JPH06120613A - Complex short resonator reflection semiconductor laser - Google Patents

Complex short resonator reflection semiconductor laser

Info

Publication number
JPH06120613A
JPH06120613A JP28950192A JP28950192A JPH06120613A JP H06120613 A JPH06120613 A JP H06120613A JP 28950192 A JP28950192 A JP 28950192A JP 28950192 A JP28950192 A JP 28950192A JP H06120613 A JPH06120613 A JP H06120613A
Authority
JP
Japan
Prior art keywords
resonator
region
light emitting
wavelength
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28950192A
Other languages
Japanese (ja)
Inventor
Toshihiro Kameda
俊弘 亀田
Hiroshi Mori
浩 森
Haruo Nagai
治男 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP28950192A priority Critical patent/JPH06120613A/en
Publication of JPH06120613A publication Critical patent/JPH06120613A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make the unimode oscillation possible without causing the expansion of the width of a spectrum line by arranging two resonators shorter in optical length than the length of light emitting regions and different form each other in optical length side by side, and equipping this device with a reflector for selecting the unimode required for laser oscillation. CONSTITUTION:Oscillation wavelength is put in a unimode by arranging the constitution such that there is invariably only one mode where all the wavelengths become the same, out of the inner longitudinal modes being each decided by the resonator A constituted of a light emitting region 12 and a phase control region 13 different in optical length from each other, the first resonator B in the region 15 deciding the oscillation wavelength, and the second resonator C. And, the position of the longitudinal mode is changed by changing the optical lengths of the resonators A, B, and C, and besides the position, too, where all modes accord with one another, is changed to change the oscillation wavelength. Moreover, the optical length of the resonator is changed, by heating each resonator, so as to change the refractive index of the wave guide paths so that it may not deteriorate the width of a spectrum line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒーレント光伝送お
よび光計測の光源として有用である単一モードで発振し
広帯域な波長シフトが可能な半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser which is useful as a light source for coherent optical transmission and optical measurement and which can oscillate in a single mode and can shift wavelength in a wide band.

【0002】[0002]

【従来の技術】主幹線の光ファイバケーブルの敷設は進
み、将来的には加入者系として各個人へファイバーケー
ブルが導入されることになる。しかし、今までのAM的
な通信方式では情報の伝達容量が小さいため新たなる通
信方式が必要とされる。それに対処すべく、光を周波数
として扱ったコヒーレント光伝送方式が考案され、その
方式の一つである光ヘテロダイン方式が開発されつつあ
る。この光ヘテロダイン方式は、送信側の信号光と受信
側の局発光を合波して得られる干渉成分を信号として取
り扱うため、1本のファイバで周波数の異なった複数の
信号光を同時に転送が可能である。この方式を実用化す
るには、使用する光源の性能が重要であり、要求される
光源の性能として、以下のことが求められる。すなわ
ち、周波数帯域に対する情報信号の密度を上げるために
は信号光のスペクトル線幅をできるだけ狭くすること、
一つの光源でより多くのチャンネルの確保するためには
広帯域にわたって波長可変機能を有すること、信号光に
同調できる程度に局発光が高速に周波数チューニングで
きることが要求される。また、光計測においても、分解
能、測定帯域、測定速度といった観点から同様な光源の
性能が要求される。
2. Description of the Related Art The installation of main trunk optical fiber cables is progressing, and in the future, fiber cables will be introduced to each individual as a subscriber system. However, the conventional AM communication system requires a new communication system because the information transmission capacity is small. In order to deal with this, a coherent optical transmission system that treats light as a frequency has been devised, and an optical heterodyne system, which is one of the systems, is being developed. In this optical heterodyne system, the interference component obtained by multiplexing the signal light on the transmitting side and the local light on the receiving side is treated as a signal, so it is possible to simultaneously transfer a plurality of signal light with different frequencies with one fiber. Is. In order to put this system into practical use, the performance of the light source used is important, and the following performance is required as the required performance of the light source. That is, in order to increase the density of the information signal for the frequency band, the spectral line width of the signal light should be as narrow as possible,
In order to secure more channels with one light source, it is required to have a wavelength tunable function over a wide band, and to be able to perform frequency tuning of local light at a high speed enough to be tuned to signal light. Further, also in the optical measurement, similar performance of the light source is required from the viewpoint of resolution, measurement band, measurement speed.

