
An object of the present invention is to provide a tunable wavelength semiconductor laser that is easy to manufacture, capable of stable single-longitudinal mode oscillation, and whose oscillation wavelength can be varied over a wide range.

この発明による可変波長半導体レーザは、光閉じ込め層
上に表面弾性波を発生する櫛形電極超音波振動子が設け
られ、この櫛形電極のピッチが場所によって異なってお
り、櫛形電極超音波振動子の振動周波数を変化させるこ
とによって、レーザ発振波長を変化させることを特徴と
する。
The tunable wavelength semiconductor laser according to the present invention is provided with a comb-shaped electrode ultrasonic vibrator that generates surface acoustic waves on an optical confinement layer, and the pitch of the comb-shaped electrodes differs depending on the location. It is characterized by changing the laser oscillation wavelength by changing the frequency.

したがって通常のレーザ・ダイオードの光閉じ込め層上
に櫛形電極超音波振動子を形成するだけでよいので製造
が容易であり、しがも櫛形電極超音波振動子の振動周波
数を変えることによってレーザ発振波長を変えることが
できるため、波長多重通信にも有効に応用できる。ピッ
チの等しい櫛形電極の場合にはたとえ印加する電界の周
波数を変えたとしても、発振する表面弾性波の波長は櫛
形電極のピッチによって定まってしまい広帯域にわたっ
て周波数を変えることはできない。しかしながら、この
発明では、櫛形電極のピッチが場所によって異なってい
るので、複数種類の電極ピッチが存在し、それぞれのピ
ッチに応じた波長の表面弾性波の発生が仏 可能となり、レーザ発振波長を広範囲にわたって可変と
なる。
Therefore, manufacturing is easy because it is only necessary to form a comb-shaped ultrasonic transducer on the optical confinement layer of a normal laser diode, and the laser oscillation wavelength can be adjusted by changing the vibration frequency of the comb-shaped electrode ultrasonic transducer. It can also be effectively applied to wavelength division multiplexing communications. In the case of comb-shaped electrodes with the same pitch, even if the frequency of the applied electric field is changed, the wavelength of the oscillated surface acoustic wave is determined by the pitch of the comb-shaped electrodes, and the frequency cannot be changed over a wide band. However, in this invention, since the pitch of the comb-shaped electrodes differs depending on the location, there are multiple types of electrode pitches, and it is possible to generate surface acoustic waves with wavelengths corresponding to each pitch, allowing the laser oscillation wavelength to be extended over a wide range. variable over the period.

以下、図面を参照してこの発明の実施例にっいて詳述す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明を2重へテロ構造レーザ・ダイオード
に適用した第1の実施例を示す。この図に示すように、
2重へテロ構造レーザ・ダイオード01)は、n −G
aAs  単結晶基板(1)ニ液相エピタキシー技術を
用いてn−Ga□−xAl!xA8層(2)、p −G
a、As  層(3)、p−Ga1−xAl!xA8層
(4)およびp −GaAs  層(5)を成長させ、
両面に電極(6)(7)を設けてなる。このダイオード
(Il+に順方向電流を流すと1この電流がしきい値を
超えたときに、p −GaAs層(3)がキャリアおよ
び光の閉じ込めを行なう活性層となってレーザ光(A)
を出射する。
FIG. 1 shows a first embodiment in which the invention is applied to a double heterostructure laser diode. As shown in this figure,
Double heterostructure laser diode 01) is n-G
aAs single crystal substrate (1) n-Ga□-xAl! using two-liquid phase epitaxy technology! xA8 layer (2), p-G
a, As layer (3), p-Ga1-xAl! Grow the xA8 layer (4) and the p-GaAs layer (5),
Electrodes (6) and (7) are provided on both sides. When a forward current is passed through this diode (Il+), when this current exceeds the threshold value, the p-GaAs layer (3) becomes an active layer that confines carriers and light, and the laser beam (A) is activated.
is emitted.

