JPS5892243A - Package for fet - Google Patents
Package for fetInfo
- Publication number
- JPS5892243A JPS5892243A JP56191173A JP19117381A JPS5892243A JP S5892243 A JPS5892243 A JP S5892243A JP 56191173 A JP56191173 A JP 56191173A JP 19117381 A JP19117381 A JP 19117381A JP S5892243 A JPS5892243 A JP S5892243A
- Authority
- JP
- Japan
- Prior art keywords
- conductive layer
- fet
- electrode
- gate electrode
- package
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/645—Inductive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48237—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1032—III-V
- H01L2924/10329—Gallium arsenide [GaAs]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13063—Metal-Semiconductor Field-Effect Transistor [MESFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
- Microwave Amplifiers (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は電界効果トランジスタ(以下FETと略す)
用パッケージに係り、詳しくは入力反射係数低減用のノ
ースイングクタンスを内蔵したFET用パッケージに関
するものである。[Detailed Description of the Invention] This invention relates to a field effect transistor (hereinafter abbreviated as FET)
The present invention relates to a FET package, and more specifically, to an FET package that includes a built-in no-swing factor for reducing the input reflection coefficient.
第1図は、従来形のデュアルゲー) FET用パッケー
ジの内部構造の一例を示す平面図でめる0第1図に示す
ように、セラ建ツクなどからなる絶縁性基板il+の一
生面上に、その中央部から一側部にかけてソース電極用
導電層(2)が例えばメタライズにより形成される0絶
縁性基板(1)の−主面上のソース電極用導電層(2)
の向い側及び左右両側には、電気的に絶縁されて、第2
ゲート電極用導電層(3)、第1ゲート電極用導電層(
4)、ドレイン電極用導電層(6)がそれぞれ形成され
る0
第2図は第1図に示すFET用パッケージに、ガリウム
ヒ素ショットキ障壁形電界効果トランジスタ(以下Ga
Aa MES FETと略す)チップを装着した場合の
一実施例を示す平面図である。第2図においてソース電
極用導電層(2)にu GaAs MES FETチッ
プ(6)が機械的に接続され、GaAa MES FE
Tチップ(6)上のソース電極(7)、第2ゲート電極
(8)、第1ゲート電極(9)及びドレイン電極頭は、
それぞれソース電極用導電層(2)、第2ゲート電極用
導電層(3)、第1ゲート電極用導電層(4)及びドレ
イン電極用導電層(5)に、金属細線αυで接続される
。Figure 1 is a plan view showing an example of the internal structure of a conventional dual-gate FET package. , the source electrode conductive layer (2) is formed on the -main surface of the insulating substrate (1), for example, by metallization, from the center to one side of the source electrode conductive layer (2).
On the opposite side and on both left and right sides are electrically insulated second
Conductive layer for gate electrode (3), conductive layer for first gate electrode (
4) and a conductive layer (6) for the drain electrode are respectively formed.
FIG. 2 is a plan view showing an example in which an Aa MES FET (abbreviated as Aa MES FET) chip is attached. In FIG. 2, a uGaAs MES FET chip (6) is mechanically connected to the source electrode conductive layer (2), and the GaAa MES FE
The source electrode (7), second gate electrode (8), first gate electrode (9) and drain electrode head on the T chip (6) are as follows:
The conductive layer for the source electrode (2), the conductive layer for the second gate electrode (3), the conductive layer for the first gate electrode (4), and the conductive layer for the drain electrode (5) are respectively connected to the thin metal wire αυ.
このような、従来形のGaA@ Miss FETは、
数GH3□のマイクロ波帯において低雑音、高利得の優
れた特性を有する素子として広く実用化されているが、
近年、その低雑音、高利得特性に着目して、IGHz帯
以下のUHF帯にも適用する試みがなされている。This kind of conventional GaA@Miss FET is
It has been widely put into practical use as an element with excellent characteristics of low noise and high gain in the microwave band of several GH3□.
In recent years, attention has been focused on its low noise and high gain characteristics, and attempts have been made to apply it to the UHF band below the IGHz band.
しかし、このような従来形のGaAs MES FET
をUHF帯で用いようとする場合には次のような問題点
がめった。すなわち、GaAs MKS FETは、U
HF帯において本質的に入力反射係数が大きく、応用機
器のインピーダンス(通常500)と整合をとることが
非常に困難となり、特に、広帯域特性t−要求される場
合には致命的な欠点となる。However, such conventional GaAs MES FET
When attempting to use this in the UHF band, the following problems were encountered. That is, the GaAs MKS FET is
In the HF band, the input reflection coefficient is essentially large, making it very difficult to match the impedance (usually 500) of the applied equipment, which is a fatal drawback especially when broadband characteristics are required.