【0003】主なコヒーレント光源としては、発光領域
に回折格子を設けた分布帰還型レーザ、発光領域と回折
格子を備えた反射器を有する波長制御領域とで構成され
た分布ブラッグ反射型レーザ、発光領域とそれに光結合
した外部回折格子反射器とを備えた外部回折格子反射器
型レーザがあげられる。
As a main coherent light source, a distributed feedback laser in which a diffraction grating is provided in a light emitting region, a distributed Bragg reflection laser constituted by a light emitting region and a wavelength control region having a reflector with a diffraction grating, and light emission An example is an external diffraction grating reflector type laser having a region and an external diffraction grating reflector optically coupled to the region.

【0004】図4に断面図を示す3電極型分布ブラッグ
反射型レーザは、発光領域12と位相制御領域13とブ
ラッグ反射領域16とを有し、位相制御領域13または
ブラッグ反射領域16の導波路へのキャリア注入で屈折
率を変えることができ、高速で数nmの周波数チューニ
ングを達成できる。(従来の技術1)
A three-electrode type distributed Bragg reflection laser shown in a sectional view in FIG. 4 has a light emitting region 12, a phase control region 13 and a Bragg reflection region 16 and a waveguide of the phase control region 13 or the Bragg reflection region 16. It is possible to change the refractive index by injecting carriers into, and it is possible to achieve frequency tuning of several nm at high speed. (Prior art 1)

【0005】また、図5に断面図を示す外部回折格子反
射器型レーザは、外部の回折格子18を用いて波長を変
化させているので、狭いスペクトル線幅で広帯域な周波
数チューニングを行うことができる。(従来技術2)
Further, since the external diffraction grating reflector type laser whose sectional view is shown in FIG. 5 uses the external diffraction grating 18 to change the wavelength, it is possible to perform wideband frequency tuning with a narrow spectral line width. it can. (Prior art 2)

【0006】[0006]

【発明が解決しようとする課題】以上に述べた従来の波
長可変型の半導体レーザは優れた点を有する。しかし、
分布ブラッグ反射型レーザでは、電流注入に伴い必然的
に発生するキャリア密度のゆらぎによりスペクトル線幅
が広がるという問題がある。また、分布ブラッグ反射型
レーザではブラッグ反射領域の屈折率をかえてブラッグ
波長(λB=2・n・Λ)をかえているが、現在の技術
では最大10nmが限界とされている。外部回折格子反
射器型レーザでは、連続的な波長掃引が難しく、波長チ
ューニング速度も遅いという問題がある。そして、分布
ブラッグ反射型レーザおよび外部回折格子反射器型レー
ザに共通する問題であるが、回折格子を正確に構成する
ことがむづかしいという問題がある。
The conventional wavelength tunable semiconductor laser described above has an excellent point. But,
The distributed Bragg reflection laser has a problem that the spectrum line width is widened due to fluctuations in carrier density that are inevitably generated with current injection. Further, in the distributed Bragg reflection laser, the Bragg wavelength (λB = 2 · n · Λ) is changed by changing the refractive index of the Bragg reflection region, but the maximum is 10 nm in the current technology. The external diffraction grating reflector type laser has the problems that continuous wavelength sweeping is difficult and the wavelength tuning speed is slow. A problem common to distributed Bragg reflection type lasers and external diffraction grating reflector type lasers is that it is difficult to form a diffraction grating accurately.

【0007】[0007]

【課題を解決するための手段】以下、上記課題を解決す
るための手段を述べる。すなわち、スペクトル線幅の広
がりを生じることなく、単一モード発振を行い、高速か
つ広帯域でレーザ素子の有する帯域をすべて掃引できる
波長可変型半導体レーザを提供することで従来の技術の
問題点は解決される。以下、請求項ごとにその手段をの
べる。
Means for solving the above problem will be described below. That is, the problem of the conventional technique is solved by providing a wavelength tunable semiconductor laser capable of performing single-mode oscillation without sweeping the spectral line width and sweeping the entire band of the laser element at high speed and in a wide band. To be done. The means will be described below for each claim.