この2重へテロ構造レーザ・ダイオ−1’ ill+ 
ノ一部をエツチング技術などによって切り欠き、p −
GaAs層(3)を露出・させこの層(3)の上に絶縁
膜(8)を形成し、この絶縁膜(8)上に櫛型電極超音
波m動子(101(以下よりT(インタ岸デジタル・ト
ランスデユーサ)という)を設ける。このIDToo)
の電極は、そのピッチが発生する表面弾性波(以下SA
Wという)の伝搬方向に、順次具fx ルように形成さ
れている。
This double heterostructure laser diode-1'ill+
A part of the p −
The GaAs layer (3) is exposed and an insulating film (8) is formed on this layer (3), and a comb-shaped electrode ultrasonic wave element (101 (hereinafter referred to as T) is formed on this insulating film (8). A digital transducer) will be established.This IDToo)
The pitch of the electrode generates surface acoustic waves (SA
They are formed in a sequential manner in the propagation direction of the wave (referred to as W).

この第1図の構成において、より T (10)に周波
数fの電界を印加すると、SAWが発生し、p−GaA
s層(3)上に沿って光出射方向に伝搬する。
In the configuration shown in Fig. 1, when an electric field of frequency f is applied to T (10), a SAW is generated and the p-GaA
The light propagates along the s-layer (3) in the light emission direction.

このSAWにより、従来のDFBレーザ・ダイオードに
おけるコルゲーションと同様な効果が生じ、単−縦モー
ド発振を生じさせることができる。すなわちSAWの波
長をAとすれば、第(1)式で示した波長λのレーザ光
が得られる。そしてより T(101の印加電界の周波
数fを変化させてSAWの波長Δを△A変化させると、
第(1)式より △λ=2n△A/m     ・・・(2)SAWの伝
搬速度を■とすると V=fA だから、 第(3)式を第(2)式に代入すると、となり、より 
T (101の発振周波数を△f変化させればレーザ発
振波長を△λ変化させることができる。
This SAW produces an effect similar to corrugation in conventional DFB laser diodes, and can produce single-longitudinal mode oscillation. That is, if the wavelength of the SAW is A, a laser beam with a wavelength λ shown in equation (1) can be obtained. Then, when the frequency f of the applied electric field of T(101 is changed and the SAW wavelength Δ is changed by ΔA,
From equation (1), Δλ=2nΔA/m...(2) If the SAW propagation speed is ■, then V=fA, so substituting equation (3) into equation (2), we get Than
By changing the oscillation frequency of T (101 by △f), the laser oscillation wavelength can be changed by △λ.

よりTQ(l]の電極間のピッチは上述のようにそれぞ
れ異なっており、SAWの異なる波長A1〜Anに対応
している。したがって、より T f+01から発生す
るSAWの波長を、波長A1〜Anを中心に△Aずつ変
化させることができる。これをより T f+01に印
加する電界の周波数fで表わすとゝ、波長A1〜Anに
対応する周波数をそれぞれf1〜fnとすれば、各周波
数f1〜fnを中心にそれぞれ△fずつ変化させること
が可能となる。このため、ピッチA1〜Anを適当に設
定することにより、周波数の可変帯域幅Fは、よりT(
101の電極間のピッチが等しい場合に比べてn倍のF
 = n・△fとなる。この様子が第2図に示されてい
る。これにより、周波数f1〜fnに対応するレーザ・
ダイオード(11)の発振波長をそれぞれλ1〜λnと
すれば、レーザ発振波長を、λ1〜λnをそれぞれ中心
として第(4)式で表わされる △λだけ変化させるこ
とが可能となり、n・△λの広範囲にわたって発振波長
が可変な半導体レーザが得られる。
The pitch between the electrodes of TQ(l) is different as mentioned above, and corresponds to the different wavelengths A1 to An of the SAW. Therefore, the wavelength of the SAW generated from T f+01 is can be changed by ΔA around It becomes possible to change each pitch by Δf around fn. Therefore, by appropriately setting the pitches A1 to An, the variable frequency bandwidth F can be made more T(
F
= n・△f. This situation is shown in FIG. This allows the laser beam corresponding to frequencies f1 to fn to
If the oscillation wavelengths of the diodes (11) are λ1 to λn, respectively, it becomes possible to change the laser oscillation wavelength by △λ, which is expressed by the equation (4), centering on λ1 to λn, respectively, so that n・△λ A semiconductor laser whose oscillation wavelength can be varied over a wide range can be obtained.