本発明は、上記欠点に鑑みてなされたものであり、ソー
スにインダクタンスを設けることにより、GaAs M
KS FETの入力反射係数を低減させて、帯域特性を
改善することのできるFET用パッケージを提供しよう
とするものである。The present invention has been made in view of the above-mentioned drawbacks, and by providing an inductance in the source, GaAs M
The present invention aims to provide a FET package that can improve the band characteristics by reducing the input reflection coefficient of the KS FET.
以下、図面に基づいてこの発明を説明する。The present invention will be explained below based on the drawings.
第3図は、本発明のFIT用パツケー゛ジの一実施例を
示す平面図である。第3図において、第1図と対応する
部分には同−符号全村して示したが、この実施例のFE
T用パッケージにおいては、ソース電極用導電層を延長
したインダクタンス用導電層@を設けている。FIG. 3 is a plan view showing an embodiment of the FIT package of the present invention. In FIG. 3, all parts corresponding to those in FIG. 1 are shown with the same reference numerals.
In the T package, an inductance conductive layer @ which is an extension of the source electrode conductive layer is provided.
第4図は、第3図のFET用パッケージにGaAaME
S FETチップを装着した場合の一実施例を示す平面
図である。第4図において、第2図と対応する部分には
同一符号を付して示したが、この実施例のGaAs M
ES FETにおいては、ソースのインダクタンスが、
第2図のそれに比べてかなり大きくなっている。Figure 4 shows GaAaME in the FET package of Figure 3.
FIG. 3 is a plan view showing an example in which an S FET chip is attached. In FIG. 4, parts corresponding to those in FIG. 2 are denoted by the same reference numerals.
In ES FET, the source inductance is
It is considerably larger than that in Figure 2.
従って、このソースのインダクタンスの効果により、U
HF帯においても入力反射係数を低減することができ、
応用機器とのインピーダンス整合が容易になり、帯域特
性が改善される。Therefore, due to the effect of this source inductance, U
The input reflection coefficient can be reduced even in the HF band,
Impedance matching with applied equipment becomes easier and band characteristics are improved.
なお、このソースのインダクタンスにより、雑音特性、
利得特性は多少悪化するが、UHF帯においてはこれら
の特性は充分余裕があるので、入力反射係数の低減を考
慮すれば総合的には非常に実用性の高い特性を得ること
ができる。Note that due to the inductance of this source, the noise characteristics
Although the gain characteristics deteriorate to some extent, these characteristics have sufficient margin in the UHF band, so if the reduction of the input reflection coefficient is taken into consideration, very practical characteristics can be obtained overall.
以上−1詳細に説明し九ように、本発明のFET用パッ
ケージにGaAs MES FETチップを装着すれば
、ソースにインダクタンスを内蔵しているため、UHF
帝においても入力反射係数の小さい、帯域特性の優り、
ft GaAs MES FETを得ることができる。As explained above in detail in 1-1, if a GaAs MES FET chip is attached to the FET package of the present invention, the UHF
Excellent band characteristics with small input reflection coefficient,
ft GaAs MES FETs can be obtained.
なお、本発明は、デュアルゲートFETのみならず、シ
ングルグー) FETにも適用できるのはもちろんであ
る。Note that the present invention is of course applicable not only to dual gate FETs but also to single gate FETs.
[1図は、従来形のデュアルグー)FET用パッケージ
の内部構造の一例を示す平面図、第2図はjlI1図に
示すFET用パッケージにGaAs MES FETチ
ップを装着した場合の一実施例を示す平面図、第3図は
本発明のFET、用パッケージの内部構造の一例を示す
平面図、第4図は第3図のFIT用パッケージK Ga
As MES FETチップを装着した場合の一実施例
を示す平面図である。
図中+1)は絶縁性基板、(2)はソース電極用導電層
、(3)は第2ゲート電極用導電層、(4)は第1ゲー
ト電極用導電層、(5)はドレイン電極用導電層、(6
)はGaAs MES FISTチップ、(7)はソー
ス電極、+81/fi第2ゲート電極、(9)は第1ゲ
ート電極、(10)はドレイン電極、(ロ)は金属細線
、Qjlはインダクタンス用導電層である。
なお、図中の同一符号は同一または相当部分を示す0
代理人 葛野信−
第1図
第2図
第3図
第4図[Figure 1 is a plan view showing an example of the internal structure of a conventional dual-type FET package, and Figure 2 shows an example in which a GaAs MES FET chip is attached to the FET package shown in Figure 1. 3 is a plan view showing an example of the internal structure of the FET package of the present invention, and FIG. 4 is the FIT package KGa of FIG. 3.