【0008】請求項1の発明では、光学長が発光領域長
よりも短く、かつその光学長が互いに異なる二つの共振
器を並べて、レーザ発振に必要な単一モードを選択する
反射器を備える。
According to the first aspect of the present invention, a reflector for arranging two resonators having an optical length shorter than the light emitting region length and different optical lengths from each other to select a single mode required for laser oscillation is provided.

【0009】請求項2の発明では、発光領域以外の発振
波長を定める領域の光学長を変える手段を備えた。
According to a second aspect of the present invention, there is provided means for changing the optical length of a region other than the light emitting region that determines the oscillation wavelength.

【0010】請求項3の発明では、発振波長を定める領
域を加熱することにより光学長を変えるようにした。
In the third aspect of the invention, the optical length is changed by heating the region that determines the oscillation wavelength.

【0011】[0011]

【作用】請求項1の発明では、それぞれ光学長が異な
る、発光領域12と位相制御領域13とで構成された共
振器Aと、発振波長を定める領域15における第1の共
振器Bと、第2の共振器Cとでそれぞれ決定される内部
縦モードのうち、すべて同じ波長となるモードが必ず1
つしかないようにして、発振波長を単一モードにした。
According to the invention of claim 1, a resonator A having a light emitting region 12 and a phase control region 13 having different optical lengths, a first resonator B in a region 15 for defining an oscillation wavelength, and a first resonator B Of the internal longitudinal modes determined by the two resonators C, the mode with the same wavelength is always 1
There was only one, and the oscillation wavelength was a single mode.

【0012】請求項2の発明では、上記共振器A、B、
Cの光学長を変えて、各共振器の縦モードの位置を変化
させ、すべてのモードが一致する位置も変え、発振波長
を変化させる。
According to a second aspect of the invention, the resonators A, B,
By changing the optical length of C, the position of the longitudinal mode of each resonator is changed, the position where all modes match is also changed, and the oscillation wavelength is changed.

【0013】請求項3の発明では、それぞれの共振器を
加熱することにより共振器の光学長を変え、導波路の屈
折率を変化させるようにしたので、キャリア密度のゆら
ぎがなく、スペクトル線幅の劣化を生じない。
According to the third aspect of the present invention, the optical length of each resonator is changed by heating each resonator so that the refractive index of the waveguide is changed. Does not deteriorate.

【0014】[0014]

【実施例】以下、本発明の実施例を述べる。1μm帯の
半導体レーザでは約100nmの利得帯域を持っている
のため、100nmの範囲で縦モードを選択することが
できれば、100nmの範囲で波長シフト(周波数チュ
ーニング)が可能となる。
EXAMPLES Examples of the present invention will be described below. Since a 1 μm band semiconductor laser has a gain band of about 100 nm, if the longitudinal mode can be selected in the range of 100 nm, wavelength shift (frequency tuning) is possible in the range of 100 nm.

