JPS589123B2 - Tenro Chibari Tai Kabutsuno Sonmousokudogensyouhou - Google Patents

Tenro Chibari Tai Kabutsuno Sonmousokudogensyouhou

Info

Publication number
JPS589123B2
JPS589123B2 JP50071157A JP7115775A JPS589123B2 JP S589123 B2 JPS589123 B2 JP S589123B2 JP 50071157 A JP50071157 A JP 50071157A JP 7115775 A JP7115775 A JP 7115775A JP S589123 B2 JPS589123 B2 JP S589123B2
Authority
JP
Japan
Prior art keywords
mgo
slag
amount
sio2
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50071157A
Other languages
Japanese (ja)
Other versions
JPS51146314A (en
Inventor
滑石直幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP50071157A priority Critical patent/JPS589123B2/en
Publication of JPS51146314A publication Critical patent/JPS51146314A/en
Publication of JPS589123B2 publication Critical patent/JPS589123B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 本発明はMgOおよびCaOを主成分とする耐火物に係
り、さらに詳しくはドロマイト質耐火物で内張された純
酸素上吹転炉の造滓材として特許請求範囲に示す計算式
を満足するような量の石炭及び苦土珪酸質鉱物を使用し
てスラグの塩基度およびスラグ中のMgOの濃度を調節
することによって使用耐火物の損耗速度を減少させる方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractory mainly composed of MgO and CaO, and more specifically, as a slag material for a pure oxygen top-blown converter lined with a dolomite refractory. This invention relates to a method for reducing the wear rate of refractories used by adjusting the basicity of slag and the concentration of MgO in slag using coal and magnesium silicate minerals in amounts that satisfy the calculation formula shown below. be.

製鋼に用いられる純酸素上吹転炉の内張り材料としては
通常MgOおよびOaOを主成分とするドロマイト質耐
火物が使用される。
Dolomitic refractories containing MgO and OaO as main components are usually used as the lining material for pure oxygen top-blown converters used in steelmaking.

このドロマイト質耐火物に用いられる原料はドロマイト
クリンカー、合成ドロマイトクリンカー、マグネシアク
リンカーである。
The raw materials used for this dolomitic refractory are dolomite clinker, synthetic dolomite clinker, and magnesia clinker.

ドロマイトクリンカーはドロマイト鉱石を高温に焼成し
たものでわが国で産するものは通常MgO33%、Ca
061%前後の化学成分を有している。
Dolomite clinker is made by firing dolomite ore at high temperature, and the one produced in Japan usually contains 33% MgO and Ca.
It has a chemical composition of around 0.061%.

合成ドロマイトクリンカーは海水より得られた水酸化マ
グネシウムに石灰を加え焼成したものでMgO74%、
CaO24%前後の化学成分を示す。
Synthetic dolomite clinker is made by adding lime to magnesium hydroxide obtained from seawater and calcining it, and it contains 74% MgO.
The chemical composition is approximately 24% CaO.

マグネシアクリンカーはマグネサイト、ブルーサイト等
を焼成しても得られるがわが国においては通常海水に石
炭を加えて得た水酸化マグ子シウムを焼成した海水マグ
ネシアクリンカーでMgO含有量MgO95〜99%の
ものが通常使用されている。
Magnesia clinker can be obtained by calcining magnesite, brucite, etc., but in Japan, it is usually seawater magnesia clinker made by calcining magnesium hydroxide obtained by adding coal to seawater, and has an MgO content of 95 to 99%. is usually used.

前記原料を粉砕し、粒度調節したものにタールピッチを
加えて加熱混練し成形して煉瓦とするかさらに300〜
400℃でベーキングしたものがタールドロマイト煉瓦
である。
The above raw materials are pulverized, particle size adjusted, tar pitch is added, heated and kneaded, and molded into bricks.
Tar dolomite bricks are baked at 400°C.

また粉砕し、粒度調節した原料にワックス、アスファル
ト、クマロン樹脂、アタクテイツクポリプロピレン等の
有機結合剤を加えて成形し通常1400〜1700℃の
温度で焼成したものが焼成ドロマイト煉瓦である。
Burnt dolomite bricks are made by adding organic binders such as wax, asphalt, cumaron resin, and attacking polypropylene to the pulverized raw materials whose particle size has been adjusted, molding them, and firing them at a temperature of usually 1,400 to 1,700°C.