第3図は第2の実施例を示している。ここでは、それぞ
れピッチの異なる電極(20a)〜(200)が、レー
ザ光の出射方向と直交する方向に並べて配置されること
によりよりT+20+が構成されている。この場合には
、レーザ光の出射位置によってそれぞれ異なる波長λl
〜λn(この実施例ではn = 3 )のレーザ光が得
られ、スキャナの構成が簡単となる。
FIG. 3 shows a second embodiment. Here, T+20+ is constructed by arranging electrodes (20a) to (200) with different pitches in a direction perpendicular to the laser beam emission direction. In this case, the wavelength λl differs depending on the emission position of the laser beam.
~λn (n = 3 in this embodiment) laser light can be obtained, and the configuration of the scanner can be simplified.

第4図は第3の実施例を示している。よりT駒はそれぞ
れピッチの異なる3種類の円弧状の電極(30a)〜(
3,Oc)から構成されており、これらの各円弧がそれ
ぞれつなかつ、ている。このような円弧状の電極から発
生するSAWは収束する傾向にあるので、出射するレー
ザ光の拡がりが防止される。
FIG. 4 shows a third embodiment. The T piece has three types of arc-shaped electrodes (30a) to (30a) with different pitches.
3, Oc), and each of these circular arcs is connected to each other. Since the SAW generated from such an arc-shaped electrode tends to converge, the emitted laser light is prevented from spreading.

第5図は第4の実施例を示しており、ここではより T
 +40)は、ピッチが連続的に変化する円弧状の電極
によって構成されている。この場合には、出射するレー
ザ光の波長は出射位置によって異なり、かつレーザ光が
一点に収束する。したがって、光ファイバ等への光結合
が容易となる。
FIG. 5 shows a fourth embodiment, in which T
+40) is composed of arc-shaped electrodes whose pitch changes continuously. In this case, the wavelength of the emitted laser light varies depending on the emitting position, and the laser light converges on one point. Therefore, optical coupling to an optical fiber or the like becomes easy.

この発明は、DFBレーザ・ダイオード以外にも、たと
えば工TG(集積2重導波路形)レーザ・ダイオードそ
の他の半導体レーザに適用できるのはいうまでもなく、
またGaAs系以外の半導体についてもそれがSAWを
伝搬させるために圧電性を有するものであれば適用でき
る。
Needless to say, the present invention is applicable not only to DFB laser diodes but also to TG (integrated dual waveguide) laser diodes and other semiconductor lasers.
Further, the present invention can be applied to semiconductors other than GaAs as long as they have piezoelectricity to propagate the SAW.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例を示す斜視図、第2図
は発振周波数の帯域幅の広がりを示す図、第3図から第
5図はそれぞれ第2、?l′;3および第4の実施例を
示す概略構成図である。 (31@@e GaAs層(光閉じ込め層’) 、10
1’(2[[1t401・・・・櫛形電極超音波振動子
、+Ill・・・半導体レーザ0 以  上 特許出願人 立石電機株式会社 CF べ−−−−ベ 一       の ゝ鵠 e        法
FIG. 1 is a perspective view showing the first embodiment of the present invention, FIG. 2 is a diagram showing the spread of the oscillation frequency bandwidth, and FIGS. FIG. 1 is a schematic configuration diagram showing third and fourth embodiments. (31@@e GaAs layer (light confinement layer'), 10
1'(2 [[1t401... comb-shaped electrode ultrasonic vibrator, +Ill... semiconductor laser 0 Patent applicant: Tateishi Electric Co., Ltd. CF