FIG. 2 is a plan view showing an example in which an As MES FET chip is attached. In the figure, +1) is an insulating substrate, (2) is a conductive layer for the source electrode, (3) is a conductive layer for the second gate electrode, (4) is a conductive layer for the first gate electrode, and (5) is for the drain electrode. conductive layer, (6
) is a GaAs MES FIST chip, (7) is a source electrode, +81/fi second gate electrode, (9) is a first gate electrode, (10) is a drain electrode, (b) is a thin metal wire, and Qjl is a conductor for inductance. It is a layer. In addition, the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
成され互いに電気的に絶縁された第1ゲート電極用導電
層、第2ゲート電極用導電層、ドレイン電極用導電層、
ソース電極用導電層及び上記ソース電極用導電層から延
長されたインダクタンス用導電層とを備えてなる電界効
果トランジスタ用パッケージ。an insulating substrate; a first gate electrode conductive layer, a second gate electrode conductive layer, and a drain electrode conductive layer formed on the entire surface of the insulating substrate and electrically insulated from each other;
A package for a field effect transistor comprising a conductive layer for a source electrode and a conductive layer for inductance extending from the conductive layer for the source electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56191173A JPS5892243A (en) | 1981-11-27 | 1981-11-27 | Package for fet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56191173A JPS5892243A (en) | 1981-11-27 | 1981-11-27 | Package for fet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5892243A true JPS5892243A (en) | 1983-06-01 |
JPS6255722B2 JPS6255722B2 (en) | 1987-11-20 |
Family
ID=16270108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56191173A Granted JPS5892243A (en) | 1981-11-27 | 1981-11-27 | Package for fet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5892243A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60236508A (en) * | 1984-05-10 | 1985-11-25 | Dx Antenna Co Ltd | Wide band amplifier |
JPH02143604A (en) * | 1988-11-25 | 1990-06-01 | Nec Corp | Ultrahigh frequency amplifier |
US5164877A (en) * | 1990-02-23 | 1992-11-17 | Fuji Electric Co., Ltd. | Semiconductor device |
JP2008056389A (en) * | 2006-08-30 | 2008-03-13 | Komori Corp | Belt-like body passing through method and its device |
-
1981
- 1981-11-27 JP JP56191173A patent/JPS5892243A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60236508A (en) * | 1984-05-10 | 1985-11-25 | Dx Antenna Co Ltd | Wide band amplifier |
JPH02143604A (en) * | 1988-11-25 | 1990-06-01 | Nec Corp | Ultrahigh frequency amplifier |
US5164877A (en) * | 1990-02-23 | 1992-11-17 | Fuji Electric Co., Ltd. | Semiconductor device |
JP2008056389A (en) * | 2006-08-30 | 2008-03-13 | Komori Corp | Belt-like body passing through method and its device |
Also Published As
Publication number | Publication date |
---|---|
JPS6255722B2 (en) | 1987-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5789791A (en) | Multi-finger MOS transistor with reduced gate resistance | |
US4843440A (en) | Microwave field effect transistor | |
US4298879A (en) | Field effect transistor | |
KR960026768A (en) | Insulated Gate Semiconductor Device | |
JPS5892243A (en) | Package for fet | |
KR860000971B1 (en) | Microwave field effect transistor | |
GB2236617A (en) | A high frequency fet | |
JP2504503B2 (en) | Semiconductor element | |
JPH05335487A (en) | Transmission circuit element | |
JP2594558B2 (en) | Field-effect transistor | |
JP2671423B2 (en) | Superconducting distributed amplifier | |
JPH0496339A (en) | Wiring structure of filed-effect transistor | |
JPH03211870A (en) | Monolithic microwave integrated circuit | |
JP2576773B2 (en) | Multi-finger field effect transistor | |
JPH06267996A (en) | Semiconductor analog integrated circuit | |
JPH065758B2 (en) | Semiconductor device | |
JP3096046B2 (en) | Microwave semiconductor device | |
JPH0363315B2 (en) | ||
JPH054281Y2 (en) | ||
JP2718405B2 (en) | Semiconductor device | |
JPS62243370A (en) | High frequency field effect transistor | |
JPS6211018Y2 (en) | ||
JPS6114671B2 (en) | ||
JPH066150A (en) | High frequency transistor circuit | |
JPH05267489A (en) | Field-effect transistor |