これらの煉瓦の化学成分は種々の原料の組合せによって
変るが一般に転炉の内張材料としてはMgO50〜90
%、CaO45〜8%、不純物量(Fe2O3,Al2
O3,SiO2の合量)1〜5%の範囲のものが使用さ
れている。
The chemical composition of these bricks varies depending on the combination of various raw materials, but generally MgO50-90 is used as a converter lining material.
%, CaO45-8%, impurity amount (Fe2O3, Al2
The total amount of O3 and SiO2 used is in the range of 1 to 5%.

転炉はこれらの耐火物を内張材料として使用し溶銑、屑
鉄、石炭、螢石、その他の副原料を加えて酸素を吹込み
精錬を行って鋼が製造されているこの過稈でCaO,S
iO2,FeOn,MnO,P2O5等を含むスラグが
生成しこのスラグが耐火物と反応してその損耗が激しく
なる。
Converter furnaces use these refractories as lining materials, add hot metal, scrap iron, coal, fluorite, and other auxiliary materials, and refine them by blowing in oxygen to produce steel.In this overculm, CaO, S
Slag containing iO2, FeOn, MnO, P2O5, etc. is generated, and this slag reacts with the refractory, resulting in severe wear and tear.

耐火物がある厚さまで損耗されると転炉の操業を中止し
て新しい耐火物と取替えねばならない。
When the refractory is worn down to a certain thickness, the converter must be taken out of operation and replaced with new refractory.

従って作業の能率、築炉の費用、煉瓦の費用を節約する
ために耐火物の損耗速度をなるべく小さくして転炉の寿
命を延長させることが望まれる。
Therefore, in order to save work efficiency, the cost of furnace construction, and the cost of bricks, it is desirable to extend the life of the converter by reducing the wear rate of the refractory as much as possible.

そのためには煉瓦の材質改善、吹付補修の実施が為され
ているさらにもう一つの方法としてスラグの組成を調節
して耐火物の損耗速度を低下する試みが為されている。
To this end, improvements are being made to the material of the bricks and spraying repairs are being carried out.Another method is attempting to reduce the rate of wear and tear of the refractories by adjusting the composition of the slag.

例えば特公昭42−12327では活性MgOまたば活
性型のドロマイト質石炭をスラグに添加することによっ
てスラグ中のMgO濃度を高めて煉瓦の化学的溶解速度
を下げようとするものである。
For example, Japanese Patent Publication No. 42-12327 attempts to reduce the chemical dissolution rate of bricks by increasing the MgO concentration in slag by adding activated MgO or activated dolomitic coal to slag.

寸だ特公昭48−8691ではスラグ中のMgO濃度を
高めるために蛇紋岩を使用している。
Sunda Tokko Sho 48-8691 uses serpentine to increase the MgO concentration in slag.

ところで前述のようにわが国においては転炉の内張材料
としてMgO,CaOを主成分とするドロマイト質耐火
物が多く使用されている。
By the way, as mentioned above, in Japan, dolomite refractories containing MgO and CaO as main components are often used as lining materials for converters.

発明者等は種々の実験によりドロマイト質耐火物の場合
にはスラグ中のMgO濃度を高めるとともにスラグの塩
基度を低下させると耐火物の損耗速度が著しく低下する
ことを見出し、本発明を完成させたものである。
Through various experiments, the inventors discovered that in the case of dolomitic refractories, increasing the MgO concentration in the slag and lowering the basicity of the slag significantly reduces the wear rate of the refractories, and completed the present invention. It is something that

第1図にMgO90%、MgO78%のドロマイト煉瓦
およびMgO98%のマグネシア煉瓦について、CaO
−SiO2−Fe2O3系スラグの塩基度を変化させて
回転侵食試験を行た結果を示す。
Figure 1 shows the CaO
The results of a rotary erosion test performed by varying the basicity of -SiO2-Fe2O3-based slag are shown.

従来の常識はMgO系あるいはMgO−CaO質耐火物
の溶損速度は塩基度が高くなるにつれて小さくなると考
えられていた。
Conventionally, it was thought that the erosion rate of MgO-based or MgO-CaO refractories decreases as the basicity increases.

この実験結果によると、純マグネシア煉瓦では塩基度が
高いほど侵食が小さいのに対してドロマイト質煉瓦では
予期に反して塩基度が2〜3.5という比較的低い範囲
で侵食量が小さくなり、さらに塩基度が前記の範囲を越
えると侵食量が増加する。
According to the experimental results, in pure magnesia bricks, the higher the basicity, the smaller the erosion, while in the case of dolomite bricks, contrary to expectations, the amount of erosion becomes smaller in the relatively low basicity range of 2 to 3.5. Furthermore, when the basicity exceeds the above range, the amount of erosion increases.