Claims (1)

【特許請求の範囲】[Claims] 変波長生導体レーザ。Variable wavelength live conductor laser.
JP56191050A 1981-11-27 1981-11-27 Variable wavelength semicondutor laser Pending JPS5892289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191050A JPS5892289A (en) 1981-11-27 1981-11-27 Variable wavelength semicondutor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191050A JPS5892289A (en) 1981-11-27 1981-11-27 Variable wavelength semicondutor laser

Publications (1)

Publication Number Publication Date
JPS5892289A true JPS5892289A (en) 1983-06-01

Family

ID=16268053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191050A Pending JPS5892289A (en) 1981-11-27 1981-11-27 Variable wavelength semicondutor laser

Country Status (1)

Country Link
JP (1) JPS5892289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032021A2 (en) * 2001-10-09 2003-04-17 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs
WO2004034530A1 (en) * 2002-10-08 2004-04-22 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUIT (TxPIC) CHIPS

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032021A2 (en) * 2001-10-09 2003-04-17 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs
WO2003032021A3 (en) * 2001-10-09 2004-03-25 Infinera Corp TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs
US6985648B2 (en) 2001-10-09 2006-01-10 Infinera Corporation Method of in-wafer testing of monolithic photonic integrated circuits (PICs) formed in a semiconductor wafer
US7043109B2 (en) 2001-10-09 2006-05-09 Infinera Corporation Method of in-wafer testing of monolithic photonic integrated circuits (PICs) formed in a semiconductor wafer
US7062114B2 (en) 2001-10-09 2006-06-13 Infinera Corporation Submount for a photonic integrated circuit (PIC) chip
US7283694B2 (en) 2001-10-09 2007-10-16 Infinera Corporation Transmitter photonic integrated circuits (TxPIC) and optical transport networks employing TxPICs
US7460742B2 (en) 2001-10-09 2008-12-02 Infinera Corporation Method and apparatus for providing an antireflection coating on the output facet of a photonic integrated circuit (PIC) chip
US7483599B2 (en) 2001-10-09 2009-01-27 Infinera Corporation Method of calibrating a monolithic transmitter photonic integrated circuit (TXPIC) chip
US7792396B2 (en) 2001-10-09 2010-09-07 Infinera Corporation Probe card for testing in-wafer photonic integrated circuits (PICs) and method of use
US7885492B2 (en) 2001-10-09 2011-02-08 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chips
WO2004034530A1 (en) * 2002-10-08 2004-04-22 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUIT (TxPIC) CHIPS

Similar Documents

Publication Publication Date Title
JPS5821888A (en) Variable wavelength semiconductor laser
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
JP3198338B2 (en) Semiconductor light emitting device
US5143864A (en) Method of producing a semiconductor laser
JPH07273400A (en) Semiconductor laser
JPH1041578A (en) Distribution feedback type semiconductor laser
JP2947142B2 (en) Tunable semiconductor laser
JPS5892289A (en) Variable wavelength semicondutor laser
JPS6140159B2 (en)
JP3064118B2 (en) Distributed reflection semiconductor laser
JPH06112570A (en) Distributed bragg-reflection type semiconductor laser
JP3247431B2 (en) Distributed reflection semiconductor laser
JP2907234B2 (en) Semiconductor wavelength tunable device
JP2005159118A (en) Milliwave light source
JP2917950B2 (en) Tunable semiconductor laser and method of manufacturing the same
JPS6284583A (en) Distributed feedback type semiconductor laser
JPH0158876B2 (en)
JP4536488B2 (en) Semiconductor laser element
JPH03266489A (en) Semiconductor laser
JPH09307179A (en) Phase shift type distributed feedback semiconductor laser
JP4606271B2 (en) Semiconductor laser
JP2004273644A (en) Semiconductor laser
US20050286582A1 (en) Photosemiconductor device
JPS63147387A (en) Semiconductor laser device
JPH06120613A (en) Complex short resonator reflection semiconductor laser