【0015】まず、請求項1の発明の実施例をのべる。
請求項1の発明では、半導体レーザのなかに3種類の長
さL1、L2、L3の共振器A、B、Cを構成し、その
3種類の共振器内でそれぞれ決定される内部縦モードの
うち、すべて同じ波長となるモードが必ず1つしかない
ようにして、発振波長を単一モードにした。それを説明
したのが図2である。モデルにおいて、L1は発光領域
12と位相制御領域13とで構成された共振器Aの長さ
を示す。そして、発光領域12以外の部分は発振波長を
定める領域15とし、発振波長を定める領域15の一部
は位相制御領域13であり、他の部分は反射領域14と
する。反射領域14において、ガイド層3の厚い部分を
第1の共振器Bとし、その共振器長をL2とする。ガイ
ド層3の薄い部分は第2の共振器Cとし、その共振器長
をL3とする。ガイド層3の厚さの変化したところは屈
折率差が生じ、それぞれの第1の共振器B、第2の共振
器Cの部分的な反射を生じる端面となる。共振器長L1
を500μm(発光領域300μm、位相制御領域20
0μm)、屈折率n1を3.25、波長λ0を1.55
μmとすると、共振器Aの縦モードの間隔Δλ1はΔλ
1=λ0・λ0/(2・n1・L1)より0.74nm
となる。次に、共振器長L2を50μm、屈折率n2を
3.25とすると、共振器Bの縦モードの間隔Δλ2は
7.4nmとなる。さらに、共振器長L3を40μm、
屈折率n3を3.20とすると、共振器Cの縦モード間
隔Δλ3は9.4nmとなる。この3つの共振器A、
B、Cでは、モードの位置が一致する箇所は必ず1箇所
となり単一縦モードで発振する。ここで、3つの縦モー
ド間隔の値の最小公倍数に相当するモードの波長が利得
領域中に含まれてしまうと、多重モード発振を起こすた
め、L1、L2、L3、n1、n2、n3の設定に際し
てはこれを考慮する必要がある。
First, an embodiment of the invention of claim 1 will be described.
According to the invention of claim 1, three types of resonators A, B, and C having lengths L1, L2, and L3 are formed in the semiconductor laser, and the internal longitudinal mode determined in each of the three types of resonators. Of these, only one mode with the same wavelength was used, and the oscillation wavelength was set to a single mode. This is explained in FIG. In the model, L1 represents the length of the resonator A composed of the light emitting region 12 and the phase control region 13. A portion other than the light emitting region 12 is a region 15 that determines the oscillation wavelength, a part of the region 15 that determines the oscillation wavelength is the phase control region 13, and the other portion is a reflection region 14. In the reflection region 14, the thick portion of the guide layer 3 is the first resonator B, and the resonator length thereof is L2. The thin portion of the guide layer 3 is the second resonator C, and its resonator length is L3. Where the thickness of the guide layer 3 is changed, a difference in refractive index occurs, and the first resonator B and the second resonator C serve as end faces that cause partial reflection. Resonator length L1
500 μm (light emitting region 300 μm, phase control region 20
0 μm), refractive index n1 is 3.25, wavelength λ0 is 1.55
.mu.m, the longitudinal mode spacing .DELTA..lambda.1 of resonator A is .DELTA..lambda.
From 1 = λ0 · λ0 / (2 · n1 · L1) 0.74 nm
Becomes Next, when the resonator length L2 is 50 μm and the refractive index n2 is 3.25, the longitudinal mode interval Δλ2 of the resonator B is 7.4 nm. Further, the resonator length L3 is 40 μm,
When the refractive index n3 is 3.20, the longitudinal mode interval Δλ3 of the resonator C is 9.4 nm. These three resonators A,
In B and C, there is always one place where the mode positions match, and oscillation occurs in the single longitudinal mode. Here, if the wavelength of the mode corresponding to the least common multiple of the values of the three longitudinal mode intervals is included in the gain region, multimode oscillation occurs, so that L1, L2, L3, n1, n2, and n3 are set. In this case, it is necessary to consider this.

【0016】次に、請求項2の発明の実施例を述べる。
請求項2の発明では、上に述べた3つの共振器の光学長
を変えて、屈折率を変化させ、共振器A、共振器B、共
振器Cのそれぞれの縦モードの位置を変え、新たに縦モ
ードが一致した波長で発振させるものである。例えば、
キャリア注入によって得られる1%の屈折率変化量は、
L3の長さの共振器長を有する共振器Cで考えるとΔλ
0=λ0・(Δn/n2)より、15.5nmに相当
し、これはL2の縦モード間隔7.4nmを超えている
ので、L2のすべての縦モードとL3の縦モードのどれ
かが必ず一つだけ一致することになる。当然のことなが
ら、L1の縦モードにおいても同様である。ここで位相
制御領域13の屈折率を変えることでL1での縦モード
間も掃引も可能であり、すべての帯域で単一波長を得ら
れる。
Next, an embodiment of the invention of claim 2 will be described.
In the invention of claim 2, the optical lengths of the three resonators described above are changed to change the refractive index, and the positions of the longitudinal modes of the resonator A, the resonator B, and the resonator C are changed, It oscillates at a wavelength that matches the longitudinal mode. For example,
The refractive index change of 1% obtained by carrier injection is
Considering a resonator C having a resonator length of L3, Δλ
From 0 = λ0 · (Δn / n2), it corresponds to 15.5 nm, which exceeds the longitudinal mode interval of L2 of 7.4 nm. Therefore, any longitudinal mode of L2 or any longitudinal mode of L3 must be used. Only one will match. As a matter of course, the same applies to the L1 vertical mode. Here, by changing the refractive index of the phase control region 13, it is possible to sweep between the longitudinal modes in L1 and obtain a single wavelength in all bands.