またMgO90%の煉瓦について、CaO−Fe2O3
−siO2系スラグにMgOを添加して侵食試験を行っ
た結果を第2図に示すが、塩基度2〜3.5の場合にM
gOを添加すると溶損量の減少効果の大きいことがわか
った。
Also, regarding bricks with 90% MgO, CaO-Fe2O3
Figure 2 shows the results of an erosion test performed by adding MgO to -siO2-based slag.
It was found that the addition of gO had a large effect in reducing the amount of erosion loss.

これはスラグのCaO/SiO2比が大きくなると、C
aO−Fe2O3系の液相が多くなると考えられ、この
CaO−Fe2O3系の液相に対する抵抗性にドロマイ
ト耐火物は劣るためスラグの塩基度が高くなると溶損速
度が大きくなるものと推定される。
This is because as the CaO/SiO2 ratio of slag increases, C
It is thought that the aO--Fe2O3-based liquid phase increases, and dolomite refractories are inferior in resistance to this CaO--Fe2O3-based liquid phase, so it is presumed that as the basicity of the slag increases, the rate of erosion increases.

この実験結果を基にして転炉へ適用する場合マグネシア
源として軽焼ドロマイトを使用した場合には、塩基度を
低くメするとCaOの量が少なくなって脱燐、脱硫反応
の面から好ましくなく何等かの形でSiO2源を同時に
加える必要があると考えられる。
Based on this experimental result, when applying it to a converter, if lightly calcined dolomite is used as a magnesia source, if the basicity is lowered, the amount of CaO will decrease, which is undesirable from the viewpoint of dephosphorization and desulfurization reactions. It is considered necessary to simultaneously add the SiO2 source in this manner.

その意味からMgOとSiO2の両者を含有する苦土珪
酸質鉱物を使用することが望ましい。
In this sense, it is desirable to use a magnesium silicate mineral containing both MgO and SiO2.

苦土珪酸質鉱物としては、MgO28〜50%、SiO
230〜62%含む鉱物例えば蛇紋岩(主成分3MgO
,2SiO2,2H2O)ズン岩(主成分2(Mg−F
e)O−SiO2)、滑石(主成分3MgO・4SiO
2・H2O)の利用が可能である。
Magnesium silicic minerals include MgO28-50%, SiO
Minerals containing 230-62%, such as serpentine (main component 3MgO
, 2SiO2, 2H2O) dungite (main component 2 (Mg-F
e) O-SiO2), talc (main components 3MgO, 4SiO
2.H2O) can be used.

今、これらの苦土珪酸質鉱物中の MgO含有量を 〔MgO〕M(%) 使用量を WM 石炭量を WL 溶銑中のSi量を〔Si〕p(%) 溶銑の量を WP とすると塩基度Bは であり、第1図および第2図で示した実験結果からB=
2〜3.5、A=0.08以上が好ましいことがわかる
Now, if the MgO content in these magnesian silicic minerals is [MgO]M (%), the amount used is WM, the amount of coal is WL, the amount of Si in hot metal is [Si]p (%), and the amount of hot metal is WP. The basicity B is, and from the experimental results shown in Figures 1 and 2, B=
It can be seen that 2 to 3.5 and A=0.08 or more are preferable.

またAについては0.07を越えるとスラグの粘度が高
くなって好ましくなく、A=0.08〜0.07が最適
である。
Moreover, when A exceeds 0.07, the viscosity of the slag increases, which is undesirable, and A=0.08 to 0.07 is optimal.

本発明の方法をさらに効果的にするには石灰石と苦土珪
酸質鉱物を粉砕混合してブリケット状とし1300℃前
後の温度で焼結せしめたものを使用すると滓化速度が非
常に早く最も能率的である。
In order to make the method of the present invention even more effective, the slag formation speed is very fast and the most efficient method is to use briquettes made by pulverizing and mixing limestone and magnesium silicate minerals and sintering them at a temperature of around 1300°C. It is true.

以下実施例について記述する。Examples will be described below.

実施例1 100t純酸素上吹転炉を用いて通常の操業を行つた場
合と本発明の方法による場合の煉瓦の損耗速度を比較し
た。
Example 1 The wear rate of bricks was compared between normal operation using a 100 t pure oxygen top-blowing converter and the method of the present invention.

溶銑および製造される鋼の化学成分を第1表に示す。The chemical composition of the hot metal and the steel produced are shown in Table 1.

また使用した蛇紋岩の化学成分を第2表に示す。The chemical composition of the serpentine used is shown in Table 2.

前述の(1)(2)式を用いてB,A,WL,WMの関
係を求めたのが第2図および第3図である。
FIGS. 2 and 3 show the relationships among B, A, WL, and WM determined using the above-mentioned equations (1) and (2).

今B=3,A=0.05,即ち石灰4.5t,蛇紋岩0
.75t使用して低炭素鋼60回、中炭素鋼40回の操
業を行った。
Now B = 3, A = 0.05, that is, 4.5 tons of lime, 0 serpentine
.. Using 75 tons, low carbon steel was used 60 times and medium carbon steel was used 40 times.

なお溶銑配合率は80%である。Note that the molten pig iron blending ratio is 80%.

炉内径の拡大をトラニオン部について調査した結果は1
.54mmであり従って損耗速度は0.77mm/回で
ある。
The results of investigating the expansion of the furnace inner diameter at the trunnion part are 1.
.. 54 mm, so the wear rate is 0.77 mm/time.

同様の操業を従来法で行った場合の損耗速度は0.95
mm/回で本発明の方法を実施することにより損耗速度
が小さくなった。
The wear rate when similar operations were carried out using the conventional method was 0.95.
The wear rate was reduced by implementing the method of the invention at mm/times.

実施例2 この例では石灰石と蛇紋岩を混合焼成して造滓剤を作っ
た。
Example 2 In this example, limestone and serpentine were mixed and fired to create a slag-forming agent.

今B=28,A=0.07とするとWL=4.5,WM
=1.08、石灰石のIgLossを42%とすると混
合比は石灰石91%に対して蛇紋岩9%となる。
Now if B=28, A=0.07, WL=4.5, WM
= 1.08, and if the IgLoss of limestone is 42%, the mixing ratio is 91% limestone and 9% serpentine.

これらの原料をチューブミルで200メッシュ以下の粒
度に粉砕して上記の比率に混合し水分5%添加してブリ
ケット成形機で成形し、長さ40mmのアーモンド状と
する。
These raw materials are ground to a particle size of 200 mesh or less using a tube mill, mixed to the above ratio, added with 5% moisture, and shaped using a briquette molding machine to form an almond shape with a length of 40 mm.

ついでロータリーキルンで1300℃に焼成する。Then, it is fired at 1300°C in a rotary kiln.

このようにして製造した造滓剤を用いて100t転炉の
操業を行った。
A 100 t converter was operated using the slag forming agent thus produced.

溶銑および製造する鋼の化学成分は第1表と同じである
The chemical composition of the hot metal and the steel to be produced are the same as in Table 1.

造滓剤の添加量は5.6t、溶銑配合率は80%である
The amount of slag-forming agent added was 5.6 tons, and the hot metal blending ratio was 80%.

この場合の損耗速度は0.70mm/回で常法に比較す
ると27%向上した。
The wear rate in this case was 0.70 mm/time, which was a 27% improvement compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCaO−SiO2−Fe2O3系スラグによる
MgO78%ドロマイト質煉瓦MgO90%ドロマイト
質煉瓦およびMgO98%マグネシア煉瓦の侵食寸法と
スラグ塩基度の関係図。 第2図はCaO−SiO2−Fe2O3系スラグによる
侵食寸法とスラグの塩基度およびMgO量/CaO+S
iO2量の関係図、第3図は〔Si〕P=0.7,〔M
gO〕M=37.9%,〔SiO2〕M=87.6%の
ときのB,AとWLの関係図。 第4図は〔Si〕P=0.7,〔MgO〕M=37.9
%〔SiO2〕M=37.6%の場合のBとWMの関係
図である。 X・・・MgO78%ドロマイト煉瓦、y・・・MgO
90%ドロマイト煉瓦、2・・・MgO98%マグネシ
ア煉瓦。
FIG. 1 is a diagram showing the relationship between erosion dimensions and slag basicity of MgO 78% dolomitic brick, MgO 90% dolomitic brick, and MgO 98% magnesia brick caused by CaO-SiO2-Fe2O3 system slag. Figure 2 shows the erosion dimensions due to CaO-SiO2-Fe2O3-based slag, the basicity of the slag, and the amount of MgO/CaO+S.
The relationship diagram of iO2 amount, Figure 3 shows [Si]P=0.7, [M
gO]M=37.9%, [SiO2]M=87.6%, B, A and WL relationship diagram. Figure 4 shows [Si] P = 0.7, [MgO] M = 37.9
It is a relationship diagram between B and WM when %[SiO2]M=37.6%. X...MgO 78% dolomite brick, y...MgO
90% dolomite brick, 2...MgO 98% magnesia brick.