【0017】この波長可変動作を図3に示す。縦軸には
発振波長モードの位置を、横軸にはヒータ電力を示す。
本実施例では、ヒータの加熱により屈折率を変化させて
いるが、それ以外の手段でも可能なことは明白である。
格子型ヒータ9(図では、HLaで表される。)による
加熱で共振器長L3の共振器Cの屈折率を変え、L3の
縦モードの波長をシフトさせることで共振器長L2の共
振器の縦モードの各波長へ一致させることができ、大き
な波長シフトが生じ、反射領域14の導波路17上に設
けられた加熱手段であるヒータ11b(図では、HMc
で表される。)による加熱で各共振器の一致した縦モー
ドをシフトさせることで共振器長L1の共振器の縦モー
ドごとに発振波長をシフトさせることができた。さら
に、位相制御領域13の導波路17の上に設けられたヒ
ータ11a(図では、HPcで表される。)により屈折
率を変えてL1の縦モードをかえることで、その縦モー
ド間を位相連続で波長シフトすることができた。
This wavelength variable operation is shown in FIG. The vertical axis represents the position of the oscillation wavelength mode, and the horizontal axis represents the heater power.
In this embodiment, the refractive index is changed by heating the heater, but it is obvious that other means can be used.
The refractive index of the resonator C having the resonator length L3 is changed by heating with the lattice type heater 9 (represented by HLa in the drawing), and the wavelength of the longitudinal mode of L3 is shifted to thereby cause the resonator having the resonator length L2. The wavelengths of the longitudinal modes can be matched with each other, and a large wavelength shift occurs, and the heater 11b (HMc in the figure, which is a heating means provided on the waveguide 17 of the reflection region 14 is provided.
It is represented by. It was possible to shift the oscillation wavelength for each longitudinal mode of the resonator having the resonator length L1 by shifting the matched longitudinal mode of each resonator by heating with (1). Further, by changing the refractive index by a heater 11a (represented by HPc in the figure) provided on the waveguide 17 of the phase control region 13 to change the longitudinal mode of L1, the phase between the longitudinal modes is changed. The wavelength could be continuously shifted.

【0018】請求項3の発明では、従来のようにキャリ
ア注入で屈折率を変えるとスペクトル線幅の広がりが生
じるので、ヒータによる局部加熱によって屈折率を変え
ることにした。ただし、ヒータの熱はガイド層にしか伝
わらず活性層へ熱の拡散がないように熱解析シミュレー
ションを行って構造を設計してある。
According to the third aspect of the invention, since the spectrum line width broadens when the refractive index is changed by carrier injection as in the conventional case, the refractive index is changed by local heating by the heater. However, the structure of the heater is designed by performing a thermal analysis simulation so that the heat of the heater is transmitted only to the guide layer and does not diffuse to the active layer.

【0019】(製造方法)以下、請求項3の発明の実施
例の作製方法を簡単に述べる。図1(A)は素子の上面
図であり、図1(B)は素子のイ−ロによる断面図であ
る。InPの基板1上に1.55μm帯の活性層2を
0.1μm厚成長し、発光領域12の領域以外の部分の
活性層2を除去し、1.3μm帯ガイド層3を0.2μ
m厚成長する。ガイド層3の反射領域14となる箇所に
L2=50μm、L3=40μmの繰り返しとなるよう
にL3の箇所のガイド層3を0.05μm厚さまでエッ
チング処理をする。その後クラッド層5を成長し、約
1.5μm幅の導波路17となるようにメサエッチング
を行い、電流狭窄と光の閉じ込めをかねて埋め込み成長
を行う。
(Manufacturing Method) The manufacturing method of the embodiment of the invention of claim 3 will be briefly described below. FIG. 1A is a top view of the element, and FIG. 1B is a cross-sectional view of the element taken along a line. An active layer 2 of 1.55 μm band is grown to a thickness of 0.1 μm on an InP substrate 1, the active layer 2 other than the light emitting region 12 is removed, and a 1.3 μm band guide layer 3 of 0.2 μm is formed.
Grow m thick. The guide layer 3 at the portion L3 is etched to a thickness of 0.05 μm so that L2 = 50 μm and L3 = 40 μm are repeated on the portion of the guide layer 3 which becomes the reflection region 14. After that, the clad layer 5 is grown, and mesa etching is performed so that the waveguide 17 having a width of about 1.5 μm is formed, and buried growth is performed while also serving as current confinement and light confinement.

【0020】ここまでが成長工程であり、次に電極と加
熱手段であるヒータを形成する段階を述べる。まず、基
板1側と発光領域12の成長側とに電流を注入するため
の電極6、7を形成する。次に、発振波長を定める領域
15すなわち、位相制御領域13と反射領域14の成長
側の面にSiO2の絶縁膜8を堆積する。その上に、先
にエッチングを行なったL3の箇所と一致するように加
熱手段であるAu薄膜の格子型ヒータ9をパターニング
し(図中斜線で示す。)、Auのヒータ9の電極パッド
9a、9bが設けられた部分を除いてまた、SiO2の
絶縁膜10を堆積する。最後に位相制御領域13を加熱
するために位相制御領域13の導波路17の上部に加熱
手段であるAuのヒータ11aと、反射領域14の導波
路の上部に加熱手段であるAuのヒータ11bをパター
ニングする(図中実線で示す)。
Up to this point, the growth process has been described. Next, the step of forming electrodes and a heater as a heating means will be described. First, electrodes 6 and 7 for injecting a current are formed on the substrate 1 side and the growth side of the light emitting region 12. Next, the insulating film 8 of SiO 2 is deposited on the region 15 that defines the oscillation wavelength, that is, the growth-side surfaces of the phase control region 13 and the reflection region 14. On top of that, a lattice type heater 9 of Au thin film which is a heating means is patterned so as to coincide with the location of L3 which was previously etched (indicated by hatching in the figure), and the electrode pad 9a of the heater 9 of Au, An insulating film 10 of SiO 2 is deposited again except for the portion where 9b is provided. Finally, in order to heat the phase control region 13, an Au heater 11a which is a heating means is provided above the waveguide 17 of the phase control region 13, and an Au heater 11b which is a heating means is provided above the waveguide of the reflection region 14. Patterning (shown by the solid line in the figure).

【0021】上に述べた実施例は、発振波長を定める領
域15を発光領域12の片側に設けたが、両側に設けて
も同様な効果が得られることは明白である。また、第1
の共振器Bと第2の共振器Cが交互に設けられている
が、第1の共振器が連続し、その後の第2の共振器Cが
設けられている構造も当然に考えられる。さらに、共振
器の長さは固有値とは限らず、反射性を有する端面の形
成も導波路の幅を変える方法や温度分布で屈折率差を設
ける方法も可能であり、共振器も透明の導波路に限ら
ず、利得または吸収を有するものでも、同様な動作が可
能である。さらにまた、導波路を複数のガイド層で構成
することや量子井戸構造にすること、素子にInP系以
外の光学材料を用いること、屈折率の制御にペルチェな
どの温度制御素子を用いることはすべて本発明の実施例
に含まれる。付け加えると、波長を定める領域は広帯域
スイッチにも応用できる。
In the above-mentioned embodiment, the region 15 for determining the oscillation wavelength is provided on one side of the light emitting region 12, but it is obvious that the same effect can be obtained by providing it on both sides. Also, the first
Although the resonator B and the second resonator C are alternately provided, a structure in which the first resonator is continuous and the second resonator C is provided after that is naturally conceivable. Furthermore, the length of the resonator is not limited to the eigenvalue, and it is possible to form a reflective end face by changing the width of the waveguide or by providing a refractive index difference with the temperature distribution. The same operation is possible not only with a waveguide but also with a gain or absorption. Furthermore, it is all necessary to configure the waveguide with a plurality of guide layers, to have a quantum well structure, to use an optical material other than InP-based material for the element, and to use a temperature control element such as Peltier to control the refractive index. It is included in the embodiments of the present invention. In addition, the wavelength-defining region can also be applied to broadband switches.