Claims (1)

【特許請求の範囲】 1 MgOおよびCaOを主成分とする耐火物で内張さ
れた製鋼用純酸素上吹転炉において、なる前記二式を満
足するように石炭および苦土珪酸質鉱物を該炉内へ添加
することを特徴とする転炉内張耐火物の損耗速度減少法
。 但しWL;石炭量(ton) WM;苦土珪酸質鉱物量(ton) 〔MgO〕M;苦土珪酸質鉱物のMgO含有量(%) 〔SiO2〕M;苦土珪酸質鉱物のSiO2含有量(%
) WP;溶銑量(ton) 〔Si〕p;溶銑中のSi含有量(%)
[Claims] 1. In a pure oxygen top-blown converter for steelmaking lined with a refractory containing MgO and CaO as main components, coal and magnesium silicate minerals are added so as to satisfy the above two equations. A method for reducing the wear rate of refractory lining in a converter, which is characterized by adding it to the inside of the furnace. However, WL: Coal amount (ton) WM: Magnesium silicate mineral amount (ton) [MgO]M: MgO content of magnesium silicate mineral (%) [SiO2]M: SiO2 content of magnesium silicate mineral (%
) WP; Amount of hot metal (ton) [Si]p; Si content in hot metal (%)
JP50071157A 1975-06-12 1975-06-12 Tenro Chibari Tai Kabutsuno Sonmousokudogensyouhou Expired JPS589123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50071157A JPS589123B2 (en) 1975-06-12 1975-06-12 Tenro Chibari Tai Kabutsuno Sonmousokudogensyouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50071157A JPS589123B2 (en) 1975-06-12 1975-06-12 Tenro Chibari Tai Kabutsuno Sonmousokudogensyouhou

Publications (2)

Publication Number Publication Date
JPS51146314A JPS51146314A (en) 1976-12-15
JPS589123B2 true JPS589123B2 (en) 1983-02-19

Family

ID=13452495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50071157A Expired JPS589123B2 (en) 1975-06-12 1975-06-12 Tenro Chibari Tai Kabutsuno Sonmousokudogensyouhou

Country Status (1)

Country Link
JP (1) JPS589123B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839126A (en) * 1971-09-22 1973-06-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839126A (en) * 1971-09-22 1973-06-08

Also Published As

Publication number Publication date
JPS51146314A (en) 1976-12-15

Similar Documents

Publication Publication Date Title
CN104446538B (en) A kind of high alumina is combined ladle brick and preparation method thereof
JP4683427B2 (en) Lime-based refining flux
JP4683428B2 (en) Lime-based refining flux and its production method
US3964899A (en) Additives to improve slag formation in steelmaking furnaces
US3726665A (en) Slagging in basic steel-making process
US3288592A (en) Process for reducing deterioration in equipment handling molten materials
US3915696A (en) Sintered preformed slag for the steel industry
JPS589123B2 (en) Tenro Chibari Tai Kabutsuno Sonmousokudogensyouhou
JPS621446B2 (en)
RU2164952C1 (en) Method of steel melting in converter
JPH11323424A (en) Slag component conditioner for slag-coating converter lining refractory, its production and protection method of converter lining refractory by the same
JPS603028B2 (en) Refractory carbon-containing unburned mineral material whose main component is sintered magnesia
JP2004011970A (en) Pig iron retainer
US1205056A (en) Process for making refractory materials.
US20180363076A1 (en) Slag Conditioner for Electric Arc Furnace Steel Production
US2133672A (en) Refractory
US499248A (en) Basic lining
JP2002371311A (en) Method for dephosphorizing molten metal, dephosphorizing agent with low-temperature slag forming property therefor, and manufacturing method therefor
RU2738217C1 (en) Mixture for making steel melting flux
US2033886A (en) Refractory
JPS6143305B2 (en)
US3364043A (en) Basic refractories
KR100840264B1 (en) Magnesia-carbon coating material for the iron making vessel
JPH10317048A (en) Flux for electric furnace steel-making and its production
US218405A (en) Improvement in linings of cupola, reverberatory, bessemer