【0022】[0022]

【発明の効果】請求項1の発明によれば、回折格子を形
成することなく、単一モード発振が可能となった。請求
項2の発明によれば、単一モードで発振し、素子の利得
帯域のすべてにおいて波長を変化させることが可能とな
った。請求項3の発明によれば、請求項2の発明におい
て、スペクトル線幅の劣化を伴わず低しきい値、高効
率、長寿命の動作を可能にした。
According to the invention of claim 1, single mode oscillation is possible without forming a diffraction grating. According to the invention of claim 2, it is possible to oscillate in a single mode and change the wavelength in the entire gain band of the element. According to the invention of claim 3, in the invention of claim 2, the operation of low threshold value, high efficiency and long life is enabled without deterioration of the spectrum line width.

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項3の発明の実施例の上面図、及び断面図
である。
FIG. 1 is a top view and a sectional view of an embodiment of the invention of claim 3;

【図2】請求項1の発明の原理を説明するための図であ
る。
FIG. 2 is a diagram for explaining the principle of the invention of claim 1;

【図3】請求項2の発明の実施例の特性を示す図であ
る。
FIG. 3 is a diagram showing characteristics of an embodiment of the invention of claim 2;

【図4】従来の技術である分布ブラッグ反射型レーザの
断面図である。
FIG. 4 is a sectional view of a conventional distributed Bragg reflection type laser.

【図5】従来の技術である外部回折格子型レーザの断面
図である。
FIG. 5 is a cross-sectional view of a conventional external diffraction grating laser.

【符号の説明】[Explanation of symbols]

1 基板 2 活性層 3 ガイド層 5 クラッド層 6 電極 7 電極 8 絶縁膜 9 格子型ヒータ 10 絶縁膜 11a ヒータ 11b ヒータ 12 発光領域 13 位相制御領域 14 反射領域 15 発振波長を定める領域 16 ブラッグ反射領域 17 導波路 18 回折格子 A 共振器 B 第1の共振器 C 第2の共振器。 1 Substrate 2 Active Layer 3 Guide Layer 5 Clad Layer 6 Electrode 7 Electrode 8 Insulating Film 9 Lattice Type Heater 10 Insulating Film 11a Heater 11b Heater 12 Light Emitting Area 13 Phase Control Area 14 Reflecting Area 15 Area for Defining Oscillation Wavelength 16 Bragg Reflecting Area 17 Waveguide 18 Diffraction grating A Resonator B First resonator C Second resonator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】同一基板上に発光領域(12)と発振波長
を定める領域(15)とを備えた複合短共振器反射型半
導体レーザにおいて、 少なくとも部分的な反射性を有する端面で画成され、そ
の一つの端面が発光領域と光学的に接続され、発光領域
長よりも短い第1の光学長を有する第1の共振器(B)
と;少なくとも部分的な反射性を有する端面で画成さ
れ、その一つの端面が第1の共振器の他の端面と光学的
に接続され、発光領域長よりも短い第2の光学長を有す
る第2の共振器(C)とを前記発振波長を定める領域に
有することを特徴とする複合短共振器反射型半導体レー
ザ。
1. A compound short cavity reflection type semiconductor laser comprising a light emitting region (12) and a region (15) for defining an oscillation wavelength on the same substrate, wherein the end face is at least partially reflective. A first resonator (B), one end of which is optically connected to the light emitting region and has a first optical length shorter than the length of the light emitting region.
And; defined by at least a partially reflective end face, one end face of which is optically connected to the other end face of the first resonator and has a second optical length shorter than the light emitting region length. A compound short-cavity reflective semiconductor laser having a second resonator (C) in a region that defines the oscillation wavelength.
【請求項2】請求項1に記載の複合短共振器反射型半導
体レーザにおいて、発振波長を定める領域の光学長を変
える手段を備えた複合短共振器反射型半導体レーザ。
2. The compound short-cavity reflective semiconductor laser according to claim 1, further comprising means for changing an optical length of a region that determines an oscillation wavelength.
【請求項3】請求項2に記載の複合短共振器反射型半導
体レーザにおいて、光学長を変える手段に加熱手段を用
いた複合短共振器反射型半導体レーザ。
3. The compound short cavity reflection type semiconductor laser according to claim 2, wherein a heating means is used as a means for changing the optical length.
JP28950192A 1992-10-02 1992-10-02 Complex short resonator reflection semiconductor laser Pending JPH06120613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28950192A JPH06120613A (en) 1992-10-02 1992-10-02 Complex short resonator reflection semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28950192A JPH06120613A (en) 1992-10-02 1992-10-02 Complex short resonator reflection semiconductor laser

Publications (1)

Publication Number Publication Date
JPH06120613A true JPH06120613A (en) 1994-04-28

Family

ID=17744095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28950192A Pending JPH06120613A (en) 1992-10-02 1992-10-02 Complex short resonator reflection semiconductor laser

Country Status (1)

Country Link
JP (1) JPH06120613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012575A1 (en) * 1994-10-19 1996-05-02 Davy Mckee (Sheffield) Limited Gauge control of a rolling mill
JP2008034657A (en) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd Method of generating carrier suppressed optical pulse train, and mode synchronous semiconductor laser for achieving the same
JP7151934B1 (en) * 2021-12-07 2022-10-12 三菱電機株式会社 Optical semiconductor device, optical modulator and optical transmitter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012575A1 (en) * 1994-10-19 1996-05-02 Davy Mckee (Sheffield) Limited Gauge control of a rolling mill
JP2008034657A (en) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd Method of generating carrier suppressed optical pulse train, and mode synchronous semiconductor laser for achieving the same
JP7151934B1 (en) * 2021-12-07 2022-10-12 三菱電機株式会社 Optical semiconductor device, optical modulator and optical transmitter
WO2023105644A1 (en) * 2021-12-07 2023-06-15 三菱電機株式会社 Optical semiconductor device, optical modulator, and optical transmission device

Similar Documents

Publication Publication Date Title
US10193305B2 (en) Wavelength tunable laser device and laser module
KR100541913B1 (en) Sampled-Grating Distributed Feedback Wavelength-Tunable Semiconductor Laser Integrated with Sampled-Grating Distributed Bragg Reflector
US5379318A (en) Alternating grating tunable DBR laser
JP3198338B2 (en) Semiconductor light emitting device
US6594298B2 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
JP2003017803A (en) Wavelength tunable semiconductor laser and optical module
JPH07273400A (en) Semiconductor laser
JPH1146046A (en) Single mode laser
JP2002353556A (en) Integrated tunable laser
JP3689483B2 (en) Multiple wavelength laser
JP3220259B2 (en) Laser device
KR100626270B1 (en) Widely Tunable Coupled-Ring Reflector Laser Diode
JPH06120613A (en) Complex short resonator reflection semiconductor laser
JP3064118B2 (en) Distributed reflection semiconductor laser
JPH06112570A (en) Distributed bragg-reflection type semiconductor laser
JPS63231403A (en) Optical apparatus having light waveguide
JPH06313818A (en) Light reflector
JP3247431B2 (en) Distributed reflection semiconductor laser
JP3247450B2 (en) Semiconductor light emitting element and external cavity type semiconductor optical device
Ishizaka et al. Wavelength tunable laser using silica double ring resonators
JP5034572B2 (en) Light source device
JP2770898B2 (en) Tunable semiconductor laser
JP2004273644A (en) Semiconductor laser
JP2000223774A (en) Wavelength-variable light source
KR100377193B1 (en) Multi-wavelength semiconductor laser array and method for fabricating the same